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■ Abstract Economic, environmental, and technological influences complicate the
task of achieving disease-free products in the ornamentals industry. Integrated pest
management (IPM) is a cornerstone of floriculture and nursery crop production: strate-
gies include sanitation, clean stock, host resistance, and control through biological,
cultural, environmental, chemical, and regulatory means. Sanitation measures and cul-
tural controls must keep pace with new production technologies. Clean stock programs
are used for many crops that are propagated vegetatively. Breeding, selection, and
biotechnology provide crops resistant to pathogens. Offshore production for economic
competitiveness can introduce pathogens that make regulatory programs necessary.
New biocontrol and chemical products continue to improve control while meeting the
requirement for minimal environmental impact. Continual introduction of new crops
and new production technologies creates new opportunities for pathogens to exploit,
such that new disease management tactics must be discovered and old ones rediscov-
ered to achieve optimum health management for ornamentals.

INTRODUCTION

The unique features of the pathology of ornamental plants were reviewed by Baker
& Linderman 25 years ago (7). They described how flare-ups of diseases such as
Verticillium wilt and chrysanthemum stunt in chrysanthemum, Cylindrocladium
wilt in azaleas, rose mosaic, and bacterial blight of geraniums precipitated ma-
jor improvements in sanitation and indexing procedures that ultimately secured
profitability of the crops.

Since 1979, the ornamentals industry has continued to be rocked by disease out-
breaks. In the greenhouse industry, bacterial blight of geraniums caused by Xan-
thomonas campestris pv. pelargonii, Impatiens necrotic spot (INSV) and Tomato
spotted wilt (TSWV) tospoviruses, and the bacterial wilt caused by Ralstonia
solanacearum race 3, biovar 2 have had the most impact. In the nursery industry,
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the effect of sudden oak death caused by Phytophthora ramorum has far out-
weighed that of any disease to date. These, along with thousands of other host-
pathogen interactions, make up the contagious disease challenges of plant health
management for growers of ornamentals.

Cline et al. described research needs in ornamentals pathology in 1988 (35),
many of which are still relevant. Despite significant progress to date, the constant
change in crops and systems requires continuing investment in both research and
extension specific to the health management of greenhouse- and nursery-grown
ornamentals. As we review research findings that relate to the principles of plant
health management for ornamentals, our discussion will of necessity show a largely
U.S. perspective, but with full realization that both research and production in the
United States are intricately linked to parallel endeavors around the globe.

The Value of the Industry

Production of ornamentals in the United States is an increasingly important agri-
cultural enterprise. The position of the ornamentals industry is much less insti-
tutionalized than the rest of agricultural production: although subject to many of
the same problems, ornamentals growers do not enjoy the same governmental
subsidies or a proportionate quantity of public funding for research.

Although concerned with minor crops, the industry has a very substantial col-
lective value. Cash receipts of the floriculture and nursery industries combined
were estimated at $14.3 billion in 2003, making them the fourth largest crop group
in the United States (159). Offshore production continues to compete for the U.S.
market: imports of cut flowers and nursery stock have reached $1.2 billion.

FLORICULTURE INDUSTRY For the floriculture segment alone, the estimated whole-
sale value in 2003 was $5.07 billion in the 36 primary production states (159).
The top four floriculture production states in terms of sales dollars were California
(19.8%), Florida (16.2%), Michigan (6.7%), and Texas (5.8%). Thirty-nine percent
of the growers in the survey had at least $100,000 in sales, and these larger growers
accounted for 93.9% of all sales. The floriculture industry encompasses produc-
ers of bedding/garden plants, prefinished/propagative materials, foliage plants, cut
flowers, potted flowering plants, and cut cultivated greens. Of these, the bedding
plant segment (including herbaceous perennials as well as annuals) is clearly dom-
inant, accounting for 55% of the industry.

NURSERY INDUSTRY The estimated wholesale value of nursery crops was
$9.16 billion in 2003 (159), with 49 states reporting. States in the South and West
accounted for 45% and 31%, respectively, of total production. California (14%),
Texas (12%), Oregon (9%), North Carolina (8.5%), and Florida (8.5%) accounted
for 52% of total production. Nursery crops are sold as container grown or dug
from the ground (balled and burlapped, or bare root) and include shrubs, trees,
and perennials broadly classed as broadleaf evergreens, coniferous evergreens,
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deciduous shade trees, deciduous flowering trees, deciduous shrubs, vines, and
groundcovers.

Nature of the Industry

No other type of agriculture embraces as many different families, species, and
cultivars of plant species. Baker & Linderman (7) estimated that 1100 genera of
plants were grown as ornamentals in 1979, and this number has only increased.
The industry is “plagued by. . . transitory varieties” (7), as plant breeders contin-
ually introduce lines with new, appealing foliage and/or flowering characteristics.
Mixed-species culture is typical and this complicates all cultural decisions, includ-
ing those related to plant health. Crops are annual or perennial, both herbaceous
and woody; they may be produced from seed or (increasingly) by vegetative prop-
agation (so that desirable traits may be quickly capitalized upon for sales of “new
or improved” plants).

The ornamentals industry in the United States uses diverse crop production
methods. Plants are produced in fields, outdoor shaded/open container areas, and
greenhouses. Field production is more concentrated in the southern states. Outdoor
production is in fields or beds, in containers that are on ground cloth or gravel sur-
faces, or set into pots recessed into the ground (pot-in-pot system). Greenhouses
may be of glass or fiberglass, or more commonly, are covered with poly film. Irri-
gation methods include overhead, drip tape, trickle tubes, capillary mats, ebb/flood
benches or troughs, flood floors, and flood trays.

Influences on the Ornamentals Industry

GLOBALIZATION The seed and cuttings used for propagation of ornamentals may
originate thousands of miles from where the plants are finished and sold. In-
creasingly, offshore sites are utilized for the production of cuttings, because of
the availability of high light and lower heating and labor costs. Globalization is
bringing host plants in U.S. production into contact with new pathogens, notably
Ralstonia solanacearum race 3, biovar 2 on geraniums (170), powdery mildew on
poinsettias (42), and Phytophthora ramorum on multiple woody hosts (132, 155).

ENVIRONMENTAL CONCERN Environmental regulations and water restrictions in
the United States are at times very limiting to the producers and consumers of
ornamentals. Plant health concerns must be addressed without compromising the
environmental health of the adjacent areas. At all phases of plant production, there
is a need for inexpensive, effective, and nonpolluting disease management. It is the
strong public demand for environmentally benign plant production that has most
changed the tenor of plant disease management in the past 25 years.

NEW TECHNOLOGY Technology is a major driving force in the changing face of
floriculture and nursery crop production. New technology—much of it computer-
controlled—and the economies of large-scale production have been adopted by
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some growers to save labor costs; however, new disease problems can develop as a
result. Automated plug tray devices can remove medium from plant-less cells in a
tray and replace with new seedlings, but if the medium removed was infested with
a pathogen such as Thielaviopsis basicola the new seedling may become diseased
(162). Irrigation by floor flood or ebb and flood is popular for some potted plants.
However, recycling irrigation water can be contaminated with pathogens such as
Pythium spp., resulting in disease outbreaks (136).

PLANT HEALTH MANAGEMENT: PRINCIPLES

Plant health management is a primary concern for producers of ornamentals. The
entire plant is harvested and marketed in most cases, so that price and saleability
are directly related to the attractiveness of flowers, stems, and leaves. Ornamental
businesses are profitable enterprises only if the plants are carefully guarded against
any injury.

Plant health management programs for ornamentals, as for other crops, must
ensure the health of the plant material entering production, provide cultural condi-
tions that work against disease development, and make arrangements to correctly
identify and treat problems that do arise. The integration of these principles is the
secret of effective management.

This review covers the advancements in scientific knowledge of plant health
management for ornamentals that relate to the key principles of sanitation, clean
stock, regulatory actions, host resistance, environmental control, cultural control,
biocontrol, chemical control, and disease diagnosis.

Sanitation

Sanitation practices are one of the surest control measures available to a grower. As
mentioned below under “Cultural Control,” extensive adoption of soilless medium
has eliminated many disease problems caused by soilborne plant pathogens in
ornamentals production. Soil is still occasionally used as a potting mix compo-
nent, however, or in ground beds. The accepted treatment for freeing soil from
pathogens since the mid-1960s has been the use of aerated steam for pasteuriza-
tion (2, 3, 46), which leaves some beneficial microorganisms in the soil rather than
creating a biological vacuum. Structural solarization recently has been developed
for greenhouses (143).

Methyl bromide has been used for soil disinfestation by woody plant propaga-
tors and cut flower growers in particular for many years (32). Methyl bromide and
alternative fumigants and their use with soil solarization are discussed by Tjamos
et al. (154). Methyl bromide is, however, scheduled for discontinuation of both
manufacture and use in developed nations by 2005, according to the Montreal
Protocol.

Greenhouse culture is somewhat protected from external environmental con-
tamination, but doorways and vents are entry points for pathogens. Positive
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pressure air flow is sometimes used to minimize entry of airborne propagules,
and footbaths are filled with disinfectant at entrances to reduce soil entry (19). Soil
particles in the greenhouse moved by grower activity may be a source of Pythium
or Rhizoctonia (152). Use of screening materials to exclude Western flower thrips
vectors from entering greenhouses through vents and doorways is integral to con-
trol of INSV (11). Water used for irrigation can also be a source of pathogens, or can
provide a medium by which pathogens introduced on plants are recirculated; the
technology for water disinfestation by physical, chemical, and biological means
is critically important for greenhouses and nurseries using recirculating irrigation
(51, 134).

Floriculture crops themselves tend to become sources of inoculum in the green-
house over time. Sporulation of Botrytis cinerea on dead leaves at the base of
geranium stock plants (70, 71) and on dead gerbera tissue (88) that accumulates
as a crop ages leads to inoculum for cutting wound and flower infection as well
as postharvest flower spotting. Keeping plant debris in covered containers and
clearing overmature, unsold plants from the greenhouse promptly are advisable
(69).

Crop sanitation includes control of weeds that are pathogen reservoirs as well
as control of arthropods that vector pathogens. Management of weed reservoirs
and the thrips vector is essential to avoid losses from TSWV or INSV (44). Aphids,
whiteflies, shore flies, and fungus gnats commonly vector various plant pathogens
in greenhouses and nurseries (45).

Clean Stock

A key aspect of plant health management is starting with clean propagative ma-
terial. Most ornamentals are multiplied via vegetative propagation, so there is a
greater danger of pathogen passage than in seed-propagated crops. The bedding
plant industry today increasingly uses vegetative propagation for the production of
new annuals so that new lines can be introduced more quickly. This propagation is
often conducted offshore; unrooted cuttings taken from “mother plants” are then
shipped into U.S. “rooting stations” before dissemination to growers. Certification
programs for ornamentals have been voluntarily undertaken by the industry until
quite recently. Concerns over the introduction of R. solanacearum race 3 biovar
2 into the United States have led to a U.S. Department of Agriculture (USDA)-
Animal and Plant Health Inspection Service (APHIS) certification program for
geraniums grown offshore (see Regulatory Actions section).

CULTURE INDEXING In the mid-twentieth century, systemic diseases were a ma-
jor limiting factor in the production of some of the more traditional floral crops.
Technology was developed to insure a clean start through culture indexing to re-
move bacterial and fungal contaminants, and through heat treatment to eliminate
viruses prior to meristem tip culture (128). Indexing programs systematically de-
tect and dispose of potential propagation material contaminated with a pathogen,
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to ensure that only healthy plant material is used for production. Klopmeyer (91)
outlined four key principles to guard the health and quality of vegetatively propa-
gated geraniums: annual renewal, unidirectional flow, repeated testing, and clonal
selection. The first culture-indexing procedure was used to eliminate Verticillium
from chrysanthemums (48) and similar methods were later applied to geraniums
(120) to eliminate Verticillium as well as X. campestris pv. pelargonii.

VIRUS INDEXING Virus- and viroid-indexing procedures have evolved over time.
Traditional bioassays using inoculation or grafting to indicator plants still have
some utility, but have largely been abandoned in favor of faster methods (91). A
serological method, enzyme-linked immunosorbent assay (ELISA) has now be-
come standard for virus testing. Lawson described the development of indexing
techniques for a wide variety of bulbs as well as other flower crops (99). Newer
molecular techniques (28, 100, 137) are gaining popularity. If viral contamination
is detected, then various techniques may be employed to free the plant material of
the virus or viruses (79, 119). For geraniums, heat therapy is best accomplished
by a program that uses gradually increasing temperatures until a final 38◦C day,
33◦C night is reached and maintained for 3–4 weeks (91). Subsequent meristem
tip culture allows development of young plants that can be virus-indexed. A mod-
ification of these procedures is used to verify the health of micropropagated plant
material. Indexing programs are used for a number of floriculture crops today, in-
cluding foliage plants, Easter lilies, Asiatic lilies, iris, gladiolus, chrysanthemum,
carnation, New Guinea impatiens, and geranium (91).

Seed Treatment

Pathogens may be associated with seeds in three basic ways, which determine
what treatments are effective to free the seed from contamination (5). Pathogens
can be mere accompaniments of seed (e.g., the seeds of the parasitic plant Cuscuta
spp., sclerotia of Sclerotinia, or contaminated bits of plant tissue as with Puc-
cinia malvacearum, hollyhock rust); attached exterior contaminants, e.g., Puc-
cinia antirrhini on seed of snapdragon, Antirrhinum majus, and Rhodococcus
(Corynebacterium) fascians on nasturtium and sweet pea; or they may be internal.
Internal contamination results when the pathogen has entered via flower parts,
such as Alternaria zinniae on zinnia; penetrated through the vascular system,
such as Fusarium oxysporum f. sp. mathiolae causing Fusarium wilt of Mathiola;
or has infected the seed directly, such as Heterosporium tropeoli causing het-
erosporium disease of nasturtium (5). Some viruses, also, may be carried in or on
seed.

Sunflower seeds that are infected with the downy mildew Plasmopara halstedii
will produce systemically infected plants (50). Oospores of Plasmopara obducens,
the downy mildew of impatiens, have been observed in seed of balsam impatiens,
and were demonstrated to lead to disease when infested seed was planted into
sterile soil (151).
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Fungicide treatments in the field should be carefully plotted according to the
specific diseases potentially seed transmissible for each crop. Use of benzimi-
dazole fungicides has been associated with increased Alternaria recovery from
seed (145), for example, and this practice would thus be inappropriate during field
production of seed for flowers such as zinnia that are susceptible to Alternaria
diseases. Currently, thiram is the only fungicide labeled for postharvest treatment
of flower seeds in the United States. Thiram gave an 80% reduction in seedborne
anthracnose in the field crop Lupinus albus, a relative of the ornamental lupine
(153).

The postharvest treatments of seed potentially include biological, physical,
mechanical, and chemical methods. Such a high value is placed upon germination
percentage in plug trays of bedding plants that tolerance for any phytotoxic effects
on seed germination is very low. Consequently, there has as yet been little utilization
of seed treatments to eliminate bacterial, fungal, or viral agents in ornamentals,
but information is available (131).

Thermotherapy is sometimes employed to free plant propagules from pathogens
(59). Hot water can be used for pathogen eradication from corms, bulbs, tubers,
and seeds, and has the advantage of penetrating to internally harbored pathogens.
Aerated steam (4) used at 56◦–57◦C for 30 min is safer than hot water and more
effective than hot air for seed treatment, especially if seed moisture content is
increased before treatment. Although short-term exposure to high temperature
will often free seeds from bacteria and fungi, generally longer periods of exposure
(one to several days) are more effective for eliminating viruses (1). Because there
is a risk of reduced germination percentage with any heat treatment, this approach
is not widely used by the flower seed industry.

Seed health testing must be carried out to insure freedom from pathogens of
concern. Neergaard gives test procedures applicable to many pathogens of flower
crops (116).

Regulatory Action

For some ornamental pathogens, notably P. ramorum and R. solanacearum race 3
biovar 2, regulatory actions have recently been put in place by the USDA-APHIS,
Plant Protection and Quarantine (PPQ). The purpose of the actions has been to
protect American forests, landscapes, and agriculture from the diseases that these
pathogens cause (74, 157).

Use of regulatory actions as a means of managing ornamental diseases goes
well beyond simply putting in force a regulatory rule barring the introduction of
infected plants. Regulatory scientists develop an action plan based on pathways
of host movement in the ornamentals industry, on the epidemiology, ecology, and
biology of the pathogen, and on cultural practices used for the ornamental crop.

CASE STUDY 1: PHYTOPHTHORA RAMORUM Sometime in the early 1990s, a dis-
ease of unknown etiology known as Sudden Oak Death began devastating coast
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live oaks and tanoaks in the coastal region of Northern California, centering on
Marin County. In the late 1990s Rizzo & Garbelotto (132) isolated an unknown
Phytophthora sp. from dying oaks that was later described as compatibility type A2
of P. ramorum (164). At the same time compatibility type A1 became recognized
in Europe primarily as a pathogen of nursery plants including rhododendron and
other ornamentals (83, 98, 164, 177). APHIS PPQ imposed a federal quarantine
for 14 coastal counties in Northern California to limit the spread of this intro-
duced, limited-distribution pathogen in the United States (157). A federal action
plan (158) was put in place for nurseries in the quarantine area to insure that only
disease-free plants were shipped.

In 2004, a large southern California nursery well outside the quarantine area
unknowingly shipped infected camellias to 160 locations in 21 states, many of these
in the eastern United States where there is great concern that red oaks (Quercus
falcata and Q. rubra), dominant forest trees, will suffer the same fate as coast live
oaks and tanoaks in California should P. ramorum be introduced. The occurrence of
P. ramorum in the hot, dry climate of a southern California nursery was unexpected
and points out the fact that nursery growing conditions with daily irrigation and
shade can create a microclimate favoring P. ramorum.

Unfortunately, our current understanding of the biology and epidemiology of
P. ramorum on nursery crops has gaps that could represent weak links in the
regulatory plan. For instance, the role of chlamydospores in survival and infection
may be important (101, 142) but the regulatory plan has no measures to prevent
movement of soilborne inoculum on asymptomatic plants.

Although the regulatory action for P. ramorum has the potential to limit the
distribution of the pathogen, it also has led to uncertainty among nurserymen
and put the nursery industry at risk. Standard operating procedures at nurseries
must be rethought to prevent the introduction of potentially infected plants. In-
tegrated pest management (IPM) programs must include an emphasis on sanita-
tion and cultural practices to avoid Phytophthora infection, and new strategies for
nursery layouts are needed to avoid catastrophic loss through regulatory action,
should the pathogen be inadvertently introduced. Compliance with regulations
has become a new economic burden, and the reputation of the nursery industry
in states where the disease has been detected is questioned, threatening future
sales.

CASE STUDY 2: RALSTONIA SOLANACEARUM RACE 3 BIOVAR 2 In the case of R.
solanacearum race 3 biovar 2, the perceived threat is to the U.S. potato crop, not
necessarily to the geranium industry through which the pathogen has recently been
introduced (170). R. solanacearum race 3 biovar 2 is on the USDA Agricultural
Bioterrorism Act of 2002 Select Agents and Toxins list because of the potential
threat, but the introduction of this pathogen on geranium has been determined
to be inadvertent (157). Although southern bacterial wilt in geranium caused by
R. solanacearum (now known to be race 1) is endemic in the southern United
States, race 3 biovar 2 from the highland tropics of Africa and South America is
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adapted to cooler climates—thus the fear that eventually this race could infest the
seed potato-growing region in North America if it were introduced (170).

In 2003 from Kenya and again in 2004 from Guatemala, countries where race
3 biovar 2 is endemic, a few infected geranium cuttings were introduced to U.S.
rooting stations. The rooting stations inadvertently distributed infected geraniums
to wholesale producers in a number of states. In a trace-forward effort, APHIS and
the state departments of agriculture were able to identify the wholesale growers
who received these plants and to destroy the infected plants. This caused great fi-
nancial loss to the growers, as no reimbursement plan was in effect. Early detection
and a rigorous trace forward effort were the key steps for finding and eliminating
infected geraniums from U.S. wholesale producers before these plants were sold
and planted in the landscape.

Host Resistance

Development of transgenic crops holds promise in floriculture, as a large num-
ber of cut flower crops have been transformed including rose, chrysanthemum,
and carnation (133). The technical difficulty of developing transgenic plants in
ornamentals is the lack of suitable transformation systems. However, regeneration
of chrysanthemum has led successfully to transformation of the cultivar ‘Polaris’
with resistance to TSWV by insertion of a portion of the nucleocapsid gene (140,
141). Rose plants transformed with the antimicrobial protein gene, Ace-AMP1,
were more resistant to Sphaerotheca pannosa, cause of powdery mildew, than were
nontransformed plants (102). Insertion of the chitinase transgene in rose resulted in
plants more resistant to Diplocarpon rosae, cause of black spot disease (105). The
economic constraints for transforming a large number of cultivars of a given crop
and the low rate of transformation may limit the commercial use of genetically
transformed ornamental crops for disease management in the near future.

Selection of species and cultivars with natural genetic resistance to root rot has
identified a number of resistant woody ornamentals. Rhododendron and azalea
cultivars resistant to Phytophthora root rot caused by Phytophthora cinnamomi
have been identified through screening programs (18, 77). A number of woody
ornamentals with resistance to root-knot nematode (Meloidogyne spp), lesion ne-
matode (Pratylenchus vulnus), ring nematode (Macroposthonia xenoplax), and
stunt nematode (Tylenchorhynchus claytoni) were identified (15, 166).

Selection for resistance to foliar pathogens has been equally successful. The
National Crabapple Introduction Program identified cultivars and species with re-
sistance to apple scab (Venturia inaequalis), fireblight (Erwinia amylovora), rust
(Gymnosporangium spp.), and powdery mildew that had good horticultural char-
acteristics (14, 34, 65, 148). Active breeding and selection programs for disease
resistance in ornamentals continue across government, university, and private sec-
tors. The U.S. National Arboretum has released improved crapemyrtle cultivars
with resistance to powdery mildew, and efforts continue on development of disease
resistance in other crops. In university programs, resistant cultivars and species
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have been identified for major foliar pathogens in a number of woody ornamen-
tals, as reported in Biological and Cultural Tests for the Control of Plant Diseases
(B&C Tests).

Growers are slow to adopt host resistance as a strategy for IPM in commercial
production unless a disease is so severe and other management tools so ineffective
that production is threatened. As consumers become better educated about grow-
ing plants that are disease resistant and thus require less maintenance, demand
for production of disease-resistant cultivars in floriculture and nursery crops will
increase.

Environmental Control

The primary aim of environmental control of disease in a greenhouse is to restrict
water availability to the pathogens, as bacteria and fungi need moisture in order to
infect. Computer controls are used to make automatic adjustments in ventilation or
heating to effect dehumidification in response to indications that the temperatures
are nearing the dew point (86). Precise measurements of very low vapor pressure
deficits, when relative humidity is greater than 90%, are particularly important.
Under these conditions, the dew point is reached with a decrease in temperature
of only a few degrees (85).

Horizontal air flow systems that use fans to move the air just above the crops at
12 m3 per minute reduce the chance of reaching the dew point on plant surfaces
during clear cold nights when heat is lost from plant surfaces by radiation (94, 95).

Most of the environmental management research has focused on B. cinerea, as
this fungus affects such a wide range of ornamentals (156), as well as greenhouse
vegetable crops. Although Botrytis has been reported to initiate infections using
stigma exudate following dry conidial inoculation (169), controlling Botrytis is
largely a matter of reducing free water on plant surfaces and lowering humidity.
Foliar wetness can be managed with infrared heating systems, or irrigation systems
that do not wet the foliage: trickle, drip, trough, and ebb/flood and flood floor
irrigation (72).

Temperature affects but rarely limits Botrytis blight because the pathogen’s
effective range is so great: for gerbera, petal spotting was seen to occur over a
temperature range of 4◦ to 25◦C (135). Postharvest susceptibility of poinsettia
bracts to Botrytis increased with increasing temperatures during production over
a range of 16◦–22◦C, and was not affected by the use of DIF (night temperatures
higher than day temperatures for the purpose of height control) (126); this effect
may have been due to the advanced maturity of bracts on plants grown at a higher
temperature. In gerbera petal spotting incidence increased at higher postharvest
temperatures (89). Warmer temperatures also allowed greater disease incidence at
shorter leaf wetness durations in geranium flowers (146). The higher radiation in
greenhouses in spring and summer and consequent reduction of conidial infectivity
apparently outweigh the disease-conducive effects of warmer temperatures in those
seasons (89).

A
nn

u.
 R

ev
. P

hy
to

pa
th

ol
. 2

00
5.

43
:1

41
-1

69
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 U

ni
ve

rs
id

ad
 d

e 
C

os
ta

 R
ic

a 
on

 0
3/

24
/0

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



16 Jun 2005 14:24 AR AR250-PY43-07.tex XMLPublishSM(2004/02/24) P1: KUV

HEALTH MANAGEMENT FOR ORNAMENTALS 151

Use of long-wave infrared-absorbing plastic film for greenhouse covering re-
duces nighttime heat loss and thus the opportunity for condensation on plant sur-
faces, reducing Botrytis disease on tomatoes (160). Films that restrict UV light
penetration also reduce Botrytis sporulation (130).

Wider space between plants improves air movement and also increases the
exposure of lower leaves to light, thus reducing premature senescence and the
accompanying Botrytis sporulation (72). Heated air forced up through the canopy
of geranium stock plants (72) reduces inoculum production. By reducing relative
humidity to less than 60% for at least 24 h just after cutting harvest, producers
of geranium cuttings can reduce Botrytis stem blight, even when conditions more
favorable to infection follow (71).

Powdery mildew in rose (Podosphaera pannosa f. sp. rosae) is another orna-
mental disease system for which there is extensive knowledge of environmental
influences. The environment outside the greenhouse has a significant influence
(144). Epidemics within a Colorado greenhouse began when outdoor dew points
rose in early spring, and continued through the summer (36). Powdery mildew
severity was reduced by halting evaporative pad cooling at sunset and thus in-
creasing vapor pressure deficit. Heating was needed for disease control during the
winter, when outdoor dew points were low.

Water sprays have been observed to reduce growth of colonies of mildew on
roses (122, 172); outdoors, rain reduces sporulation for several days (147). The
greatest inhibition was seen with water sprays 6–8 h after inoculation (122). Minute
films of water may actually be necessary for rose infection, however (173). Studies
by De Long & Powell (47, 125) indicated that a nighttime 12 h-dew period max-
imized powdery mildew infection in roses, and that shorter dew periods reduced
disease. Extremes of moisture, either too high or too low, were detrimental to coni-
dial germination. Moisture on the plant surface has also been found to be important
for powdery mildew of begonia (127) and for powdery mildew on poinsettia (29).

Temperature can be a limiting factor for some powdery mildew diseases.
Colonies on begonia were eradicated by a 6-day exposure to 32◦C (127). Temper-
atures 30◦C or higher halt epidemics for powdery mildew on poinsettia (25, 27).
Symptoms of powdery mildew on poinsettia are suppressed by summer greenhouse
temperatures (90).

Cultural Control

Practices that reduce initial inoculum in the crop or lower infection rate will result
in a higher percentage of disease-free plants. The floriculture and nursery industries
have used cultural innovations and technology to improve crop health.

SOILLESS MIXES The most important innovation in the culture of greenhouse and
nursery crops was the adoption of soilless potting mix. In the 1940s a new soil mix
concept was developed by horticulturists and plant pathologists at the University
of California (6). These U.C. soil mixes used various proportions of fine sand
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and sphagnum peat moss and avoided the use of topsoil, a source of soilborne
plant pathogens. The floriculture industry continues to use soilless mixes based on
sphagnum peat moss, but the fine sand has been replaced by other inert ingredients
(e.g., perlite, vermiculite, or bark ash). The nursery industry has adopted soilless
mixes based on pine or fir barks (75) because the cost of peat moss has become
prohibitive at the scale of nursery production. Composted pinebark-based mixes
have the advantage of a natural suppressiveness (76, 149, 150) against Pythium
and Phytophthora spp.

WATER MANAGEMENT IN GREENHOUSES AND NURSERIES Application of irriga-
tion water is a critical production practice: Too much water may favor many
pathogens, too little water may predispose crops to opportunistic pathogens, where-
as neither situation is optimal for plant growth. The normally resistant rhododen-
dron cultivar ‘Caroline’ was predisposed to infection by P. cinnamomi, either by
48 h of potting mix saturation or by drought stress (22). The canker-causing fungus
Botryosphaeria dothidea infects stems or leaves when free water is present, but
dieback does not occur unless the plant is exposed to a drought stress (139). To
combat bacterial leaf spot (Ps. cichorii) in chrysanthemum, the only cost-effective
procedure was irrigation with buried drip tape to reduce foliar wetness as well as
the use of a roof covering rather than a porous saran cover (20).

FERTILITY AND pH MANAGEMENT Because plant nutrients normally present in
agricultural soils must be supplemented in soilless mixes, nutrients may in some
cases be adjusted to suppress disease, such as by adjusting the level or form of
nitrogen (81). An integrated system for Fusarium wilt management was devel-
oped for chrysanthemum (87, 171) that used nitrate-nitrogen and elevated pH.
Excessive nitrogen has been shown to favor Botrytis blight (84), Phytophthora
blight on rhododendron (78), and Pythium root rot in poinsettia (58). A 1:3 ratio
of nitrate-nitrogen to ammonium-nitrogen in pansy suppressed T. basicola (39).

Management of pH can be used to suppress soilborne pathogens such as Phy-
tophthora and Thielaviopsis. Rhododendron ‘Boule de Neige’ grown at pH 3.4–3.7
did not develop Phytophthora root rot, whereas disease was severe on plants grown
at pH 5.8–6.0 (21). Maintaining soil mixes at a pH at 5.0 was a traditional cultural
practice to control black root rot in poinsettia caused by T. basicola. At pH less
than 5, trivalent aluminum (Al3+) predominates in soil solution and can be toxic to
spore germination and hyphal growth in T. basicola (106, 107). Drenches of alu-
minum sulfate to provide Al3+ to a soilless potting mix suppressed root rot of vinca
(Catharanthus roseus) caused by P. parasitica; as pH was increased, increasing
concentrations of aluminum sulfate were required for suppression (12, 13).

Biocontrol

Many opportunities exist for use of biocontrol in greenhouses (121). Botrytis
blight caused by B. cinerea is a particularly difficult disease to control in many
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ornamental crops. The competitive saprophytes Clonostachys rosea and Ulocla-
dium atrum have been evaluated with some success for suppression of B. cinerea
on cyclamen (92), geranium (57), and rose (113, 174, 175). Necrotic tissue in the
plant canopy serves as a site for Botrytis sporulation. As highly competitive sapro-
phytic colonizers, C. rosea and U. atrum outcompete Botrytis for possession of
the necrotic substrate (93). In potted mini-rose grown under high disease pressure,
use of U. atrum at three production stages consistently resulted in less disease and
less sporulation of Botrytis than on untreated plants and was better than or equal
to the fungicide iprodione (174).

Integrated use of biocontrol agents and fungicides has proven useful in reducing
the number of fungicide applications to a crop. For instance, Botrytis control in
nonheated greenhouse vegetable crops was achieved using fungicide or the bio-
control agent, Trichoderma harzanium T39, with the choice of material dependent
upon measured environmental parameters (144). We expect more examples of the
integration of biocontrol agents, chemicals, and disease forecasting in the future
for greenhouse and nursery disease management.

PERFORMANCE OF COMMERCIAL BIOCONTROL PRODUCTS Fravel has reviewed
several products based on specific biocontrol agents that have been introduced
for control of diseases on ornamental crops in both the greenhouse and nursery
(56). Many of the commercial biocontrol products on the market have received
extensive evaluation in university trials in which inoculum of the test pathogen
was introduced or occurred naturally. Performance of biocontrol agents in many
of these trials has been poor, with only 12 successful results in 54 evaluations
taken from reports in B&C Tests and Fungicide and Nematicide Tests (F&N Tests)
(Table 1). One of the most widely tested biologicals, Trichoderma harizanum T-
22 (Rootshield and PlantShield), was ineffective in a number of trials when used
against Pythium and Rhizoctonia root rot, whereas three trials showed benefit of
this a. i. against Cylindrocladium, Pythium, or Rhizoctonia root rots (Table 1). In
other trials with T. harizanum T-22 reported elsewhere, this biocontrol agent has
led to improved crop growth and has been successful in control of both Pythium
and Rhizoctonia root rot and powdery mildew on several ornamentals (64). Tri-
choderma virens GL21 (=Gliocladium virens), commercialized as SoilGard (and
earlier, GlioGard), only controlled Rhizoctonia root rot in two of eight trials
(Table 1) even though it was quite effective against both Pythium and Rhizoc-
tonia damping-off in extensive development studies (104). Bacillus subtilis QRD
713 was the most successful biocontrol agent tested; four of seven trials with Ser-
enade (now Rhapsody) controlled foliar pathogens, although strains GB03 and
MBI600 of B. subtilis were ineffective as Companion and Subtilex, respectively,
against several root pathogens (Table 1).

The poor performance of commercial products of biocontrol agents reported
by university researchers (Table 1) may be due to several factors. These could
include (a) an overwhelming amount of introduced inoculum that exceeds the
inoculum density of the pathogen as it might naturally occur in production, (b) an
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environment unfavorable for the biocontrol organism, and (c) an environment too
favorable for pathogen germination and infection, in which the biocontrol agent
cannot compete.

Although biocontrol agents at times perform equivalently to fungicides in com-
parative tests, biocontrol does not appear to be a stand-alone practical control
measure for disease. Biocontrol agents are likely to perform best when pathogen
populations are low or when coupled with naturally suppressive potting mixes.
Thus, growers who improve sanitation and cultural practices will see greater ben-
efits from biocontrol agents and be able to reduce the amount of pesticide used in
crop production

Detection and Diagnosis

Scouting and correct identification of a disease problem is paramount for effective
disease management in floriculture and nursery crops. Daily inspection of the crop
is the best way to detect problems promptly. Head growers often have this re-
sponsibility, but some businesses have formal scouting programs. After detection,
correct diagnosis of the specific problem is the second step. Some large facilities
have an in-house pathologist, but in most cases samples are sent off to a diag-
nostic lab at a land-grant university. Diagnosis may be done by traditional and/or
molecular methods. Identification of the pathogen is critical for determining which
fungicide or bactericide is appropriate. Likewise, pathogen identification is needed
to decide how to modify cultural or environmental conditions to suppress further
disease development. The identification of the host-pathosystem also sometimes
indicates where the pathogen might have entered the production cycle, particu-
larly for seedborne pathogens or pathogens usually introduced via vegetatively
propagated stock.

Chemical Controls

Fungicides continue to have an integral role in ornamentals disease management.
Fungicides are rarely used alone, but typically are one component of an IPM pro-
gram. Pieters (123) concluded that management of rose powdery mildew in the
greenhouse could not be accomplished by environmental manipulations alone; dis-
ease monitoring of the number of leaflets infected was used to strategically time
chemical inputs and thus reduce the total number of sprays needed. The Fusar-
ium wilt control system designed by Woltz & Engelhard (87, 171) incorporated
drenches with benomyl in addition to nutritional controls.

The effectiveness of new phosphorous acid products and others for Phytoph-
thora and downy mildew control, and other broad-spectrum materials and reduced
risk products for ornamental diseases were summarized recently by Chase (31).
Three new active ingredients, cyazofamid, fenamidone, and pyraclostrobin, are an-
ticipated to be registered in the United States for ornamentals use in the near future
(33). Trial data to date suggest that pyraclostrobin has good effectiveness against
powdery mildews, downy mildews, rusts, Cercospora, Sphaceloma, Alternaria,
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Phytophthora, and some effect on Pythium and Rhizoctonia. Cyazofamid and
fenamidone trials indicate good effectiveness against Phytophthora and downy
mildews.

Owing to the small worldwide market size for greenhouse and nursery fungi-
cides and the high cost of product introduction, new chemical control products
are usually developed for agricultural uses and then trickle down to ornamental
uses—especially if a turf label is also possible. The fungicides available for or-
namentals use are similar to those available to the rest of agricultural production.
Thirteen of the top 15 agricultural fungicides worldwide for 2003 (8) are registered
for ornamentals use in the United States.

The need for new systemic downy mildew and Phytophthora controls in orna-
mentals (26), for example, was answered through product development targeting
late blight of potato and downy mildew of grape. Recently, dimethomorph, cya-
zofamid, and fenamidone have been introduced for ornamentals use in the United
States. Mefenoxam resistance (82, 97) occurs in Phytophthora strains affecting
ornamentals, so a diverse supply of new chemical tools is important. Success-
ful use of fungicides against diseases of ornamentals caused by P. nicotianae,
P. drechsleri, and P. cinnamomi is reported in recent editions of F&N Tests.

Management of powdery mildew disease in ornamentals has also profited from
the development of chemistry targeted at other globally important markets, such as
control of powdery mildew on grapes and European wheat. Chemical controls for
powdery mildew were reviewed by Coyier (40). Since that time, additional active
ingredients have been made available for use or testing on powdery mildews of
ornamentals, notably some additional demethylation inhibitors (DMIs), as well
as the strobilurins azoxystrobin, kresoxim-methyl, pyraclostrobin, and trifloxys-
trobin. The DMI materials are valuable as systemic controls of some powdery
mildews, but the spectre of resistance development is always a concern for both
strobilurins and DMIs. Horst et al. described the benefits of bicarbonate and oil as
biorational fungicides for powdery mildew and black spot of roses (80). Neem oil
and petroleum oil are helpful against powdery mildew, but, similarly to bicarbon-
ates, need to be used with care to avoid phytotoxicity. Soluble silicon treatments
have been tried for powdery mildew control on greenhouse roses, but use on orna-
mentals is not widespread in the United States (10). Powdery mildew studies have
recently been reported in F&N Tests for many woody and herbaceous ornamentals.
Registered active ingredients showing effectiveness in these trials included copper,
thiophanate-methyl, chlorothalonil, phosphorous acid materials, and piperalin, in
addition to strobilurins, bicarbonates, oils, and DMIs.

Botrytis fungicides are generally first developed for use on grapes. Recent
Botrytis control trials on poinsettia and geranium (reported in F&N Tests) have
shown decreased disease incidence or severity in treatments with polyoxorim,
fenhexamid, iprodione, pyraclostrobin, and chlorothalonil sprays. For effective
Botrytis control, the timing of fungicide applications may be critical. Because
geranium cuttings are exposed to extensive periods of leaf wetness during propa-
gation, it is a good strategy for growers to apply Botrytis-controlling fungicides to
the stock plants prior to taking cuttings (72).
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Greenhouse populations of downy mildew, powdery mildew and B. cinerea are
particularly prone to develop resistance. Strains of B. cinerea resistant to benzimi-
dazole fungicides or partially resistant to dicarboximides have been documented in
N. America (96, 112, 118, 176); this resistance has appeared in many ornamental
crops worldwide. A PCR test can be used to test Botrytis isolates for benzimidazole
resistance (103). Some of the newer chemistries in use in the ornamentals industry
are also vulnerable to the development of resistant Botrytis populations. Because
of the frequent exchange of plant material among greenhouse growers of ornamen-
tals, the development of resistance in any major production facility will be quickly
shared with the rest of the industry (69). The possibility of adding oils to fungicides
for improved control of partially resistant populations of Botrytis (23) may be use-
ful; however, phytotoxicity is a concern (69). Rotation of materials with different
modes of action is more economical than tank mixes, and has been recommended
(41). But others contend that fungicides applied alternately do not slow the buildup
of resistance because treatments are so close together that there is no time for the
resistant portion of the population to be significantly set back; tank mixtures have
been examined as an alternative (69, 111). Development of resistance is of partic-
ular concern when it arises in a pathogen of quarantine significance, e.g., Puccinia
horiana, agent of chrysanthemum white rust, for which resistance to fungicides
in carboximide, triazole, and strobilurin classes has now been reported (37, 49).
Resistance is also an important factor in the management of soilborne diseases.
A high incidence of mefenoxam resistance has been documented in greenhouse
populations of Pythium (110) and Phytophthora (82, 97).

For bacterial control, coppers, mancozeb products, or copper plus mancozeb
products are generally used (30, 117). Copper and streptomycin resistance has
been documented for Pseudomonas syringae on nursery shade trees (138) and
copper resistance on New Guinea impatiens (38); resistance may hamper manage-
ment of other diseases as well. A new formulation of Bacillus subtilis with broad
effectiveness provides a rotational or tank-mix partner to use with copper against
bacterial diseases (30).

The recent introduction of Puccinia hemerocallidis, daylily rust, into the United
States showed the industry how rapidly a new pathogen can become distributed
through normal retail channels and hobbyist exchanges (168). Following a first
detection on Hemerocallis in the United States in 2000, by the end of the growing
season in 2001 the disease had been reported from 22 states. Initial tests indicated
that chlorothalonil, mancozeb, triadimefon, and azoxystrobin consistently reduced
symptom infection (24). Studies on the control of rust fungi (114, 115) indicated
that germination of urediniospores was almost entirely prevented by azoxystrobin,
chlorothalonil, copper sulfate pentahydrate, mancozeb, and trifloxystrobin during
in vitro screening. Less than one lesion per plant developed on geraniums in-
oculated with Puccinia pelargonii-zonalis previously sprayed with azoxystrobin,
chlorothalonil, copper sulfate pentahydrate, or mancozeb. Other fungicides tested
belonging to the benzimidazole, dicarboximide, hydroxyanilide, and DMI groups
were fungistatic rather than fungicidal to urediniospores. Although fungistatic
materials may protect plants well, the materials fungicidal to urediniospores are
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valuable for limiting the movement of rust fungi into new areas on nonsymptomatic
plants. Such materials would be appropriately used prior to shipping out of areas
where a disease is known to occur, and/or upon receipt of plants known to be
coming from such an area.

Foliar nematode control is an example of a problem unique to ornamentals;
many crops may be affected, including chrysanthemum, hosta, Japanese
anemone, and buddleia. These pests were previously controlled by the insecticides
oxamyl and aldicarb. As these registrations have been eliminated, the problem
of foliar nematodes in vegetatively propagated, closely spaced, overhead-watered
plants in nurseries has risen alarmingly. Rechcigl (129) had some success using
chlorfenapyr treatments on Japanese anemone for the control of Aphelenchoides
fragariae. Although there was not 100% control, it was felt that propagation by divi-
sion following nematode number reduction would ultimately result in some plants
entirely free from nematodes (thus clean stock). Warfield (163) tested chlorfenapyr
on lantana and buddleia and observed significant foliar nematode suppression on
both plants 6 weeks after the first treatment.

Known systemic acquired resistance (SAR) stimulating products are not being
utilized by the ornamentals industry, but a number of products claim to increase host
defenses by undefined means. The SAR-inducing acibenzolar-S-methyl (ASM)
has been trialed on ornamentals, but results have been highly variable according
to host: On delphinium and impatiens, Pseudomonas blight was controlled with
ASM, but geraniums were harmed by the same rate (30). ASM also gave complete
suppression of late blight caused by Phytophthora infestans on petunia, but not on
tomato (9).

The risks and benefits of chemical application need to be weighed in each situ-
ation. In addition to the cost of chemical treatment, there are sometimes negative
side effects of pesticide use: stress, resistance problems, interference with bio-
control, or an increase in diseases normally held in check by naturally occurring
antagonistic microflora (19). Certain fungicide treatments on healthy plants may
have a negative effect on plant growth, and possibly increase the length of time to
bring the crop into flower (73). On the other hand, chemical controls are sometimes
critically needed when the crop is grown under cultural stresses associated with
faster crop production. The development of IPM programs that use the fewest pos-
sible fungicide applications has been somewhat hindered in ornamentals culture
because the cost of an insurance application is outweighed by the high value of
the crop that may be at risk from a pathogen.

CONCLUSION

Although diseases such as Southern bacterial wilt and P. ramorum blight/sudden
oak death have taken a tragic economic toll on ornamental crops in the United
States in recent years, the attention paid to them will bring about a leap forward
in our knowledge. Sanitation practices, detection methods, communication, and
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regulatory procedures will all advance substantially, improving the ability of the
ornamentals industry to prevent and respond to disease outbreaks in the future.
Additional research is needed to support progress in the development of inte-
grated environmental, cultural, biological, and chemical control techniques for
management of diseases in the greenhouse and nursery. We anticipate continuing
improvements in our ability to manage diseases. Progress will be achieved through
the development and application of host resistance, cultural, environmental, and
biological methods of disease management, as well as through the use of effective
chemical tools that present minimal environmental risk to nontarget organisms.

The Annual Review of Phytopathology is online at
http://phyto.annualreviews.org
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