Principles of Plasma Physics for Engineers and Scientists

This unified introduction provides the tools and techniques needed to analyze plasmas, and connects plasma phenomena to other fields of study. Combining mathematical rigor with qualitative explanations, and linking theory to practice with example problems, this is a perfect textbook for senior undergraduate and graduate students taking a one-semester introductory course in plasma physics.

For the first time, material is presented in the context of unifying principles, illustrated using organizational charts, and structured in a successive progression from single-particle motion to kinetic theory and average values, through to the collective phenomena of waves in plasma. This provides students with a stronger understanding of the topics covered, their interconnections, and when different types of plasma models are applicable. Furthermore, mathematical derivations are rigorous yet concise, so physical understanding is not lost in lengthy mathematical treatments. Worked examples illustrate practical applications of theory, and students can test their new knowledge with 90 end-of-chapter problems.

Umran Inan is a Professor of Electrical Engineering at Stanford University, where he has led pioneering research on very low frequency studies of the ionosphere and radiation belts, space plasma physics, and electromagnetics for over 30 years. He also currently serves as President of Koç University in Istanbul, Turkey. As a committed teacher, he has supervised the Ph.D. dissertations of 42 students and has authored two previous books that have become standard textbooks for electromagnetics courses, as well as receiving numerous awards including the Tau Beta Pi Excellence in Undergraduate Teaching Award and the Outstanding Service Award from the Electrical Engineering Department for excellence in teaching. He is a Fellow of the Institute for Electrical and Electronics Engineers (IEEE), the American Geophysical Union (AGU), and the American Physical Society (APS), and is the recipient of the 2008 Appleton Prize from the International Union of Radio Science and the Royal Society, the 2007 Allan Cox Medal of Stanford for Faculty Excellence in fostering undergraduate research, and the 2010 Special Science Award given by the Scientific and Technological Research Council of Turkey.

> **Marek Gołkowski** is an Assistant Professor in the Department of Electrical Engineering at the University of Colorado Denver, which he joined after completing his Ph.D. at Stanford University. He has won several awards including the Young Scientists Award from the International Association of Geomagnetism and Aeronomy and the Outstanding Student Paper Award from the American Geophysical Union. His current research focuses on electromagnetics and biological applications of plasmas.

Principles of Plasma Physics for Engineers and Scientists

Umran Inan Stanford University[†]

and

Marek Gołkowski University of Colorado Denver

[†]Now serving as President of Koç University, Istanbul

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521193726

© Cambridge University Press 2011

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2011

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data

Inan, Umran S.
Principles of plasma physics for engineers and scientists / Umran Inan and Marek Gołkowski.
p. cm.
Includes bibliographical references and index.
ISBN 978-0-521-19372-6 (Hardback)
1. Plasma (Ionized gases)–Textbooks. I. Gołkowski, Marek. II. Title.
QC718.1435 2010
530.4'4–dc22 2010038466

ISBN 978-0-521-19372-6 Hardback

Additional resources for this publication at www.cambridge.org/9780521193726

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> **To my parents, my beautiful wife Elif, my dear children Ayşe and Ali, and my very special granddaughter Ayla.** USI

To my father, who taught me to appreciate physics, my mother, who taught me to appreciate writing, and my wife, who gave me the support and motivation to finish this project.

MG

> I have been teaching Introductory Plasma Physics to senior undergraduates and beginning graduate students for many years, and I find the level of the presentation of material, the order that the topics are presented, and the overall length of the book to be an excellent match for my needs in a textbook. *David Hammer, Cornell University*

> The authors have done an excellent job in introducing the vast scope of plasma physics for basic plasma physics courses. The schematic illustrations and flow charts used are especially helpful in understanding the complexities involved in the hierarchal nature of plasmas. Mathematics is kept at just the right level for the intended readers and the descriptions of the physical processes are clear. Although this book is targeted to advanced undergraduate or beginning graduate students, it will be a good addition to the personal library of every plasma physicist.

Gurudas Ganguli, Naval Research Laboratory

This new book provides an excellent summary of the basic processes occurring in plasmas together with a comprehensive introduction to the mathematical formulation of fluid (MHD) and kinetic theory. It provides an excellent introduction to the subject suitable for senior undergraduate students or entry-level graduate students. *Richard M. Thorne, University of California at Los Angeles*

Contents

	Preface	<i>page</i> xiii
1	Introduction	1
1.1	Speed, energy, and temperature	8
1.2	Quasi-neutrality and plasma oscillations	10
1.3	Debye shielding	13
	<i>Example 1-1</i> Debye length and plasma frequency	15
1.4	Problems	18
	References	19
	Single-particle motion	20
	Motion in a uniform B field: gyration	21
2.2	$\mathbf{E} \times \mathbf{B}$ drift	26
	<i>Example 2-1</i> Hall thruster	28
2.3	Particle motion in non-uniform B fields	30
2.3.1	Gradient drift	31
2.3.2	Curvature drift	33
2.3.3	Other gradients of B	36
2.4	Adiabatic invariance of the magnetic moment	37
	Example 2-2 Plasma confinement using magnetic mirrors	40
2.5	Particle motion in time-varying electric fields	42
2.5.1	Polarization drift: slowly varying E field	42
2.5.2	Particle motion in static B and arbitrary E fields	44
	<i>Example 2-3</i> Cyclotron resonance	47
2.6	Summary	48
2.7	Problems	49
	References	52

vii

viii

Cambridge University Press 978-0-521-19372-6 - Principles of Plasma Physics for Engineers and Scientists Umran Inan and Marek Golkowski Frontmatter More information

	Contents	
7	Kinotic theory of plasmas	53
	Kinetic theory of plasmas Introduction	5 3
	Comparison of properties of gases and plasmas	55
	Velocity distribution function	57
5.5	<i>Example 3-1</i> Phase-space distribution function	59
3.4	The Boltzmann equation	60
	The Maxwell–Boltzmann distribution	64
3.5.1	Number density	66
	Temperature	67
3.5.3	Velocity in one dimension and speed	68
	Degree of ionization: the Saha equation	71
	<i>Example 3-2</i> Ionization fraction of air	72
3.5.5	Shifted Maxwellian distribution	73
	The Vlasov equation	73
	The convective derivative in physical space and in phase space	75
3.7	Equivalence of the particle equations of motion and the	
• •	Vlasov equation	77
	Summary	80
3.9	Problems	81
	References	83
4	Moments of the Boltzmann equation	84
4.1	Introduction	84
4.2	The zeroth-order moment: continuity equation	86
4.2.1	Closer consideration of collisions and conservation of particles	88
	<i>Example 4-1</i> Electron density in the ionosphere: day	
	versus night	89
	The first-order moment: momentum transport equation	90
4.3.1	The pressure and collision terms	95
	<i>Example 4-2</i> Fluorescent lamp	97
	The second-order moment: energy transport equation	99
4.5	Systems of macroscopic equations: cold- and warm-plasma	100
451	models The cold plasma model	100 102
	The cold-plasma model The warm-plasma model	102
	Summary	102
	Problems	103
	References	104
	Multiple-fluid theory of plasmas	106
	Introduction	106
5.2	Complete set of two-fluid equations	107
	<i>Example 5-1</i> Plasma discharge for IC manufacture	108

Cambridge University Press
978-0-521-19372-6 - Principles of Plasma Physics for Engineers and Scientists
Umran Inan and Marek Golkowski
Frontmatter
Moreinformation

	Contents	ix
5.3	Fluid drifts perpendicular to B	110
	Parallel pressure balance	113
5.5	Summary	114
5.6	Problems	114
	Reference	115
6	Single-fluid theory of plasmas: magnetohydrodynamics	116
6.1	Introduction	116
6.2	Single-fluid equations for a fully ionized plasma	117
6.2.1	Equations of mass and charge conservation	119
	Equation of motion	119
6.2.3	Generalized Ohm's law	120
6.3	Magnetohydrodynamics plasma model	123
	Simplified MHD equations	124
6.4.1	Frozen-in magnetic flux lines	128
	<i>Example 6-1</i> The solar wind	131
	Diffusion of magnetic field lines	132
	Force balance in MHD	132
	Magnetic forces	134
	Magnetohydrostatics	138
	The θ -pinch	139
6.6.2	The cylindrical pinch	141
	<i>Example 6-2</i> Tokamak	142
	Collisionless plasmas with strong magnetic field	144
	Mirror equilibrium	146
	Summary	148
6.9	Problems	149
	References	150
	Collisions and plasma conductivity	152
	Introduction	152
	Collisions	154
	Weakly ionized plasmas	154
	Fully ionized plasmas: Coulomb collisions	155
	Specific resistivity	157
	Plasma conductivity	159
7.3.1	DC conductivity	159
	<i>Example 7-1</i> Ionospheric heating	162
	AC conductivity	163
	Conductivity with ion motion	164
	Summary	165
1.5	Problems	165
	Reference	166

Contents

8	Plasma diffusion	167
	Introduction	167
8.2	Diffusion in weakly ionized plasmas	170
	Ambipolar diffusion in an unmagnetized plasma	170
	Free diffusion across a magnetic field	172
	Diffusion in fully ionized plasmas	174
	Summary	175
8.5	Problems	176
	Introduction to waves in plasmas	178
9.1	Introduction	178
	General properties of small-amplitude waves	180
	Waves in non-magnetized plasmas	183
	Plasma oscillations	183
	Transverse electromagnetic waves	184
	Electrostatic electron and ion waves	189
9.4	Problems	190
10	Waves in cold magnetized plasmas	192
	Introduction	192
	The dispersion relation	192
	Waves in magnetized plasmas	195
	Principal modes	193
	Oblique propagation at an arbitrary angle θ	205
	Summary	203
	Problems	207
10.0	References	209
		209
11	Effects of collisions, ions, and finite temperature on waves	
	in magnetized plasmas	210
	Introduction	210
11.2	Effects of collisions	210
	Effects of positive ions	211
	Parallel propagation ($\theta = 0$)	212
	Perpendicular propagation ($\theta = \pi/2$)	215
	Oblique propagation (arbitrary θ)	216
	Hydromagnetic (MHD) waves	216
	Effects of temperature	220
	Parallel propagation ($\theta = 0$)	220
	Perpendicular propagation ($\theta = \pi/2$)	222
	Summary	223
11.6	Problems	223

Cambridge University Press
978-0-521-19372-6 - Principles of Plasma Physics for Engineers and Scientists
Umran Inan and Marek Golkowski
Frontmatter
More information

	Contents	xi
12	Waves in hot plasmas	225
12.1	Introduction	225
12.2	Waves in a hot isotropic plasma	226
12.2.1	Longitudinal waves ($\mathbf{k} \parallel \mathbf{E}$)	228
12.2.2	Transverse waves	235
12.2.3	The two-stream instability	239
12.3	Waves in a hot magnetized plasma	240
12.4	More on collisions in plasmas	244
12.4.1	The Krook collision model	246
12.5	Summary	248
12.6	Problems	249
	References	250
13	The plasma sheath and the Langmuir probe	251
	Introduction	251
13.2	Particle flux	251
13.3	Sheath characteristics	252
13.4	The Langmuir probe	257
13.5	Problems	259
Appendix A	Derivation of the second moment of the Boltzmann equation	261
Appendix B	Useful vector relations	263
	Definitions and identities	263
B.2	Relations in Cartesian coordinates	264
B.3	Relations in cylindrical coordinates	264
	Relations in spherical coordinates	265
	Index	267

Preface

This book is intended to provide a general introduction to plasma phenomena at a level appropriate for advanced undergraduate students or beginning graduate students. The reader is expected to have had exposure to basic electromagnetic principles including Maxwell's equations and the propagation of plane waves in free space. Despite its importance in both science and engineering the body of literature on plasma physics is often not easily accessible to the non-specialist, let alone the beginner. The diversity of topics and applications in plasma physics has created a field that is fragmented by topic-specific assumptions and rarely presented in a unified manner with clarity. In this book we strive to provide a foundation for understanding a wide range of plasma phenomena and applications. The text organization is a successive progression through interconnected physical models, allowing diverse topics to be presented in the context of unifying principles. The presentation of material is intended to be compact yet thorough, giving the reader the necessary tools for further specialized study. We have sought a balance between mathematical rigor championed by theorists and practical considerations important to experimenters and engineers. Considerable effort has been made to provide explanations that yield physical insight and illustrations of concepts through relevent examples from science and technology.

The material presented in this book was initially put together as class notes for the EE356 Elementary Plasma Physics course, newly introduced and taught by one of us (USI) at Stanford University in the spring quarter of 1998. The course was then taught regularly every other year, for graduate students from the departments of Electrical Engineering, Materials Science, Mechanical Engineering, Applied Physics, and Physics. Over the years, several

xiv

Preface

PhD students, including Nikolai Lehtinen, Georgios Veronis, Jacob Bortnik, Michael Chevalier, Timothy Chevalier, and Prajwal Kulkarni, contributed to the course in their work as teaching assistants. The course was co-taught by Prajwal Kulkarni and one of us (MG) in the Spring of 2008, and by Brant Carlson in the Spring of 2010. We offer our thanks to each of these colleagues for their enthusiastic help and contributions, as well as to the many students enrolled in the course who helped improve its content with their contributions.

More generally, we owe considerable gratitude to all the other researchers and students of the Very Low Frequency Group at Stanford University who have been a source of valuable feedback and expertise, and to our administrative assistants, Shaolan Min and Helen Wentong Niu, for their contributions. We would like specifically to acknowledge Dr. Prajwal Kulkarni, for his pedagogical insights that have helped shape this text, and Dr. Brant Carlson, for valuable help in editing the manuscript.