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Principles of Schema Design for
Multimedia Databases

Simone SantiniMember, IEEEand Amarnath Gupta

Abstract—This paper presents the rudiments of a theory of ality generates pressing requirements for the integration of mul-

schema design for databases containing high dimensional featurestimedia data into heterogeneous data models, and problems of
of the type used for describing multimedia data. We introduce an exquisitely database oriented nature.

a model of multimedia database based on tables containing . . . .
feature types, and the concept of schema design, which is based From a database point of view, current multimedia features

on splitting tables depending on the functional relations between can be described as opaque data types, whose algebra consists of
different parts of the features. a single operation: the determination of the similarity between
We show that certain relations between substructures of a same twg instances of the data type. There are several negative con-
;eature structure can lead to schemas for which efﬁment_algonthms sequences of this stance.
or k-nearest neighbor and range searches can be defined. . .
Most features extracted from images are structured entities,
and part of their semantics is captured by their structure. For ex-
ample, in awavelet transform, the different resolution levels rep-
N THE general constellation of problems in which the multiresent the same image structure at different scales. This scheme
media research community is engaged at this developmerigaéncoded in the structural relation between different levels of
juncture, efficient storage and retrieval of complex descriptioise transform but, unless the structure of the wavelet is made ex-
of data plays a central role. The flurry of activity around corplicit for the database to manipulate, one cannot take advantage
tent based image retrieval and content based video retrievabirit [13].
the last five years is a testimony of this centrality. This paper presents the rudiments of a theorgaifema de-
Most of the research in these areas has focused arounddigm[24] oriented toward storage and retrieval of images into a
construction of powerful features to describe the contents of afultimedia database. This orientation entails that our view of
image or a video [3], [9] [12], [17], and on the use of similarityfeatures is somewhat different from that of the image analyst.
functions to rate the relevance of animage for a query [4][8][18 particular, this paper will not be concerned with the expres-
Once this is done, the feature vectors are stored in a databasgs power of features, or the quality with which certain features
which also provides the query facilities for their retrieval [16]capture the semantics of the data that they describe. Rather, we
[20]. In most cases, features are stored in the database as “baitkbe interested in two problems.
boxes,” or “blobs” of whose internal structure nothing is known, 1y Gijyen a set of features that describe certain multimedia
the only operation defined on them being the measurement of * 445 is it possible to exploit structural relationships be-

similarity. o o _ tween different parts of the features to organize them in
As the size of the multimedia heritage increases with utmost a more efficient database schema, in particular one that

rapidity, two issues are becoming preponderant. On one hand, allows efficient processing df-nearest neighbor queries
the need to manage a large quantity of data efficiently; on the [21]?

other hand the need to integrate “sensorial grmsymbolicata 2)
(such as images, video, or audio) into organizational frame-
works which include structured and semistructured data of a

more symbolic nature. In other words, the databases of the fu- g 4t the resulting feature can be mapped efficiently into
ture should (and will) be not just video or image repositories, a database schema?

but comprehensive information systems in which data are 49he ultimate goal of the methods introduced in this paper is

_gregateo_l an_d sear_ched across m_ed|a, mdepe_ndently of Whefgeéxploit relations between different parts of a feature struc-
|nfor.mat|on s retrieved from a video, a relational table, or re in order to design a database schema to increase search effi-

semistructured web page [10], [14]. This need for cross-me 'i'ency. This goal resembles superficially certain dimensionality

reduction techniques, like principal component analysis or mul-
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design phase, we assume that the feature designer haBhe kth row of the table is indicated &j%], and it contains
already applied the opportune dimensionality reductighe handle some features relative to one of the images stored in
methods. the databasel’[k].h is the handle of the image, afdqk].x; is
2) Design-oriented reduction methods often entail a certaime value of theth feature descriptor of the image. In addition
loss of information. For instance, methods based da the explicit fields, each row of the table hasaore fields
principal component analysis prescribe the eliminatioff type R) such thatl'[%].c is the distance between the image
of a certain numbers of the smallest eigenvalues. It iis thekth row and the current quekyThe value of the field is
up to the designer to determine whether this loss @&ssigned by the scoring operabointroduced later on. Ifg is
unacceptable, acceptable or, as sometimes happenbandle, the notatiof[/¢] will be used to indicate the row
beneficial. The methods presented here, on the otter which T[k].h = hy.
hand, work by organizing features in a certain schema,Many image queries are based on distance measures in fea-
without discarding any information. ture spaces or, equivalently, on similarity functions. In the fol-
3) Schema design relies on properties of the distance fuhawing, we will always talk in terms of distance functions but
tions used by the database. On one hand, this entails thahould be understood that the same considerations apply, mu-
schema design is done without transforming the featureatis mutandis, to similarity function, given the duality existing
but just by breaking their structure among different tablebetween distance and similarity [22]. Given a feature tyfe
So, unlike principal component analysis, schema desiggt ©(X) be the set of distance functions defined &n All
can be made based on features defined on a metric spdistance functions considered in this paper take values in the in-
and, unlike multidimensional scaling, it does not tranderval [0, 1] and areurried, that is, they are of typd: X —
form the features in vectors. On the other hand, schemia— [0, 1]. Given an element : X, andd € ®(X), the func-
design can be applied to features of different nature (e.tgn d(z): X — [0, 1] assigns to every element &f its dis-
color and shape) in a way that depends on the predictshce fromz. Such a function is called scoring functionand
distribution of queries (in which case, of course, leghe set of all scoring functions for a feature tyfies indicated
likely queries will be answered less efficiently). asG(X). Each tablel” has associated a distance, indicated as
This paper is organized as follows. In Section |l we presefftd, such that, if the signature @ is (N, X3, ..., X,), then
the database model that we consider in this paper, which ig'al € D(X; x --- x X,,). Each row of the table has associated
simple extension of the standard relational model, and whielscoring function
was chosen because it can easily accommodate more powerful

models; in particular it can easily accommodate models basef[k].d = T.d(T[k].x1, ..., T[k].zn) € G(X1 x -+ x X,,)

on functional languages for query specification and data manip- 1)
ulation simply by encapsulating the relational table into a suit-

able data type of the functional language [1]. that measures scores with respect to the image described by the

Section IIl introduces the problem of multimedia databagg,,,
schema design in rather general terms, and highlights the imy;qreqver, a library of distance combination operators is

portance of functional dependencies among substructures Qfined. These are based on scoring combination operators
feature for database design problems. Section IV introduces Bel] x [0, 1] — [0, 1], defined as in [11], [7]. Each one of

main classes of dependencies that we consider in this paper, e operators induces an operator on distance functions as

presents algorithms that take advantage of such dependen fSws. Letd; ¢ D(X) andd, € D(Y), then the distance
for fast indexing. Section V deals briefly with the case in whicEd eratc.)r<>' @(IX) X D(Y) — @2(X X Y) i,s the operator that
the functional dependencies between features is probabilisti Aes thé following diagram commute:

nature. Section VI casts the previous considerations and algo-
rithms into a formal schema design problem, and presents some D(X) x DY) ° D(X,Y)
examples of design. Conclusions are drawn in Section VII.

evalxeval l l eval (2)
Il. PRELIMINARIES [0, 1]x[0,1] —— [0, 1].
An image database is formed by one or more relations, Phat is, forz : X andy : Y, itis
tables,of the formZT'(h : N, z; : Xy, ..., z, : X,,), where
h is a unique image handl&,, ..., X,, are feature types, and (dy o do)(z, y) = dy(x) o daly). (3)

z,; is the name of théth field or columnof the table. For the

sake of simplicity, we will assume that every table contains only The combination operators will be assumed to be symmetric
features. In practical applications, of course, tables will contaémd Lipschitz, that is

features as well as other information about the images, but the

extension to this more general case of the techniques presented Loy =yocu (4)
in the following is |mmed|a}e. Thelgrnatureof' the table is the lzoy —z oz < Lly— 2| (5)
sequence of data typé€s!, Xy, ..., X,,), and its schema is the

sequence of name{ﬁ, z1, ..., $n) with their associated data 1The use of the terrscoreimplied in this definition is a bit anomalous. In

. o normal discourse, a score is positively correlated with significance, so that sig-
types. The elements of a schema are callee@#péicit fields,or  iicantimages have high score. In this case, however, score is a distance, which

simply the fields, of the table. means that significant images have low scores.
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for some constant > 0. (The definition establishes that thedistancel.d € ©(Xy, ..., X,,) that is, they involve indexing
operator is Lipschitz on the second argument only; the propeetfeature space of dimensian = ), m;.
on the first argument follows from symmetry.) It is a well known fact that, as the dimensionality of the fea-
Operators on Tables:Given a scoring functior, and a table ture space increases, the performance of all indexing structures
T(N, X1, Xy, ..., X,,) thescoring operatorz(s) assigns a declines rapidly and, even for moderate valuesmofthere is
score to all the rows dl’ using the scoring functios. Thatis, no solution more efficient than the trivial one of visiting all the
Yr(s) is a table with the same signatureZasind rows in the table and measuring their distance from the query
[25], [5], [19].
(Er(s)[kl.c = s(Tk].zy, ..., TTk].zn). (6)  Aslong as one considers features as black boxes about which
nothing is known except their distance function, there is no gen-
Given a tablel’(N, Xy, X3, ..., X,,), the k lowest dis- era| solution to this problem. A solution can only derive from the

tances operator} returns a table with thé rows of T with  integration of feature design into the general activity of database
the lowest distance from the query. The operatgfsandr  design. There are characteristics of certain features that afford
are generally used together: the opera;tﬁl(ET(s)) is called a re-organization of the database in the sense of a greater effi-
the k-nearest neighbors operator for the scoring function  ciency, and these characteristics should be identified, pursued,
The operator ;> returns all the rows of a tabl€ with a dis-  and exploited.
tance less thap. The operator - (Xr(s)) is called the range  In this paper, we will consider the problemsfhema design
query operator for the scoring functien for an image database and how certain characteristics of features
The operator p is the usual predicate selection operator on@an be used to design schemas that can be searched efficiently.
tableZ". In the databases that we consider hét&as either the The problem can be defined as follows:
form h = ho, wherehy € N is a handle, oh € H, whereH is Definition 3.1: Consider a set of imageS, and assume
a set of handles. Note that the notatiBjho] introduced above that for each image the featurés = {zy, ..., z,,} is avail-
is a shorthand fos,—r, (T7) which, because of the unicity of theable, withz; : X,. A database schemis a set of tables
handles, always returns a table with a single row. 7 = {11, ..., T,y with T; = Ty(h, z; 1, ..., 2 4 ) Such
Finally, the«-join Pd is a join operator in which two tablesthat, if F; = {x; 1, ..., z; 4 }, thenF = |, F;.
T and @ are joined on their handle field to form a new table Using a sef of tables, rather than a single taifean lead to
W =Tw=Q. T =T(h : N,z : X1, ..., 2z, : X,,) and more efficient searches because in many cases one of the tables
Q= Q(/f: N, w1 : Y1, ...,y ¢ Yy), then can be used asgrototablethat can be searched to individuate
a subset of the database in which the solution is guaranteed to
W =W(h:N, & :X1,....%n: Xn, 91:Y1,...,uyn : Y,). Desothatthe searchin the complete feature space can be lim-
@) ited to this subset rather than to the whole database. (A formal
definition of prototable will be given later in the paper.)

The rowgq such thaiv'[g].h = hq is obtained by collecting the A general algori_thm for search in a database decomp_osed in
features of the row&Ti] andQ[4] such thatl[i].h = Q[j].h = & prototableX and in a set oflependent tablegl, ..., T, } is

ho. The tablel¥ has a distance function the following
1) Search the prototabl&, and retrieve a sé&t” of p images
Wd=T.doQ.d (8) that is guaranteed to (or has a pre-specified probability to)

contain the images that satisfy the query.
and, if thegth row of W was obtained by joining thé&h row of 2) Join the sef? with all the dependent tables, obtaining

T with the jth row of 7, it has score atableQ) = W17 pa- - -0, which contains the full
<> <> <
. . feature description of the images in the tablél".
Wlgl.c =Tlil.c o Qj] < 9) 3) Execute the query on the talle possibly doing a linear
and scan of the table if its dimensionality does not allow for
Wql.d = T[i].d o Q[j].d. (10) efficient indexing.

The only feature search that this algorithm does on the whole
database involves the prototakié which may be of a much
lower dimensionality than the whole database, thus allowing ef-
) ficient indexing.

Let T(h, z1,..., z,) @& feature table with schema tnhe hossibility of dividing a database into a set of smaller

I1l. D ATABASE SCHEMA DESIGN

(N, Xy, ..., X;,). Assume, for the sake of simplicity,iapies depends on certain characteristics of the features
that each feature typ&; can be represented as a vector, ang . "anqitis a goal of the feature designer to select fea-

that its dimensionality is2;.2 In a multimedia database, typicalyres that allow the design of an efficient schema. The study of
operations on this table are-nearest neighbors and rangene characteristics of an image feature vis-a-vis schema design
searches, which involve ordering the rows of the table using tha) form the subject of a discipline of multimedia database

. L design that is still, for the most part, in the making. This paper
2This hypothesis is not really necessary, and can be replaced by the less stri

gent hypothesis thaX; be a metric spece of intrinsic dimensionality. The wil try to provide some foundations for such a discipline by
vector space hypothesis, however, allows a simpler exposition. analyzing some limited and specific characteristics of features
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that can be used for schema design, in particular, we whlgorithm 1.
considerpartial functional dependencielsetween subsets of 1. Q = o—jf(ETl (T1[ho]-4));
features. 2.p = Qlk]-s;

Straight functional dependence provides a trivial way of dB. p = {(¢)(p);
viding a table. Consider a table with two featur¢h : N, z; : 4. Q = o (X7, (T1[ho].d));

X1, zo : XQ), with T.d = diody, dy € @(Xl) andd2 e 5. W= QDSTQ;

©(X>). Suppose that there is a functighsuch thatz. = _# )

f(z1). Then the table can be trivially divided into a prototable = % (Ew (Wihol.d)).

K (h, z1) and a dependent tabl&(2, »). Assigning toK the

distance functior.d = dy o (d2 o f) one can ignore the table Step 1 does &-nearest neighbors search of the neighbors of
T and do the searches on the prototafsl@lone. imageh in table?;. In steps 2 and 3, the distance between the

This is a trivial case in which the search algorithm assuméthest away of the returned images and the query is found and
a particularly simple form, but it is not very realistic. In the reincreased by a suitable factor, which depends on the relation
mainder of the paper, we will consider casespaftial func- between the two sets of features. In step 4, arange query is done
tional dependencies, which are more realistic and can still B tablel}; to obtain the images closer to the query than this new
used to split tables. distance. The resulting tabl®j containst’ > % entries, and is
guaranteed to contain tHeimages that, in the original table,
were closest to the query (see below for a proof of this fact).
In order to determine these images, the tables joined to7:

In this section we want to determine under which conditiongnhd thek images closest to the query are extracted from this
isitconvenientto separate a taldléh, x1, z2) with two feature taple. The advantage, in this algorithm, is that the search using
fields into two tablesTy(h, z1) and Ta(h, x2), in particular, the complete feature space is only done on the tébjavhich
we are interested in the various forms of dependencies betweeRtains onlyi’ entries, and not the whole database.
the scoring functions (or, equivalently, the distance functions) The crucial point of the algorithm is step 3, in which the range
defined on the two features, and how those can be used to degjgithe query is “increased a little bit” to guarantee that the range
algorithms that allow a faster computatiortehearest neighbor query of step 4 will contain all the solutions to the original query.
queries and range queries once the tables are split. Whether this is possible, it depends on the relatiom partic-

We will assume that the distance function of the tablés  ylar, + must have alistance boundingunction, defined as fol-
obtained as the combination of the distance functions of the ty¢ays.

features'.d = d; ¢ do. We will also assume that a reference Definition 4.1: Let © be a relation such that; [t)2, with
imageh, has been selected, and that all distances are relative:10: X, andz, : X», 51 € G(X,) andsy € &(X3) be two
this image. In order to ease the notation, we will indicate withscoring functions for the featuré§, andX,, ands = s; ¢, be
the scoring functions relative to this image, that is T'[ho].d  a scoring function for a table containing both featurebgeing

IV. FUNCTIONAL DEPENDENCIES

or, when referred to the features andx- individually, s = an arbitrary but fixed combination operator. A functiofr) is

T'Thol.d1 andsa = Tlho].da. abounding functiorfor ¢ if, for a given scoring functior, the
following is true.

A. Search Algorithm For every p, if there are exactlyk rows such that

Before considering various forms of dependence betweensi(1) < p, then there are at leagt rows for which
features, we introduce in this section the algorithm that will be s(z) = s1(z1) ¢ s2(z2) < ((t)(p).
used to solve thé-nearest neighbors problem in the case in Then the following theorem proves the correctness of the al-
which a table containing two related features has been split. gorithm:

The general idea of the algorithm is as follows. Suppose weTheorem 4.1:In algorithm 1, assume that the two tables are
have two features; andz,, belonging to feature spacé§; 7Ti(h : N, z : X)andTz(h : N, y : V'), with z[t)y, and that
and X5, and that there is a relation between the two that allowgt) is a bounding function for the relatianThen the algorithm
us to predict, to a certain degree, the score0fiven the score retrieves thek images closest to the query with respect to the
of z;. If the relation between the two featurestjsve will use  scoring functionsT; [iio].d ¢ T2[ho].d.
the notationz, [v)x». If we do ak-nearest neighbors search in Proof. The proof is by contradiction. Assume that the al-
the spaceX; we will not, in general, end up with the correctgorithm is incorrect. Then there is an imagseuch thats(v) is
solution. Consider, however, the distance between the query amé of thek lowest distances, but which is not returned by the
the kth image retrieved by thé-nearest neighbors algorithmalgorithm.
using the feature:;, andg be this distance. One can hope that If this is true, then the imagewas left out of the range query
by making in the feature spadg a search with aradius suitablyin step 4 since, had it been part of the tafjeit would have
larger tharp, one will collect a number of imagés > £ which been picked up in step 6. To see this, consider that step 5 is
will contain thek solutions of the original problem. The amount join between the identifiers i and a superset of the same
by which a given radiug must be increased is a function ofidentifiers contained ifi;; as such, the join will drop no entries
the relationt, {(r): R — R. The radiusp is then written as from . Step 6, on the other hand, i& aearest neighbors query
p = ¢(¥)(p). In formal terms, the algorithm can be written adased on the scoring functiarand since, ex hypothesis, image
follows: v is one of thek images with the lowest distance, it will return it.
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If v was not returned by the range query of step 4, then it is Transitive Closure Propertiesin schema design, dependen-
T [hol.d(v) > ((v)(p) thatiss(v) > ((r)(p). But, since((r) cies are used to split features into several tables so that each
is a bounding function for and, by virtue of step 1, there aretable will have only features of a limited dimensionality and,
k imagesu; such thatTi[ho].d(u;) < p, it follows from the therefore, can be indexed more efficiently. Dependencies among
definition that there are at lestimagesw; for which s(w;) < parts of a feature structure can either be proaguiiori, based
¢(v)(p), which contradicts the hypothesis thaivas one of the on the semantics of the feature extractor, or through statistical
k images closest to the query. O measurements. In addition, the structure of the scale dependence
This is the basic algorithm that we will use in the remaindetself allows to extend the relation using a form of transitive clo-
of the paper. In the following section, we will present three resure so that, given scale functional dependencies among certain
lations (the first two of which will turn out to be special casefeatures, other dependencies can be inferred. The transitive clo-
of the third) with the necessary requirements for applying ttseire properties of the scale functional dependence are the fol-

algorithm. lowing.
Self-dependencé&or all features:, x[|1)z.
B. Scale Difference Anti-symmetryif z[|r}y, » > 1, then there is ng@ > 1

Two features:; andz, are inr-scale difference dependence, such thaty[|q).

written 21 [|r) . if there is an > 1 such that, for all images Transitivity: If [|r)y andyﬂq).z,-thenx[.h’q)z. o
w, itis sa(xa(w)) < s (1 (w))". This relation can be used to The proof of these properties is immediate from the defini-

decompose a table into a normal form, as described by the 6N These properties are used to computetirnsitive clo-
lowing definition. sureof the features that depend on a given feattjréefined as

Definition 4.2: A set of tables is said to be inscale-normal follows:
form if, wheneverz: [|r)z» with » > 2, z does not belong to  Definition 4.3: Let.X' = {ay, 2, ..., 2,,} be a set of fea-
the prototable. In other words, the prototable contains no feati#€S computed on the same database (or a decomposition of
that isr-scale dependent on another feature with . a single feature cgmputed on the.database). Given a feature

The idea behind the definition-scale-normal form is that #i € X, theg-transitive closure of; is the set:
if a part of a feature gives a small contrlbutlon to the distance iy = {21 € X: willr)zn, 7 > g} (12)
between the query and the elements in the database, then there
should be the possibility of searching only on the part of the The valugy in the definition ofy-transitive closure has a direct
feature structure that gives the greatest contribution. In othetation with the cost of Algorithm 1, since the largesgis a
words, if 1 [|r)x2 with high then, presumably, the distancerelationz[|q)y, the cheaper it is to execute Algorithm 1, as will
between two images with respect:t is highly indicative of be shown in the following. Therefore, given a cost objective, an
the distance between the two images with respect to the whatseptable value of can be derived. The goal of the designer
feature vector. It should then be possible to useo filter out is then to find the smallest featusesuch thafz],. = X. The
from the database images that cannot possibly be returnediesiils of this operation will be covered later, after introducing
part of a given query. two additional forms of dependence.

In order to show that the algorithm of the previous section
applies, we need to find a bounding function for this relatioffz- Partial Functional Dependence

This is done by the following lemma: - _ Partial functional dependence is a weak form of functional
Lemma 4.1: The function(([|r})(p) = p o p" is @ bounding dependence which depends on the existence of a scoring func-
function for the relatiorj|r). tion and allows for a bounded indetermination in the dependence

Proof: Let7i(h : N,z : X)andTa(h : N,y : V)  jtself.
be the two tables such thaf|r)y, and lets; = Ti[ho].d and  Definition 4.4: Given two featuresr; and x», a scoring
s2 = Tx[ho].d. We need to prove that, if there arémages such function s, a constant, and a functionf, the featurez, is

thats; (u) > p, then there are atleasimages suchthat(u) > (A, f, s)-dependent of,, writtenz: [A|)x, if for all imagesu
p<p". Thisis a simple consequence of the dependence between

the two features. Since[|r)y, it is s2(u) < s1(u)" and, since |s(z1(w)) — s(x2(w))] < A. (13)
the combination operators are monotonically increasing in their

arguments, it is Similarly to the scale functional dependence, partial func-

tional dependence gives rise to a family of normal forms for
table indexed, in this case, by the parameter
s(u) = s1(u) o so(u) < s(u)osi(u). (11) Definition 4.5: A set of tables is said to be ix-partial func-
tional normal formif, wheneverz; [A|)z2, it is not the case that
Therefore, at least thé images for whichs; (u) < § have x; andxs belong to the same prototable.
s(u) < 0", O As in the previous case, the utility of the concept\epartial
Given the existence of the bounding function, Algorithm functional normal form comes from the existence of a bounding
can be applied: if two featuresandy are such that[|)y, they function, so that Algorithm 1 applies.
can be divided in two different tableg (k : N, z : X) and Lemma 4.2:The function{([A]))(p) = p + LA is a
T>(h : N, y : Y) in such a way that a complete search needs bwunding function for the relatiofir}, L being the Lipschitz
be done only or¥;. constant that appears in (5).
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Proof: Let7i(h : N, z : X) andZ»(h : N, % : Y) the which allows to writez < (x4 A)". This property motivates a
two tables such that[|r)y, and lets; = Ti[ho].d ands, = further definition:
T5[ho].d. We need to prove that, if there akémages such that  Definition 4.7: Given two features; andzx», a scoring func-
s1(u) > p, then there are at leastimages such that(«) > tion s and constanta andr, the feature:; is quasiscale depen-
p+ LA, dent of z, writtenz1 [A|r)z- if for all imagesu

Becauser;[A|)z2, and the Lipschitz property &f, it is .
s(x(u)) < (s(1(w) +4)" (20)

s(u) =s1(u) oso(u) < si(u)o(si(u) +A
() = s1(u) & 52(w) 1) o (s2(u) ) The following lemma, whose proof is very similar to that

Ssi(u)esi(u)+ LA (14) of the corresponding lemmas in the previous sections, and is
and, similarly,s(u) > s1(u) o s1(u) — LA; that is omitted, shows that there exist a bounding function for this re-
lation.
$(u) = LA < s(u) < $(u) + LA. (15)  Lemma 4.3: The function¢([A]r))(p) = po (p+LA)" isa

Therefore, for all thé: images for whichs(x) < 8, it is s(u) < bounding function for the relatiop\|r), L being the Lipschitz
§+ LA 0 constant that appears in (5).

. : . Note that, as the notation suggests, the previous two relations
Transitive Closure PropertiesAs in the case of scale depen- . .
can be regarded as special case of this onéfet 0 andr =

dence, transitivity relations between features induced by p‘.’ilr'respectively. The bound functions for the two relations are

tial functional dependence can be used in the decompositign . ) )
process. The following properties hold for partiallyfunctionallf’ImIIarIy special cases af{[A[r)).

Transitive Closure PropertiesThe definition of this new de-
dependent features.

pendence naturally poses the problem of its transitive closure

Self-dependencéor all features:, x[0])x. properties, in particular its composition law. That isgf\|r)y
Symmetryif z[Al)y, theny[A[)z. andy[I'|¢)z, what can be inferred about the relation between
Monotonicity:If 2[A[)y, then for alll’ > A, x[T)y. andz? The following theorem provides the answer:
Transitivity: If z[A[)y andy[I']) z, thenz[A + I'))z. Theorem 4.2:1f z[A|r)y andy[T|g)z, thenz[¥|s)z with
The proof of these properties is immediate from the defi-
nition. Transitive closure properties are used to compute the s§=rq (21)
A-transitive closureof the features that depend on a given fea- T =(A" + r)l/v‘_ (22)
ture z, defined as follows.
Definition 4.6: Let X = {z1, x2, ..., z,} be a set of fea- Proof: Sincex[Alr)y, itisy < (z 4+ A)" and, since

tures computed on the same database (or a decomposition[big)z, itis z < (y + I')?. Putting together the two inequali-
a single feature computed on the database). Given a featiis, we obtain
xz; € X, the A-transitive closure of; is the set

[ilay = {ow € Ko ailAhae). (16) The theorem, on the other hand, implies thaK (x + ¥)*,
The use of the transitive closure of a feature is the samethgrefore we need to find values o&nd ¥ such that
in scale dependence: fixing a bound on the cost of the indexing . .
algorithm, this will yield a bound on the acceptatieof the (@ +W)" = ((z+A)" + D)% (24)
partial functional dependence. The designer will then have
find the smallest feature such thafz] | = X.

2<((z+ A" +T)L (23)

[tﬂafiningu = s/q, and raising both sides of the inequality to the
powerl/q, one obtains
D. Quasi-Scale Dependence (z+ )" > (z+ A) +T. (25)

The previous two sections have introduced two forms of de- o )
pendence between the scores of pairs of features, and it is 6Bt % = 0, this inequality becomes

vious to wonder whether there is a relation between the two. In A" 4+ < P (26)
other words, we have seen that, within the two dependencies, -
certain transitivity rules hold, namely which is true for

zllryy A yllgyz = [lrg)= 17) T > (A" + )Y, (27)
and

We want to show that, if: = r, the inequality holds for all
oAy A ylllyz = 2[A + Tz (18) o call f(z) = (¢ + A) +T, andg(z) = (¢ + )" =
Suppose now that[A|)y andy[|)=; what can be said of the (¢+¥)". The previous inequality tells us tha(t0) —f(f))lz 0.
relation between andz? Since: < y" andy < =+ A, onecan COmputing the Sjcalr|vat|yes one gef§z) = r(z + A)"" and
conclude that < (z+A)". As a matter of fact, one can impose?(#) = 7(z+¥)"~". Noting that (26) fon =  implies¥ > A,
a somewhat stronger condition: sinces 1 ex hypothesis, one On€ sees that'(z) > f'(x) and, thereforg/'(z) — f'(x) = 0.
can define the bounded sum operafoas Sinceg(x) — f(z) is positive forz = 0 and its derivative is
positive, itis never negative. Therefdqre+A)" +T" < (z+¥)*
a+b=min(a+0b, 1) (19) for all z. Finally, note that. = r impliess = rq. O
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The properties of the quasiscale dependence relation can te&as a scoring function. Empirical measures ([23], see also the

be summarized as follows: Appendix) seem to validate this assumption to a certain extent.
Self-dependencéor all z, z[0|1)z. Given ak-nearest neighbors query and a boprwh the prob-
Transitivity: If z[Alr)y and y[I'|g)z, then z[(A" + ability of error that one is willing to accept, we need to deter-
DY |rg)z. mine the numbef of images & > k) such that the result of

The transitive closure for the quasiscale dependence is Gdvnéarest neighbors query on the tablewill contain with a
fined as: probability1 — p all the k images closest to the query according
to the whole feature.

Definition 4.8: Let X = {x1, z», ..., z,} be a set of fea- . ) o .
tures computed on the same database (or a decomposition Jie start with the following problem: given two images that,

a single feature computed on the database). Given a featlyd1® complete tabld’, are at a distance from each other,
; € X, the(A, r)-transitive closure of; is the set: what is the probability that they will be order-swapped when the

same query is made on the talflg? In other words, consider
two imagesu andwv such thats(uw) — s(v) = « (so that, in
order of distance from the querny,comes aftew), what is the
probability thats; (v) < s1(v) (so that in the query on the table
771, uw willcome beforey?). The relation between distances gives

= 5(u) — s(v) = (s1(w) = 51(v)) + (s2(u) — 52(v)). (31)

All the previous cases of dependence between features Wecrxe
deterministic: it was possible to find a constraint between di$he images will then be swapped d5(u) — s2(v) > a. lf
tances relative to the two features that was satisfied for all Ps{«) is the probability of swapping two images given that their
sible images. This allowed the definition fnearest neighbors distance isy, then
algorithms that guaranteed that thenages closest to the query

[@i]ap =1z € Xoz[Ulg)zw, T <A, g>7}) (28)

V. PROBABILISTIC DEPENDENCE

with respect to the complete distance were returned, even if the ps(a) =P[s2(u) — s2(v) > af
database was first filtered using only part of the features. 1 oo 72
In some cases it is necessary to relax this assumption and de- = V2nos / eXp(?g) d
fine the relation between the two featuresandz, in terms 1 o
of probability. Correspondingly, the-nearest neighbors algo- = erf <—> (32)
\/%0'2 o2

rithm will return thek images closer to the query with a certain
probability, and the cost of the algorithm will increases with the In order to solve the original problem, we still a second ele-
probability that the result will be correct. While in the previousnent, namely an answer to the following question: giverkthe
case the decision of whether to separate two features was baggglthehth image in the database, what is the probability distri-
only on cost considerations, in this case a new variable haspigtion of the difference in their distance from the query? That
intervene: the probability that one or more of thenost signif- is, if z; is the feature representation of tite image in order
icant images will not be returned. of distance from the query, what is the probability distribution
A full treatment of the probabilistic case is very complexof s(z;,) — s(xx)? The probability distribution of(x;), for a
In this section we will consider a rather schematic treatmegiénerici is derived in the Appendix under the hypothesis that
under simplified but, hopefully, not unrealistic assumptions. A#iea priori distribution ofs(z) is uniformly distributed between

before, assume that we have a tablgh : N, z; : X;, 2 :  two valuesa andb, and it turns out to be
Xs), where Xy, X, are feature types, and,, z» are features.

The problem is whether the table should be split into two tables e A logi—1 b—3 (33)
Tl(h, 371) andTQ(h, 372) with T,.d = d; andTQ.d = ds. AS pi ’ b—a & b—a

usual, lethy be the handle of the query image, and det= ) ) ) )
T [ho).d 320: Ty[ho].d, ands = T[}?O].d.y g € wheren is the number of images in the database affdis a

Assume that the difference between the score of two ima
is normally distributed, with variance? for features of typep;
and variancer3 for features of typep., that is

g%gtable normalization constant. The two valaesndb can be
set in such a way that the variance of the difference between
two uniformly distributed distance be equal to the variance of
the normal distribution hypothesized fofu) — s(v), that is, to
o. The difference between two samples taken from a uniform
s1(u) = s1(v) ~N(0, o1) (29)  distribution of widthA, has atriangular distribution of variance
s2(u) — s2(v) ~N(0, 02) (30) 2/3A2, so that the uniforna priori distribution of the distances
should haveA = /302/2. The center of the distribution de-
and, consequently(w) — s(v) ~ N(0, o), witho? = 62 + 2. pends on the particular distance and for now we will simply in-
The question of whether this assumption can be justified décate it as:. Settinga = c— A /2 andb = ¢+ A/2 one obtains:
still quite open. For Minkowski distances, the law of large num-

bers justifies this assumption under the (weaker) hypothesis that o+ V3o2/2 3 nt ot ’/302/2—/3
: H H H . 7 n 2 1—1 2

the feature components be identically distributed. In this casg; (3) = C' | ——— log"”F ——————

and for anL,, distance, the value&(u))? — (s(v))? are nor- \/ 202 302

mally distributed, and the considerations that follow hold using (34)
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TABLE |
SUMMARY OF THE MAIN PROPERTIES OF THEDEPENDENCIESINTRODUCED IN THE PAPER

Dependence Property Formula

Scale Difference | Self-Dependence | Vz z [|1)x
Anti-Symmetry | Vz,y z(jr)y,r >1 = A¢>1:y[r)z
Transitivity Vr,y,z z(|r)y Ayllg)z = zjrq)z

Quasi-functional | Self-Dependence | Vz z [0])z
Symmetry Vr,y z|[Al)y = y[A)z
Monotonicuty z[Ayy= VL' > Az [I))y
Transitivity Ve,y,z oAy A y[T))z=z[A+T|)z

Quasi-Scale Self-Dependence | Vz z[0|1)z
Transitivity va,y,z z[Alr)y A y[T)gz =z [(A" + )Y |rg)2

with VI. COST-BASED REDUCTION TO NORMAL FORM
302/2 <g< 302/2 The previous sections have introduced three forms of depen-
€= 2 sSpsct dence between features or parts of a feature structure (the prob-

abilistic dependence can be reduced to a deterministic depen-
dence by fixing an upper bound to the probability of swap-
ping images): the scale difference dependence, the partial func-

n _ n n tional dependence, and the quasi—-scale dependence, together
Pr,n(@) = /pk (Bpr(B+ o) dp (35 ith their properties, which are summarized for convenience in
Table I.

These properties are used to derive transitive closures relative
to a subset of the features that satisfy certain cost constraints. So
pi (01, 02) = /p@ (c)ps (@) dav (36) far, these transitive closures have been defined independently

R, RATL T2 ko b ) for the three dependencies. In order to arrive at a unified defi-
q‘lition of cost-bound transitive closure for a given subset of the

eatures, it is necessary to analyze Algorithm 1 and the cost as-
sociated to it.

> ) = 1 () erf N\ 37) Assume that the database has been divided in two tables
Py p\01, 02) = \/%0_2 Py, p\¥) €t [op] @ Tl(h : N, Ty Xl) andTQ(h : N, o XQ), Wherel'l has
dimensionality d;, z> has dimensionalityd,, and the full
dimensionality of the feature spacedis= d; + d-.

Let (N, k, d) be the cost of &-nearest neighbors search
andR(N, r, d) be the cost of a range search of radius a
space of dimensionality for a database oV images.

The cost of the various steps of Algorithm 1 is the following:

1) a k-nearest neighbors search i#;, with a cost

1 a K(N, &, dy):
! , 02) = Sla— (mpp —mierf | — ) d P Ny 1),
Pinlons o2) 27]'02/ (e = (g, —mi)ex <02> “ 2) constant time access to the results;

The distribution of the distance between thith and thekth
image in the database can then be computed as

with « € [0, b — a].
The probability that imagek andA will be swapped is

wherep(«) is the probability that two images will be swappe
given that the distance between themitJsing (32), this gives:

Note that this expression depends onlymgnands.. The de-
pendence fromr; is in the determination of the boundsandb
of the uniform distribution necessary for computjfgy,,, since
o = O’% + O’%.

If the database is large, thef ;,(«) ~ 6(a — (mj; — my))
and the probability to swap thigh and thehth image is

1 my —my 3) constant time function computation;
—_ { h k 38 . . .
T ooy oy : (38) 4) arange query on the tab#g with radius¢(t)(5), with

) . ] . . COStR(N, {(r)(p), dy); thiswill resultink’ > k images
Consider an algorithm like those presented in the previous j, 4 tableQ;

sections.in which one solveg&anearest neighbo_rs problem (for 5) a join between on the identifier field of the tateand
some suitablé’) in the reduced f_eature space in order to solve  ihe tableT, whose identifiers are a superset of those of
the k-nearest nel_ghk_Jor problem in the full feature space. In tr_le_ Q; using a hash join, the cost of this operation is linear in
case of a probabilistic dependence between the two featuresitis  he size of), that is, ink’;

not possible to guarantee that the fitsinages will be retrieved 6) a linear scan (worst case scenario) of the table resulting

for any value of#’, but it is possible to provide a bound on from the join, which contain’ entries; this also requires
the probability of error. In particular, given a probabilit§ of a time linear in&’.

leaving one of the firsk: images out of the selection, the value The cost of the whole algorithm is then
k' will be the smallest value for which

Py (o1, 02) < p°. (39) KN, k, dv) +R(N, ¢(¥)(p), dr) + CE'(((¥)(p))  (40)

Once this condition is set, the algorithm for dividing a featurehere the notatiok’({(t)(p)) serves to remind that the number
in two part when the two have a probabilistic dependence a§images returned by the range query is a function of the search
essentially the same as in the previous cases. radius. For a given database size and feature space dimension,
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this cost depends on two variables: the dimengipof the re-
duced feature space, and the radius-increasing fungtiQon-
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TABLE I
AVERAGE AND VARIANCE OF THE DISTANCE BETWEEN A QUERY AND THE
IMAGES IN A DATABASE

sequently, we define theormalized cosbf a database search as

N(N7 f7 d):IC(Nv k? dl)+R(N7 f(ﬁ)v dl)

+CE(f(p))- (41)

If the original feature space has such high dimensionality that
no indexing scheme works satisfactorily on it, no search is faster

than a linear scan, which has a cés¥V. In this case, normal-
izing the database leads to a gain— A (V, {(x), dy).

d I a2

2 | 0.3664 | 0.0298

5 10.3904 | 0.0125
10 | 0.4015 | 0.0060
15 | 0.4031 | 0.0040
20 | 0.4042 | 0.0029
30 | 0.4053 | 0.0020
50 | 0.4066 | 0.0012
100 | 0.4074 | 0.0006

The function{(x) depends on the relation between the fea-
tures that are being split and is given, for the general relatign An Example

¢ = [Al), by
C([Alr)(p) = po (p+ LAY (42)

The objective of cost-based reduction to normal form

to find a decomposition of the database tables such tH

N(N, {(v), d) is as small as possible.

In order to formalize this problem we need a few more defl?
nitions. Letr = [Alr} be any of the previous four dependenc

relations, and indicate with[t)y a generic relation between
andy.

Definition 6.1: Let = a feature from a database. Thdran-
sitive closure ofr is the set

[#]? = {y: Trale)y A flp) < $(p)}-

The definition is extended immediately to sets of featires
{z1, ..., 21} as

(43)

[Y]* =

U k1™

zCY

(44)

In other words, the sdt:]® is the set of all the features that
depend onx through a relation whose cost-increasing function

is bounded by a given functiop.

Definition 6.2: Given a set of feature types\¥
{X1, ..., X,.,} on a database, an-seed of the sefX is
asetY C X such thafY]*

A key Y for a database of featureés can be used to index
the images in the database with a guaranteed bound on the cogt

The general table decomposition problem introduced in
this section requires, for its complete solution, a cost model
of k-nearest neighbors queries and of range queries in high
gimensional feature spaces. Several such models have been
E{pposed in the literature [2], [15], [6]. The subject of cost
models for nearest neighbor queries is a complex one, and we
ill not consider it in this paper.

Rather, we will use some simple approximation of the model
e ! ! .
reported in [2]. In particular, we will assume a databasévof
images and a disk page size®t 360 images. Under these cir-
cumstances, the data reported in [2] are reasonably well approx-
imated assuming thatfanearest neighbor in a feature space of
d dimensions will access a number of pages given by

1 — exp(—AN/10°)
1+ exp(—a(d — 16))

K(N, k, d) = P log(k) (45)

with A = log(2), anda = log(99)/16. The number of pages
accessed by arange query of radius also taken from [2], and
is given by

d’ 4
RV, v d) = <‘i>v(st ([5.... 4. ) uQ) @6)
t=0
where S*([1/2,...,1/2],7) is the sphere of center
[1/2,...,1/2] and radius» in a t dimensional spacef?
is the unit cube in which the database is contained, land
the volume operator.
order to apply the cost formula, we still need to deter-

of the algorithm using the methods illustrated in the previoysine the average distance of theh image from the query in

sections.

the d;-dimensional space. In the hypothesis that the distribu-

The general table decomposition problem can then be formysy, of gistances is a-distribution, this value is simplyn?,

lated in the following way.

Given a database composed of a talléN, Xy,
.., Xm), find a set of tablesK(N, Y1, ...,Y,),
T;(N, W, 1, ..., W, ,,) such that

HX=UYulU, W,

2) Every X; belongs either td< or to exactly one of
the7;s;

3) K is ana-key for 7

4) The costNV(N, ¢, d), where( is the function in-
duced by the dependence of tiies on K, andd
is the dimension of the feature spacefofis mini-
mized.

given in (61). This value, however, depends on the extrema of
the distribution of distancesandb which, in turn, depend on the
dimensionality of the feature space. Using randomly generated
points in the unit cube, one can derive the average and variance
of the distance between points which, under the homogeneity
hypotheses in [6], can be taken as an approximation of the dis-
tribution of the distance between a query and animage. Data rel-
ative to some dimensionality values are reported in Table Il and
Fig. 1. Using the relations = 11— /30 /2 andb = . ++/30/2,

this allows the computation of the extremand’ and, conse-
quently, of the average distance of ftte imagem)’ for a given

k and for a given dimensionality.
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Fig. 1. (a) Average and (b) variance of the distance between points as a function of the dimensionality of the feature space.

Finally, the number of imagés returned by a query of radius
7 is given by the highest valulesuch thatn)) < r thatis,

F(r N, d)=|1— (N —1) log 2=" 47) E
T = — — 29 .
bl ? g b —a Q‘
Consider now a database withlitnages in which the features !
stay in certain dependence relations. We will consider, for the a bl
sake of simplicity, only Iimiting functiong (see definition 6.1) dist
of the type¢(r) = a + ¢

Orlgmally the database has a table with three featuré: 2. A priori distribution of the distance between the query an arbitrary

mage in the database.

T(h, z, y, z). The featurer has dimension 3, the featugehas

dimension 5, and the featurehas dimension 15. The relations

given between the three by the feature designer are how these dependencies can be exploited for the design of effi-
cient search algorithms.

2 [0.01]1) » Based on these algorithm, we have introduced the notion of

v [0.01]5) = (48) cost-bounded transitive closure and the related notion of cost-

bounded normal form, as well as some design principles useful

which, by transitivity, leads te:[0.02|1)z. The original table tO reduce a database table into cost-bounded normal form.
is too big to allow efficient indexing, and a search will require The relations described in this paper, and the design tech-
107 /360 ~ 28000 page accesses. nigues that were derived from them, are but a scratch in the

There are two ways in which the table can be divided in twgurface of the general problem of database design. Issues that
using eitherz alone as a key, oy andy as a key. Consider the are still waiting for an answer include completeness and consis-
first alternative: we have the tabl&¥ h, =) andZ'(h, y, z). The tency of groups of transitive closure axioms, as well as relations
relation between the two tables must take into consideration #@sed on criteria other than the functional relation of distance
relation between: andy as well as that betweenand . For, Mmeasures.
say, a 30 nearest neighbors query, the relation betwesdy
givesA = 234 page accesses, while the relation betweand APPENDIX
» gives N/ =2 8800 page accesses, which represents the worst DISTANCE DISTRIBUTION IN DATABASES
case and, therefore, the cost of a 30 nearest neighbor search i
the decomposed database.

The second decomposition h&%A, x, y) andT'(h, z). The
best relation between the two table consists in searchlng the IL%X <

usingy and then extending the search:td he relation between s(uit1), wh.eres.( u) = d(. : u). The qugstpn we.
» and> leads to a cost’ ~ 913 pages. The latter is therefore®'® trying to answer in this appendix is the following: what is

; - the probability distribution of the distance between the query
the most convenient decomposition. g and the image.;? In other terms, what is the probability
distribution of thekth statistics ofuy, ..., u,]?

In order to derive such a distribution it is first necessary to de-

In this paper we have presented some basic principles for fivee ana priori probability distribution fors(w): the distance be-
design of database schemas in multimedia databases. The rma@en the query and an arbitrary image in the database. Stricker
concept upon which our design model is based is thatesf and Orengo [23] determined experimentally that in many cases
pendencef features. We identified four kinds of dependenciethe distribution has the shape of Fig. 2. We will make a very
between substructures of the same feature structure and shomeegh approximation of this distribution: we will assume that

80n5|der a database containimgimages and in which
a distance functiond is defined. Assume that the images
un] are ordered by distance with the quefyso that

VII. CONCLUSIONS
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Fig. 3. Average distance between the query andithémage in order of distance for various valueskafnd for a database of size (a) 100 and (b) 1000.

the probability density of the distance is uniform between twaf (z;, z», ..., ©,) has valuea and 2) the minimum of

distance values andb and zero everywhere else [Fig. 2(b)]. (x2, ..., z,) has value conditioned to its value being greater
We start by determining the probability density of the minthanc, that is

imum of two variables uniformly distributed iz, b), which is

) b
given by pg(ﬁ)::]/ PR(e)pt (Bl min > @) da. (55

: . = > . > . __a . . .
Paninz, 1) (@) = P=(@)Ply = o] + py(e)Plz = o] (49) We make an approximation here: the second factor within the

Because of the uniform distribution, it js,(a) = p,(c) = integr_a! ispy ™, since one is inte_re_sted in the minimum of the
1/(b — a) andP[z > o] = Ply > o] = (b— )/(b - a), remaining elements after the minimum has been removed. If,
therefore - T however, we are looking for thieth statistics withk < n (as is
usually the case whenis the number of images in the database
__2 b—a (50) and k is the number of images retrieved), one can think that
b—ab—a’ adding a new image to the database will make little difference
and therefore thqt’f—l ~ pt. The integral then becomes

Pmin(z, y) (Oé)
The relation can be generalized to the minimum.afalues as

b
o) = 3 o) T[ Pl P(p) = / P )Pt (Bl min > a) da
=1

J#i n? /b (b _ Oc)n_l (b _ /3)71,—1
b n—1 = o1 n do
__n o (51) b—a f, (b—a) (b— )
b—a\b—a ' n2 b da
= n(b—ﬁw—{/

Similar equations can be written for the probability density of (b _2“) o b—a
the_ minimum of (z;, s x,) conditioned to the minimum __" b — B8)"! log b— a (56)
being greater than, that is, (b—a)" b—¢

The distribution of thekth statistics is defined in a similar

min(z T 3| min > o . . . . ..
PainGas; ) (] ) way as a function of the distribution of tti¢h statistics:

= Z Pz, (B min > «) H Plz; > f|min > «]. (52)

= o P = [ B (@B min > @) o (57)
Where, this time It is possible to verify that the solution to this iteration is given
b—p3 by distributions of the type
Plxz; > f|min > o] = o (53)
—

b—B\""'. L b-8
nm=ci (=) i e

fora < «, 8 < b, andb > «a. Therefore b—a b—a

n <b - /3)"‘1 (54) whereC? is a normalization constant equal@ = n*/(k —

Pmin(zy, ,wn)(ﬁ| min > Oé) = b—a \b—a 1)'1/(b — CL).
The behavior of some of these functions is shown in Fig. 3
Consider now the different statistics @1, ..., z,). The for several values ok andn. It is evident that, as grows,

first statisticgp? is the minimum, and has the distribution (51)the probability densities for low values bfare more and more
Consider then the second statistigs An event that leads to concentrated. In some cases, it is possible to congifiars a
the second statistics having the valdeis 1) the minimum §-distribution of the formpy(5) = 6(8 — m}) for some value
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mj. The valuen} can be chosen as the value in whighattains
the maximum. Setting = (b — 3)/(b — a) one obtains
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