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Principles of Schema Design for
Multimedia Databases

Simone Santini, Member, IEEE,and Amarnath Gupta

Abstract—This paper presents the rudiments of a theory of
schema design for databases containing high dimensional features
of the type used for describing multimedia data. We introduce
a model of multimedia database based on tables containing
feature types, and the concept of schema design, which is based
on splitting tables depending on the functional relations between
different parts of the features.

We show that certain relations between substructures of a same
feature structure can lead to schemas for which efficient algorithms
for -nearest neighbor and range searches can be defined.

I. INTRODUCTION

I N THE general constellation of problems in which the multi-
media research community is engaged at this developmental

juncture, efficient storage and retrieval of complex descriptions
of data plays a central role. The flurry of activity around con-
tent based image retrieval and content based video retrieval in
the last five years is a testimony of this centrality.

Most of the research in these areas has focused around the
construction of powerful features to describe the contents of an
image or a video [3], [9] [12], [17], and on the use of similarity
functions to rate the relevance of an image for a query [4][8][18].
Once this is done, the feature vectors are stored in a database,
which also provides the query facilities for their retrieval [16],
[20]. In most cases, features are stored in the database as “black
boxes,” or “blobs” of whose internal structure nothing is known,
the only operation defined on them being the measurement of
similarity.

As the size of the multimedia heritage increases with utmost
rapidity, two issues are becoming preponderant. On one hand,
the need to manage a large quantity of data efficiently; on the
other hand the need to integrate “sensorial,” orprosymbolicdata
(such as images, video, or audio) into organizational frame-
works which include structured and semistructured data of a
more symbolic nature. In other words, the databases of the fu-
ture should (and will) be not just video or image repositories,
but comprehensive information systems in which data are ag-
gregated and searched across media, independently of whether
information is retrieved from a video, a relational table, or a
semistructured web page [10], [14]. This need for cross-medi-
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ality generates pressing requirements for the integration of mul-
timedia data into heterogeneous data models, and problems of
an exquisitely database oriented nature.

From a database point of view, current multimedia features
can be described as opaque data types, whose algebra consists of
a single operation: the determination of the similarity between
two instances of the data type. There are several negative con-
sequences of this stance.

Most features extracted from images are structured entities,
and part of their semantics is captured by their structure. For ex-
ample, in a wavelet transform, the different resolution levels rep-
resent the same image structure at different scales. This scheme
is encoded in the structural relation between different levels of
the transform but, unless the structure of the wavelet is made ex-
plicit for the database to manipulate, one cannot take advantage
of it [13].

This paper presents the rudiments of a theory ofschema de-
sign [24] oriented toward storage and retrieval of images into a
multimedia database. This orientation entails that our view of
features is somewhat different from that of the image analyst.
In particular, this paper will not be concerned with the expres-
sive power of features, or the quality with which certain features
capture the semantics of the data that they describe. Rather, we
will be interested in two problems.

1) Given a set of features that describe certain multimedia
data, is it possible to exploit structural relationships be-
tween different parts of the features to organize them in
a more efficient database schema, in particular one that
allows efficient processing of-nearest neighbor queries
[21]?

2) Given a feature design problem, what database issues
should the designer consider (next, of course, to all the se-
mantic considerations proper of a feature design problem)
so that the resulting feature can be mapped efficiently into
a database schema?

The ultimate goal of the methods introduced in this paper is
to exploit relations between different parts of a feature struc-
ture in order to design a database schema to increase search effi-
ciency. This goal resembles superficially certain dimensionality
reduction techniques, like principal component analysis or mul-
tidimensional scaling [22], which have been widely used to re-
duce the dimensionality of feature vectors to a more manageable
size. In spite of the superficial similarity, we regard the work
presented here as conceptually orthogonal and technically inde-
pendent of such methods, for a number of reasons.

1) Methods like principal component analysis are used for
feature design, rather than schema design. In the schema
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design phase, we assume that the feature designer has
already applied the opportune dimensionality reduction
methods.

2) Design-oriented reduction methods often entail a certain
loss of information. For instance, methods based on
principal component analysis prescribe the elimination
of a certain numbers of the smallest eigenvalues. It is
up to the designer to determine whether this loss is
unacceptable, acceptable or, as sometimes happens,
beneficial. The methods presented here, on the other
hand, work by organizing features in a certain schema,
without discarding any information.

3) Schema design relies on properties of the distance func-
tions used by the database. On one hand, this entails that
schema design is done without transforming the features,
but just by breaking their structure among different tables.
So, unlike principal component analysis, schema design
can be made based on features defined on a metric space
and, unlike multidimensional scaling, it does not trans-
form the features in vectors. On the other hand, schema
design can be applied to features of different nature (e.g.,
color and shape) in a way that depends on the predicted
distribution of queries (in which case, of course, less
likely queries will be answered less efficiently).

This paper is organized as follows. In Section II we present
the database model that we consider in this paper, which is a
simple extension of the standard relational model, and which
was chosen because it can easily accommodate more powerful
models; in particular it can easily accommodate models based
on functional languages for query specification and data manip-
ulation simply by encapsulating the relational table into a suit-
able data type of the functional language [1].

Section III introduces the problem of multimedia database
schema design in rather general terms, and highlights the im-
portance of functional dependencies among substructures of a
feature for database design problems. Section IV introduces the
main classes of dependencies that we consider in this paper, and
presents algorithms that take advantage of such dependencies
for fast indexing. Section V deals briefly with the case in which
the functional dependencies between features is probabilistic in
nature. Section VI casts the previous considerations and algo-
rithms into a formal schema design problem, and presents some
examples of design. Conclusions are drawn in Section VII.

II. PRELIMINARIES

An image database is formed by one or more relations, or
tables,of the form , where

is a unique image handle, are feature types, and
is the name of theth field or columnof the table. For the

sake of simplicity, we will assume that every table contains only
features. In practical applications, of course, tables will contain
features as well as other information about the images, but the
extension to this more general case of the techniques presented
in the following is immediate. Thesignatureof the table is the
sequence of data types , and its schema is the
sequence of names with their associated data
types. The elements of a schema are called theexplicit fields,or
simply the fields, of the table.

The th row of the table is indicated as , and it contains
the handle some features relative to one of the images stored in
the database. is the handle of the image, and is
the value of theth feature descriptor of the image. In addition
to the explicit fields, each row of the table has ascore field
(of type ) such that is the distance between the image
in the th row and the current query.1 The value of the field is
assigned by the scoring operatorintroduced later on. If is
a handle, the notation will be used to indicate the row
for which .

Many image queries are based on distance measures in fea-
ture spaces or, equivalently, on similarity functions. In the fol-
lowing, we will always talk in terms of distance functions but
it should be understood that the same considerations apply, mu-
tatis mutandis, to similarity function, given the duality existing
between distance and similarity [22]. Given a feature type,
let be the set of distance functions defined on. All
distance functions considered in this paper take values in the in-
terval [0, 1] and arecurried, that is, they are of type

. Given an element , and , the func-
tion assigns to every element of its dis-
tance from . Such a function is called ascoring function,and
the set of all scoring functions for a feature typeis indicated
as . Each table has associated a distance, indicated as

, such that, if the signature of is , then
. Each row of the table has associated

a scoring function

(1)

that measures scores with respect to the image described by the
row.

Moreover, a library of distance combination operators is
defined. These are based on scoring combination operators:

, defined as in [11], [7]. Each one of
these operators induces an operator on distance functions as
follows. Let and , then the distance
operator : is the operator that
makes the following diagram commute:

(2)

That is, for and , it is

(3)

The combination operators will be assumed to be symmetric
and Lipschitz, that is

(4)

(5)

1The use of the termscoreimplied in this definition is a bit anomalous. In
normal discourse, a score is positively correlated with significance, so that sig-
nificant images have high score. In this case, however, score is a distance, which
means that significant images have low scores.



250 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 4, NO. 2, JUNE 2002

for some constant . (The definition establishes that the
operator is Lipschitz on the second argument only; the property
on the first argument follows from symmetry.)

Operators on Tables:Given a scoring function, and a table
thescoring operator assigns a

score to all the rows of using the scoring function. That is,
is a table with the same signature asand

(6)

Given a table , the lowest dis-
tances operator returns a table with the rows of with
the lowest distance from the query. The operatorsand
are generally used together: the operator is called
the -nearest neighbors operator for the scoring function.

The operator returns all the rows of a table with a dis-
tance less than. The operator is called the range
query operator for the scoring function.

The operator is the usual predicate selection operator on a
table . In the databases that we consider here,has either the
form , where is a handle, or , where is
a set of handles. Note that the notation introduced above
is a shorthand for which, because of the unicity of the
handles, always returns a table with a single row.

Finally, the -join is a join operator in which two tables

and are joined on their handle field to form a new table
. If and

, then

(7)

The row such that is obtained by collecting the
features of the rows and such that

. The table has a distance function

(8)

and, if the th row of was obtained by joining theth row of
with the th row of , it has score

(9)

and

(10)

III. D ATABASE SCHEMA DESIGN

Let a feature table with schema
. Assume, for the sake of simplicity,

that each feature type can be represented as a vector, and
that its dimensionality is .2 In a multimedia database, typical
operations on this table are-nearest neighbors and range
searches, which involve ordering the rows of the table using the

2This hypothesis is not really necessary, and can be replaced by the less strin-
gent hypothesis thatX be a metric spece of intrinsic dimensionalityd . The
vector space hypothesis, however, allows a simpler exposition.

distance that is, they involve indexing
a feature space of dimension .

It is a well known fact that, as the dimensionality of the fea-
ture space increases, the performance of all indexing structures
declines rapidly and, even for moderate values of, there is
no solution more efficient than the trivial one of visiting all the
rows in the table and measuring their distance from the query
[25], [5], [19].

As long as one considers features as black boxes about which
nothing is known except their distance function, there is no gen-
eral solution to this problem. A solution can only derive from the
integration of feature design into the general activity of database
design. There are characteristics of certain features that afford
a re-organization of the database in the sense of a greater effi-
ciency, and these characteristics should be identified, pursued,
and exploited.

In this paper, we will consider the problem ofschema design
for an image database and how certain characteristics of features
can be used to design schemas that can be searched efficiently.
The problem can be defined as follows:

Definition 3.1: Consider a set of images, and assume
that for each image the features is avail-
able, with . A database schemais a set of tables

with such
that, if , then .

Using a set of tables, rather than a single tablecan lead to
more efficient searches because in many cases one of the tables
can be used as aprototablethat can be searched to individuate
a subset of the database in which the solution is guaranteed to
be so that the search in the complete feature space can be lim-
ited to this subset rather than to the whole database. (A formal
definition of prototable will be given later in the paper.)

A general algorithm for search in a database decomposed in
a prototable and in a set ofdependent tables is
the following

1) Search the prototable, and retrieve a set of images
that is guaranteed to (or has a pre-specified probability to)
contain the images that satisfy the query.

2) Join the set with all the dependent tables, obtaining
a table which contains the full

feature description of the images in the table .
3) Execute the query on the table, possibly doing a linear

scan of the table if its dimensionality does not allow for
efficient indexing.

The only feature search that this algorithm does on the whole
database involves the prototable which may be of a much
lower dimensionality than the whole database, thus allowing ef-
ficient indexing.

The possibility of dividing a database into a set of smaller
tables depends on certain characteristics of the features

and it is a goal of the feature designer to select fea-
tures that allow the design of an efficient schema. The study of
the characteristics of an image feature vis-à-vis schema design
will form the subject of a discipline of multimedia database
design that is still, for the most part, in the making. This paper
will try to provide some foundations for such a discipline by
analyzing some limited and specific characteristics of features
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that can be used for schema design, in particular, we will
considerpartial functional dependenciesbetween subsets of
features.

Straight functional dependence provides a trivial way of di-
viding a table. Consider a table with two features:

, with , and
. Suppose that there is a functionsuch that

. Then the table can be trivially divided into a prototable
and a dependent table . Assigning to the

distance function one can ignore the table
and do the searches on the prototablealone.
This is a trivial case in which the search algorithm assumes

a particularly simple form, but it is not very realistic. In the re-
mainder of the paper, we will consider cases ofpartial func-
tional dependencies, which are more realistic and can still be
used to split tables.

IV. FUNCTIONAL DEPENDENCIES

In this section we want to determine under which conditions
is it convenient to separate a table with two feature
fields into two tables and , in particular,
we are interested in the various forms of dependencies between
the scoring functions (or, equivalently, the distance functions)
defined on the two features, and how those can be used to design
algorithms that allow a faster computation of-nearest neighbor
queries and range queries once the tables are split.

We will assume that the distance function of the tableis
obtained as the combination of the distance functions of the two
features: . We will also assume that a reference
image has been selected, and that all distances are relative to
this image. In order to ease the notation, we will indicate with
the scoring functions relative to this image, that is
or, when referred to the features and individually,

and .

A. Search Algorithm

Before considering various forms of dependence between
features, we introduce in this section the algorithm that will be
used to solve the -nearest neighbors problem in the case in
which a table containing two related features has been split.

The general idea of the algorithm is as follows. Suppose we
have two features and , belonging to feature spaces
and , and that there is a relation between the two that allows
us to predict, to a certain degree, the score ofgiven the score
of . If the relation between the two features is, we will use
the notation . If we do a -nearest neighbors search in
the space we will not, in general, end up with the correct
solution. Consider, however, the distance between the query and
the th image retrieved by the-nearest neighbors algorithm
using the feature , and be this distance. One can hope that
by making in the feature space a search with a radius suitably
larger than , one will collect a number of images which
will contain the solutions of the original problem. The amount
by which a given radius must be increased is a function of
the relation , : . The radius is then written as

. In formal terms, the algorithm can be written as
follows:

Algorithm 1.
1. ;
2. ;
3. ;
4. ;
5. ;

6. .

Step 1 does a-nearest neighbors search of the neighbors of
image in table . In steps 2 and 3, the distance between the
farthest away of the returned images and the query is found and
increased by a suitable factor, which depends on the relation
between the two sets of features. In step 4, a range query is done
on table to obtain the images closer to the query than this new
distance. The resulting table () contains entries, and is
guaranteed to contain theimages that, in the original table,
were closest to the query (see below for a proof of this fact).
In order to determine these images, the tableis joined to
and the images closest to the query are extracted from this
table. The advantage, in this algorithm, is that the search using
the complete feature space is only done on the table, which
contains only entries, and not the whole database.

The crucial point of the algorithm is step 3, in which the range
of the query is “increased a little bit” to guarantee that the range
query of step 4 will contain all the solutions to the original query.
Whether this is possible, it depends on the relation. In partic-
ular, must have adistance boundingfunction, defined as fol-
lows.

Definition 4.1: Let be a relation such that , with
and , and be two

scoring functions for the features and , and be
a scoring function for a table containing both features,being
an arbitrary but fixed combination operator. A function is
a bounding functionfor if, for a given scoring function, the
following is true.

For every , if there are exactly rows such that
, then there are at least rows for which

.
Then the following theorem proves the correctness of the al-

gorithm:
Theorem 4.1:In algorithm 1, assume that the two tables are

and , with , and that
is a bounding function for the relation. Then the algorithm

retrieves the images closest to the query with respect to the
scoring function .

Proof: The proof is by contradiction. Assume that the al-
gorithm is incorrect. Then there is an imagesuch that is
one of the lowest distances, but which is not returned by the
algorithm.

If this is true, then the imagewas left out of the range query
in step 4 since, had it been part of the table, it would have
been picked up in step 6. To see this, consider that step 5 is
a join between the identifiers in and a superset of the same
identifiers contained in ; as such, the join will drop no entries
from . Step 6, on the other hand, is anearest neighbors query
based on the scoring functionand since, ex hypothesis, image

is one of the images with the lowest distance, it will return it.
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If was not returned by the range query of step 4, then it is
that is . But, since

is a bounding function for and, by virtue of step 1, there are
images such that , it follows from the

definition that there are at lestimages for which
, which contradicts the hypothesis thatwas one of the

images closest to the query.
This is the basic algorithm that we will use in the remainder

of the paper. In the following section, we will present three re-
lations (the first two of which will turn out to be special cases
of the third) with the necessary requirements for applying the
algorithm.

B. Scale Difference

Two features and are in -scale difference dependence,
written if there is an such that, for all images

, it is . This relation can be used to
decompose a table into a normal form, as described by the fol-
lowing definition.

Definition 4.2: A set of tables is said to be in-scale-normal
form if, whenever with , does not belong to
the prototable. In other words, the prototable contains no feature
that is -scale dependent on another feature with .

The idea behind the definition-scale-normal form is that
if a part of a feature gives a small contribution to the distance
between the query and the elements in the database, then there
should be the possibility of searching only on the part of the
feature structure that gives the greatest contribution. In other
words, if with high then, presumably, the distance
between two images with respect to is highly indicative of
the distance between the two images with respect to the whole
feature vector. It should then be possible to useto filter out
from the database images that cannot possibly be returned as
part of a given query.

In order to show that the algorithm of the previous section
applies, we need to find a bounding function for this relation.
This is done by the following lemma:

Lemma 4.1:The function is a bounding
function for the relation .

Proof: Let and
be the two tables such that , and let and

. We need to prove that, if there areimages such
that , then there are at leastimages such that

. This is a simple consequence of the dependence between
the two features. Since , it is and, since
the combination operators are monotonically increasing in their
arguments, it is

(11)

Therefore, at least the images for which have
.

Given the existence of the bounding function, Algorithm 1
can be applied: if two featuresand are such that , they
can be divided in two different tables and

in such a way that a complete search needs to
be done only on .

Transitive Closure Properties:In schema design, dependen-
cies are used to split features into several tables so that each
table will have only features of a limited dimensionality and,
therefore, can be indexed more efficiently. Dependencies among
parts of a feature structure can either be proveda priori, based
on the semantics of the feature extractor, or through statistical
measurements. In addition, the structure of the scale dependence
itself allows to extend the relation using a form of transitive clo-
sure so that, given scale functional dependencies among certain
features, other dependencies can be inferred. The transitive clo-
sure properties of the scale functional dependence are the fol-
lowing.

Self-dependence:For all features , .
Anti-symmetry:If , , then there is no
such that .
Transitivity: If and , then .

The proof of these properties is immediate from the defini-
tion. These properties are used to compute the-transitive clo-
sureof the features that depend on a given feature, defined as
follows:

Definition 4.3: Let be a set of fea-
tures computed on the same database (or a decomposition of
a single feature computed on the database). Given a feature

, the -transitive closure of is the set:

(12)

The value in the definition of -transitive closure has a direct
relation with the cost of Algorithm 1, since the largest isin a
relation , the cheaper it is to execute Algorithm 1, as will
be shown in the following. Therefore, given a cost objective, an
acceptable value of can be derived. The goal of the designer
is then to find the smallest featuresuch that . The
details of this operation will be covered later, after introducing
two additional forms of dependence.

C. Partial Functional Dependence

Partial functional dependence is a weak form of functional
dependence which depends on the existence of a scoring func-
tion and allows for a bounded indetermination in the dependence
itself.

Definition 4.4: Given two features and , a scoring
function , a constant , and a function , the feature is
( )-dependent of , written if for all images

(13)

Similarly to the scale functional dependence, partial func-
tional dependence gives rise to a family of normal forms for
table indexed, in this case, by the parameter.

Definition 4.5: A set of tables is said to be in-partial func-
tional normal formif, whenever , it is not the case that

and belong to the same prototable.
As in the previous case, the utility of the concept of-partial

functional normal form comes from the existence of a bounding
function, so that Algorithm 1 applies.

Lemma 4.2:The function is a
bounding function for the relation , being the Lipschitz
constant that appears in (5).
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Proof: Let and the
two tables such that , and let and

. We need to prove that, if there areimages such that
, then there are at leastimages such that

.
Because , and the Lipschitz property of, it is

(14)

and, similarly, ; that is

(15)

Therefore, for all the images for which , it is
.

Transitive Closure Properties:As in the case of scale depen-
dence, transitivity relations between features induced by par-
tial functional dependence can be used in the decomposition
process. The following properties hold for partially functionally
dependent features.

Self-dependence:For all features , .
Symmetry:If , then .
Monotonicity:If , then for all , .
Transitivity: If and , then .

The proof of these properties is immediate from the defi-
nition. Transitive closure properties are used to compute the

-transitive closureof the features that depend on a given fea-
ture , defined as follows.

Definition 4.6: Let be a set of fea-
tures computed on the same database (or a decomposition of
a single feature computed on the database). Given a feature

, the -transitive closure of is the set

(16)

The use of the transitive closure of a feature is the same as
in scale dependence: fixing a bound on the cost of the indexing
algorithm, this will yield a bound on the acceptableof the
partial functional dependence. The designer will then have to
find the smallest feature such that .

D. Quasi-Scale Dependence

The previous two sections have introduced two forms of de-
pendence between the scores of pairs of features, and it is ob-
vious to wonder whether there is a relation between the two. In
other words, we have seen that, within the two dependencies,
certain transitivity rules hold, namely

(17)

and

(18)

Suppose now that and ; what can be said of the
relation between and ? Since and , one can
conclude that . As a matter of fact, one can impose
a somewhat stronger condition: since ex hypothesis, one
can define the bounded sum operatoras

(19)

which allows to write . This property motivates a
further definition:

Definition 4.7: Given two features and , a scoring func-
tion and constants and , the feature is quasiscale depen-
dent of , written if for all images

(20)

The following lemma, whose proof is very similar to that
of the corresponding lemmas in the previous sections, and is
omitted, shows that there exist a bounding function for this re-
lation.

Lemma 4.3:The function is a
bounding function for the relation , being the Lipschitz
constant that appears in (5).

Note that, as the notation suggests, the previous two relations
can be regarded as special case of this one for and
, respectively. The bound functions for the two relations are

similarly special cases of .
Transitive Closure Properties:The definition of this new de-

pendence naturally poses the problem of its transitive closure
properties, in particular its composition law. That is, if
and , what can be inferred about the relation between
and ? The following theorem provides the answer:

Theorem 4.2:If and , then with

(21)

(22)

Proof: Since , it is and, since
, it is . Putting together the two inequali-

ties, we obtain

(23)

The theorem, on the other hand, implies that ,
therefore we need to find values ofand such that

(24)

Defining , and raising both sides of the inequality to the
power , one obtains

(25)

For , this inequality becomes

(26)

which is true for

(27)

We want to show that, if , the inequality holds for all
. Call , and

. The previous inequality tells us that .
Computing the derivatives one gets and

. Noting that (26) for implies ,
one sees that and, therefore .
Since is positive for and its derivative is
positive, it is never negative. Therefore
for all . Finally, note that implies .
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The properties of the quasiscale dependence relation can then
be summarized as follows:

Self-dependence:For all , .
Transitivity: If and , then

.

The transitive closure for the quasiscale dependence is de-
fined as:

Definition 4.8: Let be a set of fea-
tures computed on the same database (or a decomposition of
a single feature computed on the database). Given a feature

, the -transitive closure of is the set:

(28)

V. PROBABILISTIC DEPENDENCE

All the previous cases of dependence between features were
deterministic: it was possible to find a constraint between dis-
tances relative to the two features that was satisfied for all pos-
sible images. This allowed the definition of-nearest neighbors
algorithms that guaranteed that theimages closest to the query
with respect to the complete distance were returned, even if the
database was first filtered using only part of the features.

In some cases it is necessary to relax this assumption and de-
fine the relation between the two featuresand in terms
of probability. Correspondingly, the-nearest neighbors algo-
rithm will return the images closer to the query with a certain
probability, and the cost of the algorithm will increases with the
probability that the result will be correct. While in the previous
case the decision of whether to separate two features was based
only on cost considerations, in this case a new variable has to
intervene: the probability that one or more of themost signif-
icant images will not be returned.

A full treatment of the probabilistic case is very complex.
In this section we will consider a rather schematic treatment
under simplified but, hopefully, not unrealistic assumptions. As
before, assume that we have a table

, where , are feature types, and , are features.
The problem is whether the table should be split into two tables

and with and . As
usual, let be the handle of the query image, and let

, , and .
Assume that the difference between the score of two images

is normally distributed, with variance for features of type
and variance for features of type , that is

(29)

(30)

and, consequently, , with .
The question of whether this assumption can be justified is

still quite open. For Minkowski distances, the law of large num-
bers justifies this assumption under the (weaker) hypothesis that
the feature components be identically distributed. In this case,
and for an distance, the values are nor-
mally distributed, and the considerations that follow hold using

as a scoring function. Empirical measures ([23], see also the
Appendix) seem to validate this assumption to a certain extent.

Given a -nearest neighbors query and a boundon the prob-
ability of error that one is willing to accept, we need to deter-
mine the number of images ( ) such that the result of
a -nearest neighbors query on the tablewill contain with a
probability all the images closest to the query according
to the whole feature.

We start with the following problem: given two images that,
in the complete table , are at a distance from each other,
what is the probability that they will be order-swapped when the
same query is made on the table? In other words, consider
two images and such that (so that, in
order of distance from the query,comes after ), what is the
probability that (so that in the query on the table

, will come before ?). The relation between distances gives

(31)

The images will then be swapped if . If
is the probability of swapping two images given that their

distance is , then

(32)

In order to solve the original problem, we still a second ele-
ment, namely an answer to the following question: given theth
and the th image in the database, what is the probability distri-
bution of the difference in their distance from the query? That
is, if is the feature representation of theth image in order
of distance from the query, what is the probability distribution
of ? The probability distribution of , for a
generic is derived in the Appendix under the hypothesis that
thea priori distribution of is uniformly distributed between
two values and , and it turns out to be

(33)

where is the number of images in the database andis a
suitable normalization constant. The two valuesand can be
set in such a way that the variance of the difference between
two uniformly distributed distance be equal to the variance of
the normal distribution hypothesized for , that is, to

. The difference between two samples taken from a uniform
distribution of width , has a triangular distribution of variance

, so that the uniforma priori distribution of the distances
should have . The center of the distribution de-
pends on the particular distance and for now we will simply in-
dicate it as . Setting and one obtains:

(34)
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TABLE I
SUMMARY OF THE MAIN PROPERTIES OF THEDEPENDENCIESINTRODUCED IN THEPAPER

with

The distribution of the distance between theth and the th
image in the database can then be computed as

(35)

with .
The probability that images and will be swapped is

(36)

where is the probability that two images will be swapped
given that the distance between them is. Using (32), this gives:

(37)

Note that this expression depends only onand . The de-
pendence from is in the determination of the boundsand
of the uniform distribution necessary for computing , since

.
If the database is large, then

and the probability to swap theth and the th image is

(38)

Consider an algorithm like those presented in the previous
sections in which one solves a-nearest neighbors problem (for
some suitable ) in the reduced feature space in order to solve
the -nearest neighbor problem in the full feature space. In the
case of a probabilistic dependence between the two features it is
not possible to guarantee that the firstimages will be retrieved
for any value of , but it is possible to provide a bound on
the probability of error. In particular, given a probability of
leaving one of the first images out of the selection, the value

will be the smallest value for which

(39)

Once this condition is set, the algorithm for dividing a feature
in two part when the two have a probabilistic dependence is
essentially the same as in the previous cases.

VI. COST-BASED REDUCTION TONORMAL FORM

The previous sections have introduced three forms of depen-
dence between features or parts of a feature structure (the prob-
abilistic dependence can be reduced to a deterministic depen-
dence by fixing an upper bound to the probability of swap-
ping images): the scale difference dependence, the partial func-
tional dependence, and the quasi–scale dependence, together
with their properties, which are summarized for convenience in
Table I.

These properties are used to derive transitive closures relative
to a subset of the features that satisfy certain cost constraints. So
far, these transitive closures have been defined independently
for the three dependencies. In order to arrive at a unified defi-
nition of cost-bound transitive closure for a given subset of the
features, it is necessary to analyze Algorithm 1 and the cost as-
sociated to it.

Assume that the database has been divided in two tables
and , where has

dimensionality , has dimensionality , and the full
dimensionality of the feature space is .

Let be the cost of a -nearest neighbors search
and be the cost of a range search of radiusin a
space of dimensionality for a database of images.

The cost of the various steps of Algorithm 1 is the following:

1) a -nearest neighbors search in , with a cost
;

2) constant time access to the results;
3) constant time function computation;
4) a range query on the table with radius , with

cost ; this will result in images
in a table ;

5) a join between on the identifier field of the tableand
the table , whose identifiers are a superset of those of

; using a hash join, the cost of this operation is linear in
the size of , that is, in ;

6) a linear scan (worst case scenario) of the table resulting
from the join, which contains entries; this also requires
a time linear in .

The cost of the whole algorithm is then

(40)

where the notation serves to remind that the number
of images returned by the range query is a function of the search
radius. For a given database size and feature space dimension,
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this cost depends on two variables: the dimensionof the re-
duced feature space, and the radius-increasing function. Con-
sequently, we define thenormalized costof a database search as

(41)

If the original feature space has such high dimensionality that
no indexing scheme works satisfactorily on it, no search is faster
than a linear scan, which has a cost . In this case, normal-
izing the database leads to a gain .

The function depends on the relation between the fea-
tures that are being split and is given, for the general relation

, by

(42)

The objective of cost-based reduction to normal form is
to find a decomposition of the database tables such that

is as small as possible.
In order to formalize this problem we need a few more defi-

nitions. Let be any of the previous four dependence
relations, and indicate with a generic relation between
and .

Definition 6.1: Let a feature from a database. Thetran-
sitive closure of is the set

(43)

The definition is extended immediately to sets of features
as

(44)

In other words, the set is the set of all the features that
depend on through a relation whose cost-increasing function
is bounded by a given function.

Definition 6.2: Given a set of feature types
on a database, an-seed of the set is

a set such that .
A key for a database of features can be used to index

the images in the database with a guaranteed bound on the cost
of the algorithm using the methods illustrated in the previous
sections.

The general table decomposition problem can then be formu-
lated in the following way.

Given a database composed of a table
, find a set of tables ,

such that

1) ;
2) Every belongs either to or to exactly one of

the s;
3) is an -key for ;
4) The cost , where is the function in-

duced by the dependence of thes on , and
is the dimension of the feature space of, is mini-
mized.

TABLE II
AVERAGE AND VARIANCE OF THE DISTANCE BETWEEN A QUERY AND THE

IMAGES IN A DATABASE

A. An Example

The general table decomposition problem introduced in
this section requires, for its complete solution, a cost model
of -nearest neighbors queries and of range queries in high
dimensional feature spaces. Several such models have been
proposed in the literature [2], [15], [6]. The subject of cost
models for nearest neighbor queries is a complex one, and we
will not consider it in this paper.

Rather, we will use some simple approximation of the model
reported in [2]. In particular, we will assume a database of
images and a disk page size of images. Under these cir-
cumstances, the data reported in [2] are reasonably well approx-
imated assuming that a-nearest neighbor in a feature space of

dimensions will access a number of pages given by

(45)

with , and . The number of pages
accessed by a range query of radiusis also taken from [2], and
is given by

(46)

where is the sphere of center
and radius in a dimensional space,

is the unit cube in which the database is contained, andis
the volume operator.

In order to apply the cost formula, we still need to deter-
mine the average distance of theth image from the query in
the -dimensional space. In the hypothesis that the distribu-
tion of distances is a-distribution, this value is simply ,
given in (61). This value, however, depends on the extrema of
the distribution of distancesand which, in turn, depend on the
dimensionality of the feature space. Using randomly generated
points in the unit cube, one can derive the average and variance
of the distance between points which, under the homogeneity
hypotheses in [6], can be taken as an approximation of the dis-
tribution of the distance between a query and an image. Data rel-
ative to some dimensionality values are reported in Table II and
Fig. 1. Using the relations and ,
this allows the computation of the extremaand and, conse-
quently, of the average distance of theth image for a given

and for a given dimensionality.
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Fig. 1. (a) Average and (b) variance of the distance between points as a function of the dimensionality of the feature space.

Finally, the number of images returned by a query of radius
is given by the highest valuesuch that that is,

(47)

Consider now a database with 10images in which the features
stay in certain dependence relations. We will consider, for the
sake of simplicity, only limiting functions (see definition 6.1)
of the type .

Originally the database has a table with three features:
. The feature has dimension 3, the featurehas

dimension 5, and the featurehas dimension 15. The relations
given between the three by the feature designer are

(48)

which, by transitivity, leads to . The original table
is too big to allow efficient indexing, and a search will require

page accesses.
There are two ways in which the table can be divided in two,

using either alone as a key, or and as a key. Consider the
first alternative: we have the tables and . The
relation between the two tables must take into consideration the
relation between and as well as that betweenand . For,
say, a 30 nearest neighbors query, the relation betweenand
gives page accesses, while the relation betweenand

gives page accesses, which represents the worst
case and, therefore, the cost of a 30 nearest neighbor search in
the decomposed database.

The second decomposition has and . The
best relation between the two table consists in searching the key
using and then extending the search to. The relation between

and leads to a cost pages. The latter is therefore
the most convenient decomposition.

VII. CONCLUSIONS

In this paper we have presented some basic principles for the
design of database schemas in multimedia databases. The main
concept upon which our design model is based is that ofde-
pendenceof features. We identified four kinds of dependencies
between substructures of the same feature structure and showed

Fig. 2. A priori distribution of the distance between the query an arbitrary
image in the database.

how these dependencies can be exploited for the design of effi-
cient search algorithms.

Based on these algorithm, we have introduced the notion of
cost-bounded transitive closure and the related notion of cost-
bounded normal form, as well as some design principles useful
to reduce a database table into cost-bounded normal form.

The relations described in this paper, and the design tech-
niques that were derived from them, are but a scratch in the
surface of the general problem of database design. Issues that
are still waiting for an answer include completeness and consis-
tency of groups of transitive closure axioms, as well as relations
based on criteria other than the functional relation of distance
measures.

APPENDIX

DISTANCE DISTRIBUTION IN DATABASES

Consider a database containing images and in which
a distance function is defined. Assume that the images

are ordered by distance with the query, so that
, where . The question we

are trying to answer in this appendix is the following: what is
the probability distribution of the distance between the query

and the image ? In other terms, what is the probability
distribution of the th statistics of ?

In order to derive such a distribution it is first necessary to de-
fine ana priori probability distribution for : the distance be-
tween the query and an arbitrary image in the database. Stricker
and Orengo [23] determined experimentally that in many cases
the distribution has the shape of Fig. 2. We will make a very
rough approximation of this distribution: we will assume that
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Fig. 3. Average distance between the query and thekth image in order of distance for various values ofk and for a database of size (a) 100 and (b) 1000.

the probability density of the distance is uniform between two
distance values and and zero everywhere else [Fig. 2(b)].

We start by determining the probability density of the min-
imum of two variables uniformly distributed in , which is
given by

(49)

Because of the uniform distribution, it is
and ,

therefore

(50)

The relation can be generalized to the minimum ofvalues as

(51)

Similar equations can be written for the probability density of
the minimum of conditioned to the minimum
being greater than, that is,

(52)

Where, this time

(53)

for , , and . Therefore

(54)

Consider now the different statistics of . The
first statistics is the minimum, and has the distribution (51).
Consider then the second statistics. An event that leads to
the second statistics having the valueis 1) the minimum

of has value and 2) the minimum of
has value conditioned to its value being greater

than , that is

(55)

We make an approximation here: the second factor within the
integral is , since one is interested in the minimum of the
remaining elements after the minimum has been removed. If,
however, we are looking for theth statistics with (as is
usually the case whenis the number of images in the database
and is the number of images retrieved), one can think that
adding a new image to the database will make little difference
and therefore that . The integral then becomes

(56)

The distribution of the th statistics is defined in a similar
way as a function of the distribution of theth statistics:

(57)

It is possible to verify that the solution to this iteration is given
by distributions of the type

(58)

where is a normalization constant equal to
.

The behavior of some of these functions is shown in Fig. 3
for several values of and . It is evident that, as grows,
the probability densities for low values ofare more and more
concentrated. In some cases, it is possible to consideras a
-distribution of the form for some value
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. The value can be chosen as the value in whichattains
the maximum. Setting one obtains

(59)

and

(60)

which is zero for . This gives

(61)

Consider now two images of orderand , with . The
probability density of the distance between them is

(62)

that is, in the -distribution approximation

(63)

This is, of course, an expected result: in the case in which
the variance of the distances is extremely small, the images can
be considered to be placed deterministically at a distance cor-
responding to the difference of their average distance from the
query.
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