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Abstract

Techniques for big data analytics should support principles of elasticity that

are inherent in types of data and data resources being analyzed, computational

models and computing units used for analyzing data, and the quality of

results expected from the consumer. In this paper, we analyze and present

these principles and their consequences for software-defined environments to

support data analytics. We will conceptualize software-defined elastic systems

for data analytics and present a case study in smart city management, urban

mobility and energy systems with our elasticity supports.

1. Introduction

The main characteristics of big data described through

the “four V’s of volume, variety, velocity and veracity”

[1] have steered the discussion and the development of

big data techniques into big computing infrastructure (e.g.,

high performance and data intensive computing/cloud sys-

tems), big data storage and scalable data structures (e.g.,

BigTable and Cassandra), scalable computation frameworks

(e.g., Hadoop/MapReduce and S4), and scalable data mining

algorithms [2], [3], [4], [5], [6]. However, few discussions have

been focused on dynamic and flexible data analytics processes

that rely on multi-dimensional elasticity perspectives from

consumers and providers, while leveraging these existing pow-

erful computing infrastructures, frameworks, and algorithms.

We argue that elasticity principles, such as, resource, quality

and cost elasticity [7], should be investigated as fundamental

guidelines for developing new data analytics platforms to

tackle issues in big data analytics, for example:

• data analytics can be carried out by computational models

utilizing software algorithms as well as humans.

• consumers can have different cost/quality requirements

in a single analytics which require different types of data

taken into the analytics at different times of the analytics.

• data and computing resources are utilized differently to

produce different outputs for the same type of analytics.

We argue that these exemplified issues reflect the multiple

types of elasticity inherent in big data analytics that data ana-

lytics software should be supported. Furthermore, these types

of elasticity should be programmed by means of software-

defined Application Programming Interfaces (APIs) at runtime

to enable dynamic changes. Therefore, we need to understand

basic principles of elasticity in big data analytics and possible

software-defined APIs for managing and control the elasticity

in big data analytics.

In this paper, we describe complex dependencies on data

analytics processes (Section 2). We contribute an analysis of

elasticity principles for big data analytics (Section 3). Based

on that, we conceptualize software-defined elastic systems for

data analytics (Section 4), and present a case study of how

we currently apply such principles in smart city, urban and

mobility systems (Section 5).

2. Dependencies in Data Analytics Processes

Conceptually, given input data, in an analytics we utilize an

analytics (structured or unstructured) process (e.g., a scientific

workflow [8]) which consists of different analytics tasks (e.g.,

an activity in the workflow) to understand and process the data.

Analytics processes and tasks rely on computational models

which implement algorithmic steps to analyze data followed

specific data models. A task can invoke a service/program

which encapsulates a computational model or a set of tasks

can implement a computational model.

Today’s one of the popular forms of (big) data analytics

is that we have voluminous (static and streaming) data ag-

gregated from different sources and then analyzed at a center

place, such as, cloud data centers. In this form, typically the

number of analytics processes and the computational models

are limited because data models of both input data and output

data are known. To face with input data volume and velocity,

the common solution is to provision more computing units

(e.g., virtual machines). This form is shown in Figure 1(a) and

well-supported using common technologies, such as MapRe-

duce, Big Table, and scientific/data analytics workflows.

Having diverse types of data will increase the number of

analytics processes and computational models substantially, as

different types of data and their compositions require different

analytics processes, tasks and computational models (as shown

in Figure 1(b)). Thus, we need to go beyond the typical

provisioning of more computing units by also provision more

computational models and analytics processes at runtime.

Now let us consider the role of dynamic changes of

quality of results of the analytics. A simple form of quality

of results can consist of performance (e.g., deadline of the

analytics), cost (e.g., monetary prices to be paid), quality of

data (QoD) (e.g., data accuracy), and forms of output data

(e.g., a comma-separated values data or a chart). Due to the

four V’s characteristics, the consumer expects to have different

quality of results. The reason is that the consumer is always
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Fig. 1. Changes in data analytics and their complex consequences

constrained with time, quality and cost, as the consumer carries

out analytics for different goals. Shown in Figure 1(c), when

we know the expected form of data outputs from our analytics,

we could focus on steering other parameters of the quality

of results, such as QoD, performance and cost. This will

influence on several aspects on the analytics, such as which

types of data will be taken into the analytics, which analytics

processes will be invoked and which computational models

will be considered, besides the question of which and how

many computing units will be used. In a much more complex

situation when data analytics is used for “finding the right form

of results”, e.g., which is the right plan for putting a factory in

a city, the form of output data might not be known in advanced

or might be changed during the analytics. This triggers, at

runtime, not only the need to change data sources, analytics

processes, and computational models but also the need to

define new data models, analytics tasks and computational

models.

The above-mentioned scenarios show that we cannot just

support big data of the same type where we focus on

Fig. 2. Multi-view data analytics

provisioning big computational resources for a number of

small processes and computational models. In addition, we

cannot just support big data gathered in the same place in

which we put most effort on, e.g., provisioning Hadoop plus

big cloud computing platforms or centralized data mining

algorithms. Instead, we must also be able to support quality of

result elasticity for the consumer through different views. For

example, Figure 2 depicts the analytics under different views,
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which require different ways to compose different data and

computational models, utilize different data sources, and meet

different quality of results. For example, in principle, one an-

alytics for smart cities could be based on a Hierarchical

Analytics View in which each hierarchical layer, such

as City, District, Building and Space, requires

different computational models and data. Another analyt-

ics could be based on an Interaction Dependency

Analytics View in which analytics subjects, such as

Transportation, Energy and Mobility simulations,

have complex dependencies that require cause-effect analysis

based on their interactions.

3. Elasticity Principles for Data Analytics

3.1. Elasticity of Data and Computational Models

The big data we face does not come from a single type

of objects (e.g., big data of twitter messages [9]) but from

multiple types of objects from different sources. Therefore,

data and computational models for analytics subjects, their de-

pendencies, and their relevant information, quality, policy and

processes are complex and diverse. In many cases these models

are designed for specific types of objects for specific types of

analytics. One challenge is that we probably do not have a

clear picture of how many analytics subjects and which kinds

of analytics goals for these subjects will be evolving during

the analytics. Therefore, our analytics techniques should allow

us to decide/select computational models for analytics subjects

and to allow the definition/composition of (new) data models

based on existing data models and computational services

during the analytics. Essentially, this calls for the management

and modeling of the elasticity of data and computational

models during the analytics.

3.2. Data Resource Elasticity

Data in big data analytics in our view will be provided,

managed and shared by different providers but based on

different data concerns (e.g, different quality of data, privacy,

data retention, licensing, and data contract) [10]. The data

concerns are crucial that must be designed together with data

collection, summarization, exchange and analytics. Currently,

service computing techniques have been employed to provi-

sion data under different models, such as, the data-as-a-service

(DaaS) and data marketplaces. Furthermore, the Internet of

Things have also enabled the provisioning of opportunistic

data. While it is true that big data analytics require us to put

computation on data close to the data, it is also true that in big

data analytics we cannot assume data being stored in a single

(big) source. Here, the principle of data resource elasticity –

data resources can be taken into account in the analytics at

runtime when we need them (e.g., due to the expected quality

of results) – will need to be supported. This can be achieved

through the enabling of the access data from distributed places,

e.g., for different customers and analysis processes, based on

elasticity controls [11]. Being analytics atop of DaaS, data

elasticity controls must also be address other challenges, e.g.,

pricing mechanism, data privacy assurance, and data contract.

3.3. Elasticity of Human- and Software-based Com-

puting Units

While big data analytics discuss the use of elastic computing

resources or crowds separately, we believe that big data

analytics should consider the elasticity of hybrid types of

computing units: in addition to computing resources, human-

based computing units (also called teams and crowds) should

be supported to be part of the analytics to solve complex

problems that algorithms could not figure out. The role and

function of human-based computing units would differ from

software components atop big computing infrastructures but

nevertheless they all together establish different hybrid com-

pute units for big data analytics. Beyond traditional collabora-

tive working environments in which humans can communicate

and share information via common portals or human-based

workflows based on crowds [12], we will need to focus

on proactive hybrid computing unit formation and life-cycle

management in specific data analytics and analytics phases.

This requires elasticity techniques to utilize knowledge about

experts (such as, skills, domains, availability, and cost) to au-

tomatically match and suggest right human-based computing

units for solving particular issues during the data analytics

(e.g., evaluating the quality of the output of a computational

model).

3.4. Elasticity of Quality of Result in Data Analytics

Big data analytics means multi-scale data analytics utilizing

diverse types of computational models and computing units

(e.g., clusters, Grid, clouds, and crowds). The goal is not just

to be able to find insights from vast amount of data based

on the consumer’s expected quality of result in data analytics.

The quality of result is formed, e.g., based on quality of data,

cost, and time. It includes complex trade-offs among different

quality aspects and has a profound impact/dependency on

other criteria, such as, data/computational model elasticity,

data resource elasticity, and hybrid compute unit elasticity.

This would require us to provide flexible mechanisms to solve

several issues related to data storage overload, quality control,

and performance to produce meaningful data analytics results.

This is much more than just imposing quality data control for

data analytics processes.

4. Software-defined Elastic Systems for Data

Analytics

4.1. Elastic Objects and Software-defined APIs

Our goal is to provide software-defined elastic systems for

data analytics (SES-DA) that support the above-mentioned

564



Fig. 3. Examples of elasticity capabilities for software-defined elastic systems for data analytics

elasticity principles atop cloud computing environments. In

our view, SES-DA will be constructed from different types of

elastic service units, which support the management, creation

and execution of data models, computational models, analytics

processes, and computing units within the data analytics.

Based on the principles mentioned in Section 3, we de-

fine different types of elastic objects, including QualityOfRe-

sult, AnalyticsProcess, AnalyticsTask, DataModel, Computa-

tionalModel, DataResource, Quality, Cost, ComputingUnit and

OutputModel, shown in Figure 3. Elastic objects are associated

with elasticity primitive operations. Basically, these operations

allow us to add, remove, configure and define (new) data

and computational models, computing units, data resources,

analytics tasks and analytics processes at runtime. These types

of elastic objects are instantiated and executed by SES-DA

core elastic service units which do not only provide suitable

functionality to enable data analytics (e.g., providing data, ana-

lytics algorithms, and computation) but also provide software-

defined APIs for managing them. When executing these types

of elastic objects, the SES-DA core elastic service units will

perform the binding and invoke suitable cloud service units

offered by cloud providers. For example, an elastic object

represented a data resource can be mapped to data stored in a

MongoDB or DynamoDB DaaS.

4.2. Conceptualizing SES-DA

Figure 4 outlines our conceptual SES-DA for supporting

elasticity principles in big data analytics. First, we must be able

to capture, represent and manage different types of relevant

information and relationships (e.g, data, analytics processes,

data sources, and dependent analytics subjects). For the data

associated with/relevant to analytics subjects, we support two

types of DaaS: Raw Data and Subject-specified DaaS. Data

in the first type of DaaS are gathered from different existing

techniques, such as, sensors, instruments, and crowds, but not

bound to any specific analytics models. For example, we can

have urban mobility and energy data from companies/gov-

ernment organizations; they are relevant to different analytics

subjects but they do not characterize/represent the status of

a specific analytics subject. The second type of DaaS is for

managing analytics results of specific analytics subjects. This

type includes data associated with analytics subjects which are

obtained from data analytic processes that analyze and extract

data from the first type of DaaS.

The elasticity of data models and computational models is

supported through both design and execution activities. Core,

known models are available at design time but their binding

to the concrete execution is the subject of elasticity control.

This involves elasticity and variability modeling techniques.

On-the-fly data models (e.g., using runtime Extract, Transform

and Load (ETL) techniques) and computational models (e.g.,

Python and Matlab scripts) are defined during runtime to

deal with complex situations. To execute analytics tasks both

software and people can be utilized to carry out the analytics as

computing units (supported by Data Analytics Workflow Plat-

form, Hadoop/MapReduce Platform, or Human-based Service

Platform). These computing units are modeled as software-

based services (SBS) or human-based services (HBS). SES-

DA will include Elasticity Control to steer the elasticity of

different types of computing units to invoke suitable SBS/HBS

for suitable tasks and Programming and Execution Platform

to execute elastic analytics processes. Both consumers and

analytics processes can trigger the definition and changes of

data and computational models. We need to manage such

evolution and utilize different services, such as, provenance

management and quality of information evaluation, to ensure

that quality is guaranteed and change can be recorded.

565



Fig. 4. Conceptual service units of SES-DA

5. Case Study – Data Analytics in Smart Cities

Let us outline a scenario of big data analytics in smart cities

as a case study through which explains the above-mentioned

principles. In this scenario, we are interested in supporting data

analytics for studying and simulating environments, urban and

mobility problems in smart cities that we are currently devel-

oping in the context of the Pacific Control Cloud Computing

Lab (PC3L)1 and Urban Energy and Mobility (URBEM)2. In

this scenario, shown in Figure 5, we focus on key research

issues related to cloud-based services and processes for big

data analytics, such as, modeling and analysis techniques

for data and computational model elasticity, data resource

elasticity, and elasticity of software and humans as computing

units.

Fig. 5. Example of data analytics elasticity for smart cities

Elastic Data Resources: In our framework, near-realtime

sensors can send vast data into an Machine-to-Machine (M2M)

cloud system whether sensory data will be stored into NoSQL

DaaS where other types of data describing analytics subjects

1. http://pc3l.infosys.tuwien.ac.at

2. http://urbem.tuwien.ac.at

and their dependencies (e.g., buildings and transport networks)

are stored into graph-based and relational based data storage.

Furthermore, big sources of historical data about transporta-

tion, energy consumption and other city-wide data are also

provided via DaaS. Due to several constraints, e.g., regulation

and economical issues, not all data can be stored in the same

places. Therefore, during the analytics, data from different

DaaS can be accessed and utilized differently.

Elastic Analytics Process: the big data analytics in our

framework starts with a combination of software and humans

to analyze near-realtime data – Machine/Human Event Ana-

lyzers. Most of near-realtime data will be handled by complex

software processing complex events. Hence such complex

software relies on computational resources elasticity to deal

with the volume of the data (e.g., the number of virtual

machines is based on the the load of events); this is, e.g.,

performed by our SYBL service [11]. However, an important

issue is how to scale the problem solving when the complex

software detects some critical situations? We approach this

question by using human-based workflows [13] and using

high-level elasticity control language [11] to invoke human-

based services, when needed, e.g., when the quality of data is

low. The following list shows an example of how to invoke

human-based services within an analytics service:

# f o r a s e r v i c e u n i t a n a l y z i n g c h i l l e r s t a t u s
#SYBL . S e r v i c e U n i t L e v e l
Mon1 MONITORING a c c u r a c y = Q u a l i t y . Accuracy
Cons1 CONSTRAINT a c c u r a c y < 0 . 7
S t r 1 STRATEGY CASE V i o l a t e d ( Cons1 ) :
N o t i f y ( I n c i d e n t . DEFAULT, S e r v i c e U n i t T y p e . HBS)

In this case, both software and humans are

involved and human-based services (indicated by

ServiceUnitType.HBS) are scaled out to examine

the situations. This requires us to not only able to scale

human-based resources together with machine-based resources

but also to able to model the variability of processes dealing

with complex events.

Data Resource Elasticity: Using elasticity techniques for

data and computational models that are specified both in

analytics processes and supported by elasticity controls, we

could automatically decide if, given a situation, the next

steps will be executing Operation Data Analytics to

examine if there are some operation problems within the cities

(e.g., chiller and air quality problems in large-scale buildings)

that would lead to other analytics and actions for maintaining

the sustainability of objects with detected problems. Hence

these operation data analytics need data resource elasticity

support because, due to the situation, requirements for quality

of result are very different. Some situations, we do accept a

low quality of data output but require a very fast response. For

other cases, we do require highly accurate results that should

be based on several types of data from DaaS. This leads to

the question of how we model the elasticity and variability of

the analytics process and how the analytics execution platform

can take into account elasticity requirements and behavior. Our

approach is to extend analytics process specification with data,
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things, and human elasticity requirements and variability. At

the runtime infrastructure, we use high-level languages, like

SYBL, to control the elasticity.

Elastic Hybrid Compute Units: Given the Operation

Data Analytics process, depending on the data and the

expected quality of result, we use SYBL to control machine-

based computing units (e.g., virtual machines and networks).

The next situation in our case study is that the result

from Operation Data Analytics might need to be

examined by people or the result from Machine/Human

Event Analyzers signaling different critical situations

(Critical Situations 1 & 2). Hence we invoke elas-

ticity control to form units of human-based services and

configure them in the right structure [14]. The question is how

to provision such units and control the quality of their work.

Our approach aims at supporting diverse forms of human-

based compute units, which can be social compute units

(SCU), crowds or hybrid compute units [14]. Furthermore,

there is a need to coordinate the activities within comput-

ing units and among them. For this, we are devising new

techniques to manage hybrid compute units life-cycle and

elasticity capability primitives as well as working on cross

hybrid compute units coordination protocols.

6. Related Work

Elasticity has been discussed w.r.t. resource elasticity and

database elasticity [15] but to our best knowledge, principles of

elasticity for data analytics processes have not been thoroughly

discussed. Currently, software-defined environments for big

data are mainly designed for hardware/software resource man-

agement networking [16], storage [17] and machine-based

computing units [18]. Our work suggests a multi-dimensional

elasticity perspective, leading to the design of software-defined

capabilities for not only resources but also quality and costs

associated with data and computational models, analytics tasks

and processes, and hybrid computing units. Tools for big data

analytics have been intensively discussed [5]. We design big

data analytics processes from another perspective, where we

need to deal with the elasticity of results and data by utilizing

elastic hybrid computing units and analytics processes.

7. Conclusions and Future Work

In this paper, we presented main principles of elasticity

for big data analytics and we described conceptual software-

defined elastic systems for achieving elasticity in big data

analytics. Elasticity principles should be investigated deeply

in big data analytics techniques to ensure that we can deal

with not only the volume, the diversity, and the distribution

of data but also expected quality of results. At the end, it

is the quality of result which will drive how we take into

account of which data sources, algorithm, machines, or people

into analytics processes. We cannot assume that we will be

able to centralize big data analytics with a huge amount of

computational resources for single types of data.

Currently, we are focusing on software-defined elastic sys-

tems that support the presented elasticity principles by devel-

oping fundamental elastic service units for managing, creating

and executing models, computing units and processes. We

also work on multi-perspective analytics process variability

to enable the modeling of different types of elasticity.
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