Principles of Soldering

Giles Humpston

David M. Jacobson

Materials Park, Ohio 44073-0002 www.asminternational.org

Copyright © 2004 by ASM International® All rights reserved

No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the written permission of the copyright owner.

First printing, April 2004

Great care is taken in the compilation and production of this book, but it should be made clear that NO WAR-RANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF MER-CHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE GIVEN IN CONNECTION WITH THIS PUBLICATION. Although this information is believed to be accurate by ASM, ASM cannot guarantee that favorable results will be obtained from the use of this publication alone. This publication is intended for use by persons having technical skill, at their sole discretion and risk. Since the conditions of product or material use are outside of ASM's control, ASM assumes no liability or obligation in connection with any use of this information. No claim of any kind, whether as to products or information in this publication, and whether or not based on negligence, shall be greater in amount than the purchase price of this product or publication in respect of which damages are claimed. THE REMEDY HEREBY PROVIDED SHALL BE THE EXCLUSIVE AND SOLE REMEDY OF BUYER, AND IN NO EVENT SHALL EITHER PARTY BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES WHETHER OR NOT CAUSED BY OR RESULTING FROM THE NEGLIGENCE OF SUCH PARTY. As with any material, evaluation of the material under end-use conditions prior to specification is essential. Therefore, specific testing under actual conditions is recommended.

Nothing contained in this book shall be construed as a grant of any right of manufacture, sale, use, or reproduction, in connection with any method, process, apparatus, product, composition, or system, whether or not covered by letters patent, copyright, or trademark, and nothing contained in this book shall be construed as a defense against any alleged infringement of letters patent, copyright, or trademark, or as a defense against liability for such infringement.

Comments, criticisms, and suggestions are invited, and should be forwarded to ASM International.

Prepared under the direction of the ASM International Technical Book Committee (2003–2004), Charles A. Parker, Chair.

ASM International staff who worked on this project include Charles Moosbrugger, Acquisitions Editor; Bonnie Sanders, Manager of Production; Kathy Dragolich and Nancy Hrivnak, Production Editors; Kathryn Muldoon, Production Assistant; and Scott Henry, Assistant Director of Reference Publications.

Library of Congress Cataloging-in-Publication Data Humpston, Giles. Principles of soldering / Giles Humpston, David M. Jacobson. p. cm. Includes bibliographical references and index. ISBN 0-87170-792-6 1. Solder and soldering. 2. Brazing. I. Jacobson, David M. II. Title.

> TS610.H84 2004 671.5'6—dc22 2003058379 SAN: 204-7586

> ASM International® Materials Park, OH 44073-0002 www.asminternational.org

Printed in the United States of America

Contents

Preface		vii
About the A	uthors	ix
History		X
Chapter 1:	Introduction	1
1.1 Join	ing Methods	1
1.1.1	Mechanical Fastening	1
1.1.2	Adhesive Bonding	2
1.1.3	Soldering and Brazing	3
1.1.4	Welding	4
1.1.5	Solid-State Joining	4
1.1.6	Comparison between Solders and Brazes	5
1.1.7	Pressure Welding and Diffusion Bonding	8
1.1.	7.1 Pressure Welding	9
1.1.	7.2 Diffusion Bonding	9
1.2 Key	Parameters of Soldering	
1.2.1	Surface Energy and Surface Tension	
1.2.2	Wetting and Contact Angle	
1.2.3	Fluid Flow	
1.2.4	Filler Spreading Characteristics	
1.2.5	Surface Roughness of Components	
1.2.6	Dissolution of Parent Materials and Intermetallic Growth	
1.2.7	Significance of the Joint Gap	
1.2.8	The Strength of Metals	
1.3 The	Design and Application of Soldering Processes	
1.3.1	Functional Requirements and Design Criteria	
1.3.	1.1 Metallurgical Stability	
1.3.	1.2 Mechanical Integrity	
1.3.	1.3 Environmental Durability	
1.3.	1.4 Electrical and Thermal Conductivity	
1.3.2	Processing Aspects	
1.3.	2.1 Jigging of the Components	
1.3.	2.2 Form of the Filler Metal	
1.3.	2.3 Heating Methods	
1.3.	2.4 Temperature Measurement	
1.3.	2.5 Joining Atmosphere	
1.3.	2.6 Coatings Applied to Surfaces of Components	
1.3.	2.7 Cleaning Treatments	
1.3.	2.8 Heat freatments Prior to Joining	
1.5.	2.9 Heating Cycle of the Joining Operation	
1.3.	2.10 Postjoining Treatments	
1.3.	2.11 Posyoning Cleaning	
1.3.	2.12 Statistical Flotess Collitor	
L.J.J Charter 1	Appendices	
	Appendices	
A1.1	Palationship among Spread Patio Spread Easter, and Contact Anala of	
A1.2	Droplets	1 4

Chapter 2: S	olders and Their Metallurgy	49
2.1 Surve	y of Solder Alloy Systems	51
2.1.1	Lead-Tin Solders	56
2.1.2	Other Tin-Base Solders	58
2.1.3	Zinc-Bearing Solders	60
2.1.4	Gold-Bearing Solders	64
2.1.5	High-Lead Solders	72
2.1.6	Indium Solders	73
2.2 Effect	of Metallic Impurities	75
2.3 Appli	cation of Phase Diagrams to Soldering	77
2.3.1	Examples Drawn from Binary Allov Systems	79
2.3.2	Examples Drawn from Ternary Allov Systems	83
2.3.3	Complexities Presented by Higher-Order and Nonmetallic	
	Systems	92
2.4 Depre	ssing the Melting Point of Solders by Eutectic Alloving	93
2.4.1	Liquid Allovs Based on Gallium	93
2.4.2	Cadmium-Base Solders	93
2 4 3	General Features	93
2.1.3	Implications for Lead-Free Solders	95
Chapter 2:	Annendices	96
A2 1	Conversion between Weight and Atomic Fraction of	.70
112.1	Constituents of Allovs	96
Δ22	Theoretical Modeling of Futectic Alloving	97
112.2	Theoretical Flodeling of Eacede Thioying	71
Chapter 3: T	he Joining Environment	03
3.1 Joinin	σ Atmospheres	03
311	Atmospheres and Reduction of Oxide Films	05
312	Thermodynamic Aspects of Oxide Reduction	06
313	Practical Application of the Ellingham Diagram	07
313	1 Soldering in Inert Atmospheres and Vacuum	07
313	 Soldering in Reducing Atmospheres 	09
313	3 Alternative Atmospheres for Oxide Reduction	111
314	Forming Gas as an Atmosphere for Soldering	111
3.1. 4 3.2 Chem	ical Fluxes for Soldering	111
3 2 1	Fluxes for Tin-Base Solders	116
3.2.1	1 Soldering Fluxes That Require Cleaning	116
3 2 1	 No-Clean Soldering Fluxes 	118
3 2 1	3 Measure of Cleaning Effectiveness: The Surface Insulation	10
3.2.1	Resistance (SIR) Test	10
322	Fluxes for "Unsolderable" Metals	20
3.2.2	1 Aluminum Soldering Fluxes	20
3.2.2.	 Stainless Steel Soldering Fluxes 	21
3.2.2.	3 Magnesium Soldering Flux	22
3 2 3	Uigh Temperature Fluxes	122
3.2.5	1 Ingn- Temperature Truxes	122
3.3 1 10/10	Oxide Formation and Removal	23
332	Self-Dissolution of Solder Oxides	25
3.3.2	Paduction of Solder Oxides by Hydrogen	126
3.3.3	Reduction of Solder Oxides by Atomic Hydrogen	20
3.3.4 3.2.5	Machanical Damoval of Oxidas (Illtraconic Soldaring)	121
3.3.3	Prochamical Actinoval of Oxides (Ultrasolite Solucting)	20
2.2.0	Surface Conditioning Processes	.50
2.2.1	Surface Conditioning Processes	.31
2.3.8	riuxiess Soldering Processes Considerations	.32
2.2.8	Dueform Coometry	.33
5.5.8	2 Pretorni Geometry	33

3.3.8.3 Mechanically Enhanced Solder Flow	134
3.3.8.4 Metallurgically Enhanced Solder Flow	134
3.3.9 Example of a Fluxless Soldering Process Using In-48Sn	
Solder	135
3.3.10 Fluxless Soldering of Aluminum	136
Chapter 3: Appendix	137
A3.1 Thermodynamic Equilibrium and the Boundary Conditions for	
Spontaneous Chemical Reaction	137
Chapter 4: The Role of Materials in Defining Process Constraints	145
4.1 Metallurgical Constraints and Solutions	147
4.1.1 Wetting of Metals by Solders	147
4.1.2 Wetting of Nonmetals by Solders	149
4.1.2.1 Solderable Coatings on Nonmetals	149
4.1.2.2 Active Solders	152
4.1.3 Erosion of Parent Materials	153
4.1.4 Phase Formation	154
4.1.5 Filler-Metal Partitioning	155
4.2 Mechanical Constraints and Solutions	157
4.2.1 Controlled Expansion Materials	159
4.2.1.1 Iron-Nickel Alloys	160
4.2.1.2 Copper-Molybdenum and Copper-Tungsten Alloys	161
4.2.1.3 Copper-Surface Laminates	162
4.2.1.4 Composite Materials	163
4.2.2 Interlayers	164
4.2.3 Compliant Structures	165
4.2.4 The Role of Fillets	167
4.3 Constraints Imposed by the Components and Solutions	168
4.3.1 Joint Area	169
4.3.1.1 Trapped Gas	169
4.3.1.2 Solidification Shrinkage	173
4.3.2 Void-Free Soldering	173
4.3.3 Joints to Strong Materials	175
4.3.3.1 Joint Design to Minimize Concentration of Stresses	175
4.3.3.2 Strengthened Solders to Enhance Joint Strength	178
4.3.4 Inick- and Inin-Joint Gap Soldering	1/8
Chapter 4: Appendices	180
A4.1 A Brief Survey of the Main Metallization Techniques	180
A4.2 Critique of Void-Free Soldering Standards	183
A4.3 Dryness and Hermeticity of Sealed Enclosures	184
	100
Chapter 5: Advances in Soldering Technology	189
5.1 Lead-Free Solders	189
5.1.1 The Drive for Lead-Free Soldering	190
5.1.2 Compatibility with Lead-Tin Solder	191
5.1.3 Alternatives to Lead-Tin Solder	191
5.1.4 Silver-Copper-Tin Ternary Phase Equilibria	193
5.1.5 Metallurgical, Physical, and Chemical Properties of	102
Lead-Free Solders	193
5.1.5.1 Surface lension	193
5.1.5.2 Other Physical Properties	194
5.1.5.3 Mechanical Properties	194
5.1.5.4 CONTOSION RESISTANCE	193
5.1.5.5 Susceptionity to 1in Pest and 1in Whiskers	195

5.1.6	Process Window for Lead-Free Solders	196	
5.1.7	Wetting and Spreading Characteristics of Lead-Free		
	Solders	197	
5.1.8	High-Melting-Point Lead-Free Solders	197	
5.2 Flip-0	Chip Interconnection	199	
5.2.1	The Flip-Chip Process	199	
5.2.2	Characteristics of Flip-Chip Technology	202	
5.2.3	Underfill	203	
5.2.4	Inspection	203	
5.2.5	Rework	204	
5.2.6	Self-Alignment of Flip-Chip Structures	204	
5.2.7	Surface Topography	206	
5.2.8	Step-Soldered Flip-Chip Interconnects	206	
5.3 Solde	rability Test Methods and Calibration Standards	207	
5.3.1	Assessment of Wetting	207	
5.3.2	Assessment of Spreading	210	
5.3.3	Solderability Calibration Standards	212	
5.4 Amal	gams as Solders	214	
5.4.1	Amalgams Based on Mercury	215	
5.4.2	Amalgams Based on Gallium	216	
5.4.3	Amalgams Based on Indium	217	
5.5 Stren	gthening of Solders	217	
5.5.1	Grain Refinement	218	
5.5.2	Oxide-Dispersion-Strengthened Solders	218	
5.5.3	Composite Solders	219	
5.6 Reinf	Corced Solders (Solder Composites)	222	
5.7 Mech	anical Properties and Numerical Modeling of Joints	223	
5.7.1	Measurement of Mechanical Properties	223	
5.7.2	Numerical Modeling of Joints	224	
5.7.2	.1 Dimensional Stability of Soldered Joints	224	
5.7.2	.2 Prediction of Joint Lifetime	226	
5.8 Solde	rs Doped with Rare Earth Elements	227	
5.8.1	Effect of Rare Earth Additions on Solder Properties	227	
5.8.2	Implications for Soldering Technology	229	
5.9 Diffu	sion Soldering	230	
5.9.1	Process Principles	230	
5.9.2	Diffusion Soldering of Silver	231	
5.9.3	Diffusion Soldering of Gold	233	
5.9.4	Diffusion Soldering of Copper	234	
5.9.5	Practical Aspects	234	
5.9.0	Modeling of Diffusion-Soldering Processes	235	
5.10 Adva	Literaction Learning (Security Accurate Missesser)	235	
5.10.1	V Dadioananhy	233	
5.10.2	A-Kaulography	230	
3.10.3	Optical hispection	231	
Abbreviations and Symbols			
Index		245	

Preface

Since the first edition of *Principles of Soldering and Brazing*, published in 1993, the authors have received valuable feedback from readers representing a wide range of technical interests. This has prompted the decision to expand the text and organize it into two companion books, one covering soldering and the other brazing. This first book primarily aims at providing information about soldering in a form that is hopefully readily accessible and as easy to assimilate as possible. Priority is given to the fundamental principles that underlie this field of technology rather than recipes for making joints. The largely artificial distinctions between soldering and brazing are preserved because, despite their many commonalities, it has been found that practicing engineers are either concerned with soldering or brazing and seldom are involved with both simultaneously. The planned companion book, *Principles of Brazing*, addresses this complementary need. A large proportion of the literature on soldering and brazing may be charged with being heavy on description and light on critical analysis. We have endeavored to redress the balance, while striving to avoid being unduly simplistic or overly mathematical in our approach. Admittedly we may not always have succeeded in this aim.

As in *Principles of Soldering and Brazing*, we have striven to maintain the focus on the fundamental aspects of soldering and have deliberately avoided entering into specific joining technologies in detail. At the same time, we recognize that the range and extent of the knowledge base of metal joining is not immediately obvious, and it requires a fairly deep understanding of materials. To cite a single example, nichrome (an alloy of nickel and chromium), which is a perfectly satisfactory and widely used metallization for soldering, is rendered useless if the solder contains bismuth. If there is an evident bias towards electronic and photonics applications, this reflects the recent professional orientation of the authors. Some topics are inevitably not accorded due consideration, although it is hoped that sufficient references are provided to enable the reader to pursue these further.

No attempt has been made to gather a comprehensive list of published papers. Those that are included have been selected because they are useful basic texts, cover important subject matter, or relate to exemplary pieces of work, whether in respect of methodology, technique, or other noteworthy features. It was felt that if the value of the book depended on its bibliography, it would rapidly become dated. The advent of computer search facilities and databases of scientific journal and conference abstracts should enable the reader who wishes to find references on a specific topic to obtain further information without too much difficulty. The search term "lead-free solder" will yield an astounding 25,000+ publications in the public domain, virtually none of which are more than 10 years old.

The reader should note that all compositions given in this book are expressed in weight percentage in accordance with the standard industrial practice. These have, for the most part, been rounded to the nearest integer. The ratio of elements in intermetallic compounds, again by convention, refers to the *atomic weight* of the respective constituents. The general convention used for specifying alloy compositions is that adopted by the alloy phase diagram community, namely in the alphabetical order of the elements, by chemical symbol. We have not been entirely rigorous in this regard as it is sometimes helpful to group alloys by the dominant constituents. Minor additions to bulk compositions are given in order of concentration; for example, Pb-62Sn-0.5Lu-0.02Ce.

Specific references are given with each chapter. For those wishing to read more generally on particular topics, the authors would recommend the texts listed as Selected References at the end of this preface.

Many phase diagrams are subject to ongoing research, resulting in continued improvement in the accuracy and detail of the information. The most recent version of a diagram may be identified by consulting the latest cumulative index of phase diagrams, published in the Cumulative Index of the periodical *Journal of Phase Equilibria* (ASM International). This will refer to the source of the thermodynamically assessed diagram of interest. The reader is advised that the four compendia of binary phase diagrams published in the 1960s, '70s and '80s (colloquially referred to as Hansen, Elliott, and Shunk) are now known to contain many errors and omissions.

Information on new developments in soldering and brazing is scattered throughout a wide range of periodicals, as reflected in the sources cited in the references appended to the individual chapters. To keep abreast of the literature, the authors have found especially useful the following abstract publications: *Metals Abstracts* and *Science Abstracts*. Technical libraries can provide automated searches against specified key words as a monthly service.

We wish to thank our many colleagues and ex-colleagues for their helpful advice and encouragement, particularly James Vincent, for insights into lead free soldering.

> Giles Humpston David M. Jacobson

SELECTED REFERENCES

Soldering

- Brandon, D. G., and Kaplan, W. D., 1997. Joining Processes: An Introduction, John Wiley & Sons
- Frear, D.R., Jones, W.B., and Kinsman, K.R., 1990. Solder Mechanics: A State of the Art Assessment, TMS
- Hwang, J.S., 1996. Modern Solder Technology for Competitive Electronics Manufacturing, McGraw-Hill
- Hwang, J.S., 2001. *Environment Friendly Electronics: Lead-Free Technology*, Electrochemical Publications
- International Organization for Standardization (IOS), 1990. Welding, Brazing, and Soldering Processes: Vocabulary, (ISO/DIS 857-2), ISO (currently under revision)
- Klein Wassink, R.J., 1989. Soldering in Electronics, 2nd ed., Electrochemical Publications
- Liebermann, E., 1988. Modern Soldering and Brazing Techniques, Business News
- Manko, H.H., 2002. Solders and Soldering, 4th ed., McGraw-Hill
- Nicholas, M.G., 1998. *Joining Processes: Introduction to Brazing and Diffusion Bonding*, Kluwer Academic
- Strauss, R., 1998. SMT Soldering Handbook, 2nd ed., Butterworth-Heinemann
- Thwaites, C.J., 1983. Capillary Joining: Brazing and Soft-Soldering, Books Demand UMI
- Woodgate, R.W., 1996. The Handbook of Machine Soldering: SMT and TH, John Wiley & Sons

Alloy Constitution

- John, V.B., 1974. Understanding Phase Diagrams, Macmillan
- Prince, A., 1966. Alloy Phase Equilibria, Elsevier
- West, D.R.F., 1982. Ternary Equilibrium Diagrams, Chapman and Hall

About the Authors

Giles Humpston took a first degree in metallurgy at Brunel University in 1982, followed by a Ph.D. on the constitution of solder alloys in 1985. He has since been employed by several leading industrial companies, where he has been involved with determining alloy phase diagrams and developing processes and procedures for producing precise and high-integrity soldered, brazed, and diffusion-bonded joints to a wide variety of metallic and nonmetallic materials. His expertise extends to fine-pitch flip-chip, new materials development, and packaging and interconnection for electronics, radio frequency, and optical products. He is the cited inventor on more than 75 patents, the author of more than 60 papers, and recipient of six international awards for his work on soldering and brazing.

Dr. Humpston is a licensed amateur radio enthusiast and has published several articles and reviews on electronics, radio, and computing. His other interests include exploring vertical-axis wind

turbines, building power inverters, flying radio controlled gliders, wine making, and growing bonsai. He lives with his wife, Jacqueline, and their three children in a small village in Buckinghamshire, England and San José (Silicon Valley), California.

David M. Jacobson graduated in physics from the University of Sussex in 1967 and obtained his doctorate in materials science there in 1972. Between 1972 and 1975 he lectured in materials engineering at the Ben Gurion University, Beer-Sheva, Israel, returning as Visiting Senior Lecturer in 1979-1980. Having gained experience in brazing development with Johnson Matthey Ltd., he extended his range of expertise to soldering at the Hirst Research Centre, GEC-Marconi Ltd., which he joined in 1980. Currently, he holds the position of senior research associate at the Centre for Rapid Design and Manufacture, Buckinghamshire Chilterns University College in High Wycombe. He is the author of more than 80 scientific and technical publications in materials science and technology and more than a dozen patents. He has been awarded three prestigious awards for his work on brazing.

Dr. Jacobson's principal outside interests are archaeology and architectural history, focusing on the Near East in the Graeco-Roman period. He has published extensively in these fields on subjects that extend to the numismatics and early metallurgy of that region. He recently completed a Ph.D. thesis on Herodian architecture at King's College, London, and teaches part-time in this subject area at University College, London. Dr. Jacobson is married with two grown-up children and lives in Wembley, England, close to the internationally famous football stadium.

Giles Humpston and David Jacobson are the coauthors of the book *Principles of Soldering and Brazing*, which was published by ASM International in 1993, with more than 4000 copies sold.

History

Origins of Solders and Soldering

The word *solder* derives from the Old French, *soudure*, which in turn stems from the Latin *solidare*, which means to fasten together. Its earliest use in a completely English context as a noun meaning "a fusible metallic alloy used for uniting less fusible metal surfaces or parts" dates to about 1350. It is interesting to note that in 19th century English, just as in modern French, the "I" would have been omitted and the word pronounced "sod-der," a form that still persists in the United States of America today.

Although the origin of solders and soldering is lost to antiquity, it is possible to speculate on how the invention arose. Lead was first obtained as a by-product of silver production. Silver extraction from ores involved cupellation of lead, and the base metal was then recovered from the litharge [Tylecote 1976]. The softness and malleability of lead were clearly recognized, and there exist examples of lead being used as a setting agent to fix posts in the ground and lock morticed stones. It was observed that in this instance the lead filler could give a stronger joint than a simple friction grip. Lead was used by the Mesopotamians (3000 B.C.) to join pieces of copper together, although perhaps more by luck than design since pure lead does not wet copper at all readily. The Romans are known to have produced lead separately from silver, taking advantage of the fact that this metal can be easily extracted from its sulfide ore, galena, simply by roasting the mineral in air [Tylecote 1976].

The earliest examples of tin are Egyptian and date from 2000 B.C. What might be construed as a manufactured solder alloy has been found in King Tutankhamun's tomb (1350 B.C.), although there is some debate among scholars about the deliberateness of the metallurgy of this joint.

Solders comprising alloys of lead and tin were almost certainly used during the Iron Age [Tylecote 1962]. By the Roman Imperial period there is evidence, both from literary sources and from surviving artifacts, that lead-tin solders were in regular use. Pliny the Elder (1st century A.D.) speaks of *tertiarum*, an alloy of two parts of (black) lead and one part of white lead (tin) being used for joining metal pipes [Pliny, *Natural History* xxxiv 161 (Rackham 1952)]. Pliny also remarks that the price of this alloy is 20 denarii per pound. With 25 denarii (silver pieces weighing approximately 4 gm, or 0.14 oz, each) to 1 gold aureaus of close to 8 gm (0.28 oz), the price of Roman solder works out at \$70 per kilogram, assuming that gold has maintained its purchasing power since Pliny's day. The current price for the same alloy (Pb-33Sn) is lower by an order of magnitude, which indicates how much more precious solder was in antiquity.

An analysis of soldered joints in Roman artifacts has shown that both tin-rich and lead-rich alloys were used. The solder in a force-pump from Roman Silchester contains lead to tin in a weight ratio of close to 3 to 1, which is similar to the composition of plumbers' solder [Tylecote 1962]. Elsewhere, solders containing mainly tin (80 to 100% Sn), have been encountered in finds from 4th and 5th century sites in Britain [Lang and Hughes 1991].

Soldering, unlike many Roman crafts, either did not die out during the Dark Ages or enjoyed an early revival. The soldering iron, not mentioned at all in Classical times, was well known and in widespread use by the early Middle Ages. Soldering was used for joining the lead strips in stained glass windows, with the oldest complete examples being the Five Prophets windows in Augsburg Cathedral that date from the late 11th century. From 1700 onwards it is clear that soldering was well established with the appearance of "tinsmiths" and "white-iron men" as trades. Newcomen's discovery of the effectiveness of the internally condensing steam engine in 1708 is attributed to the faulty repair, by soldering, of a blowhole in the cast bronze cylinder. This permitted a spray of external condenser water into the cylinder and the development of the internal condenser; a design that was not superseded until Watt developed the separate condenser nearly 70 years later.

Modern soldering practice dates to the early 20th century when improved extraction techniques, which enabled exotic metals to be available at affordable cost, coupled with the appearance of alloy phase diagrams, gave rise to the diversity of alloys now available.

REFERENCES

- Tylecote, R.F., 1976. A History of Metallurgy, The Metals Society
- Tylecote, R.F., 1962. *Metallurgy in Archaeology: A Prehistory of Metallurgy in the British Isles*, Edward Arnold
- Rackham, H., 1952. *Natural History*, Vol 10, Cambridge, MA, *Translation of Pliny 1. Historia Naturalis*, Vol 34 (No. 161)
- Lang, J. and Hughes, M.J., 1991. "Joining Techniques in Aspects of Early Metallurgy," *British Museum Occasional Papers, No. 17*, British Museum, p 169–177

ASM International is the society for materials engineers and scientists, a worldwide network dedicated to advancing industry, technology, and applications of metals and materials.

ASM International, Materials Park, Ohio, USA www.asminternational.org

This publication is copyright © ASM International[®]. All rights reserved.

Publication tit	Product code				
Principles of So	#06244G				
To order products from ASM International:					
Online	Visit www.asminternational.org/bookstore				
Telephone	1-800-336-5152 (US) or 1-440-338-5151 (Outside US)				
Fax	1-440-338-4634				
Mail	Customer Service, ASM International 9639 Kinsman Rd, Materials Park, Ohio 44073-0002, USA				
Email	CustomerService@asminternational.org				
In Europe	American Technical Publishers Ltd. 27-29 Knowl Piece, Wilbury Way, Hitchin Hertfordshire SG4 0SX, United Kingdom Telephone: 01462 437933 (account holders), 01462 431525 (credit card) www.ameritech.co.uk				
In Japan	Neutrino Inc.Takahashi Bldg., 44-3 Fuda 1-chome, Chofu-Shi, Tokyo 182 Japan Telephone: 81 (0) 424 84 5550				

Terms of Use. This publication is being made available in PDF format as a benefit to members and customers of ASM International. You may download and print a copy of this publication for your personal use only. Other use and distribution is prohibited without the express written permission of ASM International.

No warranties, express or implied, including, without limitation, warranties of merchantability or fitness for a particular purpose, are given in connection with this publication. Although this information is believed to be accurate by ASM, ASM cannot guarantee that favorable results will be obtained from the use of this publication alone. This publication is intended for use by persons having technical skill, at their sole discretion and risk. Since the conditions of product or material use are outside of ASM's control, ASM assumes no liability or obligation in connection with any use of this information. As with any material, evaluation of the material under end-use conditions prior to specification is essential. Therefore, specific testing under actual conditions is recommended.

Nothing contained in this publication shall be construed as a grant of any right of manufacture, sale, use, or reproduction, in connection with any method, process, apparatus, product, composition, or system, whether or not covered by letters patent, copyright, or trademark, and nothing contained in this publication shall be construed as a defense against any alleged infringement of letters patent, copyright, or trademark, or as a defense against liability for such infringement.