PRINTED CIRCUITS HANDBOOK

Clyde F. Coombs, Jr. Editor-in-Chief

Sixth Edition

-

Mc Graw Hill

New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto

,•

78

CONTENTS

List of Contributors xxi Preface xxiii

Part 1 Lead-Free Legislation

Chapter 1. Legislation and Impact on Printed Circuits

1.1 Legislation Overview / 1.3

1.2 Waste Electrical and Electronic Equipment (WEEE) / 1.3

1.3 Restriction of Hazardous Substances (RoHS) / 1.3

1.4 RoHS' Impact on the Printed Circuit Industry / 1.6

1.5 Lead-Free perspecives / 1.10

1.6 Other Legislative Initiatives / 1.10

Part 2 Printed Circuit Technology Drivers

Chapter 2. ELECTRONIC PACKAGING AND HIGH-DENSITY INTERCONNECTIVITY

2.1 Introduction / 2.3

2.2 Measuring the Interconnectivity Revolution (HDI) / 2.3

2.3 Hierarchy of Interconnections / 2.6

2.4 Factors Affecting Selection of Interconnections / 2.7

2.5 ICS and Packages / 2.10

2.6 Density Evaluations / 2.14

2.7 Methods to Increase PWB Density / 2.16

References / 2.21

Chapter 3. Semiconductor Packaging Technology

3.1 Introduction / 3.1
3.2 Single-Chip Packaging / 3.5
3.3 Multichip Packages / 3.15
3.4 Optical Interconnects / 3.18
3.5 High-Density/High-Performance Packaging Summary / 3.21
3.6 Roadmap Information / 3.21
References / 3.21

Chapter 4. Advanced Component Packaging

4.1 Introduction / 4.1

4.2 Lead-Free / 4.2

4.3 System-on-a-Chip (SOC) versus System-on-a-Package (SOP) / 4.3

1.3

2.3

3.1

4.1

۷

4.4 Multichip Modules / 4.5 4.5 Multichip Packaging / 4.6 4.6 Enabling Technologies / 4.10 4.7 Acknowledgment / 4.18 References / 4.18

Chapter 5. Types of Printed Wiring Boards

- 5.1 Introduction / 5.1
- 5.2 Classification of Printed Wiring Boards / 5.1
- 5.3 Organic and Nonorganic Substrates / 5.3
- 5.4 Graphical and Discrete-Wire Boards / 5.3
- 5.5 Rigid and Flexible Boards / 5.5
- 5.6 Graphically Produced Boards / 5.6
- 5.7 Molded Interconnection Devices / 5.10
- 5.8 Plated-Through-Hole (PTH) Technologies / 5.10
- 5.9 Summary / 5.13

References / 5.14

Part 3 Materials

Chapter 6. Introduction to Base Materials

6.1 Introduction / 6.1

- 6.2 Grades and Specifications / 6.3
- 6.3 Properties Used to Classify Base Materials / 6.9
- 6.4 Types of FR-4 / 6.13
- 6.5 Laminate Identification Scheme / 6.14
- 6.6 Prepreg Identification Scheme / 6.18
- 6.7 Laminate and Prepreg Manufacturing Processes / 6.18
- References / 6.24

Chapter 7. Base Material Components

7.1 Introduction / 7.1 7.2 Epoxy Resin Systems / 7.1 7.3 Other Resin Systems / 7.5 7.4 Additives / 7.7 7.5 Reinforcements / 7.12 7.6 Conductive Materials / 7.18 References / 7.25

Chapter 8. Properties of Base Materials

8.1 Introduction / 8.1 8.2 Thermal, Physical, and Mechanical Properties / 8.1 8.3 Electrical Properties / 8.13 References / 8.16

Chapter 9. Base Materials Performance Issues

9.1 Introduction / 9.1 9.2 Methods of Increasing Circuit Density / 9.2

- 9.3 Copper foil / 9.2
- 9.4 Laminate Constructions / 9.7
- 9.5 Prepreg Options and Yield-Per-Ply Values / 9.9

- Ted Fd 350

/ (

6.3

5.1

7.1

8.1

9.6 Dimensional Stability / 9.10
9.7 High-Density Interconnect/Microvia Materials / 9.13
9.8 CAF Growth / 9.15
9.9 Electrical Performance / 9.22
References / 9.33

Chapter 10. The Impact of Lead-Free Assembly on Base Materials

10.1 Introduction / 10.1

10.2 Rohs Basics / 10.1

10.3 Base Material Compatibility Issues / 10.2

10.4 The Impact of Lead-Free Assembly on Base Material Components / 10.4

10.5 Critical Base Material Properties / 10.4

10.6 Impact on Printed Circuit Reliability and Material Selection / 10.18

10.7 Summary / 10.21

References / 10.22

Chapter 11. Selecting Base Materials for Lead-Free Assembly Applications 11.1

11.1 Introduction / 1	[1.1
-----------------------	------

11.2 Pcb fabrication and Assembly Interactions / 11.1

11.3 Selecting the Right Base Material for Specific Application / 11.6

11.4 Example Application of this Tool / 11.14

11.5 Discussion of the Range of Peak Temperatures for Lead-Free Assembly / 11.15

11.6 Lead-Free Applications and Ipc-4101 Specification Sheets / 11.15

11.7 Additional Base material Options for Lead-Free Applications / 11.16

11.8 Summary / 11.17

References / 11.18

Chapter 12. Laminate Qualification and Testing

- 12.1 Introduction / 12.1
- 12.2 Industry Standards / 12.2
- 12.3 Laminate Test Strategy / 12.4
- 12.4 Initial Tests / 12.5
- 12.5 Full Material Characterization / 12.9

12.6 Characterization Test Plan / 12.22

12.7 Manufacturability in the Shop / 12.23

Part 4 Engineering and Design

Chapter 13. Physical Characteristics of the PCB

- 13.1 Classes of PCB Designs / 13.3
- 13.2 Types of PCBs or Packages for Electronic Circuits / 13.9
- 13.3 Methods of Attaching Components / 13.14
- 13.4 Component Package Types / 13.15
- 13.5 Materials Choices / 13.18

13.6 Fabrication Methods / 13.22

13.7 Choosing a Package Type and Fabrication Vendor / 13.24

Chapter 14. The PCB Design Process

14.1 Objective of the PCB Design Process / 14.1

14.2 Design Processes / 14.1

14.1

12.1

10.1

- 14.3 Design Tools / 14.6
 14.4 Selecting a Set of Design Tools / 14.10
 14.5 Interfacing Cae, Cad, and Cam Tools to Each Other / 14.11
 14.6 Inputs to the Design Process / 14.11

Chapter 15. Electrical and Mechanical Design Parameters	15.1
 15.1 Printed Circuit Design Requirements / 15.1 15.2 Introduction to Electrical Signal Integrity / 15.1 15.3 Introduction to Electromagnetic Compatibility / 15.3 15.4 Noise Budget / 15.4 15.5 Designing for Signal Integrity and Electromagnetic Compatibility / 15.4 15.6 Mechanical Design Requirements / 15.9 References / 15.17 	
Chapter 16. Current Carrying Capacity in Printed Circuits	16.1
 16.1 Introduction / 16.1 16.2 Conductor (Trace) Sizing Charts / 16.1 16.3 Current Carrying Capacity / 16.2 16.4 Charts / 16.6 16.5 Baseline Charts / 16.10 16.6 Odd-Shaped Geometries and the "Swiss Cheese" Effect / 16.19 16.7 Copper Thickness / 16.20 References / 16.21 	
Chapter 17. PCB Design for Thermal Performance	17.1
 17.1 Introduction / 17.1 17.2 The PCB as a Heat Sink Soldered to the Component / 17.2 17.3 Optimizing the PCB for Thermal Performance / 17.3 17.4 Conducting Heat to the Chassis / 17.12 17.5 PCB Requirements for High-Power Heat Sink Attach / 17.14 17.6 Modeling the Thermal Performance of the PCB / 17.15 References / 17.18 	
Chapter 18. Information Formating and Exchange	18.1
 18.1 Introduction to Data Exchange / 18.1 18.2 The Data Exchange Process / 18.3 18.3 Data Exchange Formats / 18.9 18.4 Drivers for Evolution / 18.22 # 18.5 Acknowledgment / 18.23 References / 18.23 	
Chapter 19. Planning for Design, Fabrication, and Assembly	19.1
 19.1 Introduction / 19.1 19.2 General Considerations / 19.3 19.3 New Product Design / 19.4 19.4 Layout Trade-off Planning / 19.10 19.5 PWB Fabrication Trade-off Planning / 19.17 	

19.5 PWB Fabrication Trade-off Planning / 19.17 19.6 Assembly Trade-Off Planning / 19.24 References / 19.27

Chapter 20. Manufacturing Information, Documentation, and Transfer Including CAM Tooling for Fab and Assembly

20.1 Introduction / 20.1
20.2 Manufacturing Information / 20.2
20.3 Initial Design Review / 20.7
20.4 Design Input / 20.15
20.5 Design Analysis and Review / 20.19
20.6 The CAM-Tooling Process / 20.19
20.7 Additional Processes / 20.31
20.8 Acknowledgment / 20.32

Chapter 21. Embedded Components

21.1 Introduction / 21.1
21.2 Definitions and Example / 21.1
21.3 Applications and Trade-Offs / 21.2
21.4 Designing for Embedded Component Applications / 21.3
21.5 Materials / 21.6
21.6 Material Supply Types / 21.9

Part 5 High Density Interconnection

Chapter 22. Introduction to High-Density Interconnection (HDI) Technology 22.3

22.1 Introduction / 22.3
22.2 Definitions / 22.3
22.3 HDI Structures / 22.7
22.4 Design / 22.11
22.5 Dielectric Materials and Coating Methods / 22.13
22.6 HDI Manufacturing Processes / 22.26
References / 22.34
Bibliography-Additional Reading / 22.35

Chapter 23.	Advanced Hig	gh-Density Inte	erconnection (H	DI) Technolo	gies	23.1
					and the second	

23.1 Introduction / 23.123.2 Definitions of HDI Process Factors / 23.123.3 HDI Fabrication Processes / 23.323.4 Next-Generation HDI Processes / 23.33References23.37

Part 6 Fabrication

Chapter 24. Drilling Processes

24.1 Introduction / 24.3
24.2 Materials / 24.4
24.3 Machines / 24.11
24.4 Methods / 24.15
24.5 Hole Quality / 24.18
24.6 Postdrilling Inspection / 24.20
24.7 Drilling Cost Per Hole / 24.20

21.1

ø

25.1 Introduction / 25.1

25.2 Factors Affecting High-Density Drilling / 25.1

25.3 Laser versus Mechanical / 25.2

25.4 Factors Affecting High-Density Drilling / 25.5

- 25.5 Depth-Controlled Drilling Methods / 25.10
- 25.6 High-Aspect-Ratio Drilling / 25.10
- 25.7 Innerlayer Inspection of Multilayer Boards / 25.13

Chapter 26. Imaging

26.1 Introduction / 26.1
26.2 Photosensitive Materials / 26.2
26.3 Dry-Film Resists / 26.4
26.4 Liquid Photoresists / 26.7
26.5 Electrophoretic Depositable Photoresists / 26.8
26.6 Resist Processing / 26.8
26.7 Design for Manufacturing / 26.27
References / 26.29

Chapter 27. Multilayer Materials and Processing

27.1 Introduction / 27.1
27.2 Printed Wiring Board Materials / 27.2
27.3 Multilayer Construction Types / 27.16
27.4 ML-PWB Processing and Flows / 27.37
27.5 Lamination Process Control and Troubleshooting / 27.59
27.7 Lamination Overview / 27.63
27.8 ML-PWB Summary / 27.63
References / 27.63

Chapter 28. Preparing Boards for Plating

28.1 Introduction / 28.1
28.2 Process Decisions / 28.1
28.3 Process Feedwater / 28.3
28.4 Multilayer PTH Preprocessing / 28.4
28.5 Electroless Copper / 28.8
28.6 Acknowledgment / 28.11
References / 28.11

Chapter 29. Electroplating

29.1 Introduction / 29.1
29.2 Electroplating Basics / 29.1
29.3 High-Aspect Ratio Hole and Microvia Plating / 29.2
29.4 Horizontal Electroplating / 29.4
29.5 Copper Electroplating General Issues / 29.6
29.6 Acid Copper Sulfate Solutions and Operation / 29.14
29.7 Solder (Tin-Lead) Electroplating / 29.21
29.8 Tin Electroplating / 29.23
29.10 Gold Electroplating / 29.25
29.11 Platinum Metals / 29.28
29.12 Silver Electroplating / 29.29

Ø

26.1

27.1

Chapter 30. Direct Plating

30.1 Direct Metallization Technology / 30.1 References / 30.11

Chapter 31. PWB Manufacture Using Fully Electroless Copper

31.1 Fully Electroless Plating / 31.1

- 31.2 The Additive Process and its Variations / 31.2
- 31.3 Pattern-Plating Additive / 31.2
- 31.4 Panel-Plate Additive / 31.7
- 31.5 Partly Additive / 31.8
- 31.6 Chemistry of Electroless Plating / 31.9
- 31.7 Fully Electroless Plating Issues / 31.12

References / 31.14

Chapter 32. Printed Circuit Board Surface Finishes

32.1 Introduction / 32.1
32.2 Alternative Finishes / 32.3
32.3 Hot Air Solder Level (Hasl or Hal) / 32.4
32.4 Electroless Nickel Immersion Gold (ENIG) / 32.6
32.5 Organic Solderability Preservative (OSP) / 32.8
32.6 Immersion Silver / 32.10
32.7 Immersion Tin / 32.11
32.8 Other Surface Finishes / 32.13
32.9 Assembly Compatibility / 32.14
32.10 Reliability Test Methóds / 32.17
32.11 Special Topics / 32.18
32.12 Failure Modes / 32.19
32.13 Comparing Surface Finish Properties / 32.23

Chapter 33. Solder Mask

33.1 Introduction / 33.1
33.2 Trends and Challenges for Solder Mask / 33.2
33.3 Types of Solder Mask / 33.3
33.4 Solder Mask Selection / 33.4
33.5 Solder Mask Selection and Processing / 33.9
33.6 VIA Protection / 33.18
33.7 Solder Mask Final Properties / 33.19 #
33.8 Legend and Marking (Nomenclature) / 33.19

Chapter 34. Etching Process and Technologies

- 34.1 Introduction / 34.1
- 34.2 General Etching Considerations and Procedures / 34.2
- 34.3 Resist Removal / 34.4
- 34.4 Etching Solutions / 34.6
- 34.5 Other Materials for Board Construction / 34.18
- 34.6 Metals Other than Copper / 34.19
- 34.7 Basics of Etched Line Formation / 34.20

30.1

31.1

32.1

33.1

Chapter 35. Machining and Routing

35.1 Introduction / 35.1

35.2 Punching Holes (Piercing) / 35.1

35.3 Blanking, Shearing, and Cutting of Copper-Clad Laminates / 35.3

35.4 Routing / 35.6

35.5 Scoring / 35.13 35.6 Acknowledgment / 35.15

Part 7 Bare Board Test

Chapter 36. Bare Board Test Objectives and Definitions	36.3
 36.1 Introduction / 36.3 36.2 The Impact of HDI / 36.3 36.3 Why Test? / 36.4 36.4 Circuit Board Faults / 36.6 	
Chapter 37. Bare Board Test Methods	37.1
37.1 Introduction / 37.1	
37.2 Nonelectrical Testing Methods / 37.1	
37.3 Basic Electrical Testing Methods / 37.2	
 37.4 Specialized Electrical Testing Methods / 37.9 37.5 Data and Fixture Preparation / 37.13 	
37.6 Combined Testing Methods / 37.20	
Chapter 38. Bare Board Test Equipment	38.1
38.1 Introduction / 38.1	
38.2 System Alternatives / 38.1	
38.3 Universal Grid Systems / 38.3	
38.4 Flying-Probe/Moving-Probe Test Systems / 38.17	
 38.5 Verification and Repair / 38.21 38.6 Test Department Planning and Management / 38.22 	
Chapter 39. HDI Bare Board Special Testing Methods	39.1
39.1 Introduction / 39.1	
39.2 Fine-Pitch Tilt-Pin Fixtures / 39.2	
39.3 Bending Beam Fixtures / 39.3	
39.4 Flying Probe / 39.3	
39.5 Coupled Plate / 39.3	
39.6 Shorting Plate / 39.4	
39.7 Conductive Rubber Fixtures / 39.5	
39.8 Optical Inspection / 39.5 39.9 Noncontact Test Methods / 39.5	
J7.7 INDIROUMART FEET MERINOLS / J7.J	

39.10 Combinational Test Methods / 39.7

Chapter 40. Assembly Processes

40.1 Introduction / 40.3
40.2 Through-Hole Technology / 40.5
40.3 Surface-Mount Technology / 40.16
40.4 Odd-Form Component Assembly / 40.42
40.5 Process Control / 40.48
40.6 Process Equipment Selection / 40.54
40.7 Repair and Rework / 40.57
40.8 Conformal Coating, Encapsulation, and Underfill Materials / 40.64
40.9 Acknowledgment / 40.66

Chapter 41. Conformal Coating

41.1 Introduction / 41.1
41.2 Types of Conformal Coatings / 41.3
41.3 Product Preparation / 41.6
41.4 Application Processes / 41.7
41.5 Cure, Inspection, and Finishing / 41.11
41.6 Repair Methods / 41.13
41.7 Design for Conformal Coating / 41.14
References / 41.17

Part 9 Solderability Technology

Chapter 42. Solderability: Incoming Inspection and Wet Balance Technique 42.3

- 42.1 Introduction / 42.3
- 42.2 Solderability / 42.4
- 42.3 Solderability Testing-a Scientific Approach / 42.8
- 42.4 The Influence of Temperature on Test Results / 42.13
- 42.5 Interpreting the Results: Wetting Balance Solderability Testing / 42.14

.

- 42.6 Globule Testing / 42.15
- 42.7 PCB Surface Finishes and Solderability Testing / 42.16
- 42.8 Component Solderability / 42.22

Chapter 43. Fluxes and Cleaning

43.1 Introduction / 43.1
43.2 Assembly Process / 43.2
43.3 Surface Finishes / 43.3
43.4 Soldering Flux / 43.5
43.5 Flux Form Versus Soldering Process / 43.6
43.6 Rosin Flux / 43.7
43.7 Water-Soluble Flux / 43.8
43.8 Low Solids Flux / 43.9
43.9 Cleaning Issues / 43.10
43.10 Summary / 43.12
References / 43.12

41.1

Part 10 Solder Materials and Processes

Chapter 44. Soldering Fundamentals

44.1 Introduction / 44.3
44.2 Elements of a Solder Joint / 44.4
44.3 The Solder Connection to the Circuit Board / 44.4
44.4 The solder Connection to the Electrical Component / 44.5
44.5 Common Metal-Joining Methods / 44.5
44.6 Solder Overview / 44.9
44.7 Soldering Basics / 44.9

Chapter 45. Soldering Materials and Metallurgy

45.1 Introduction / 45.1
45.2 Solders / 45.2
45.3 Solder Alloys and Corrosion / 45.4
45.4 PB-Free Solders: Search for Alternatives and Implications / 45.5
45.5 PB-Free Elemental Alloy Candidates / 45.5
45.6 Board Surface Finishes / 45.11
References / 45.19

Chapter 46. Solder Fluxes

46.1 Introduction to Fluxes / 46.1
46.2 Flux Activity and Attributes / 46.2
46.3 Flux: Ideal Versus Reality / 46.3
46.4 Flux Types / 46.4
46.5 Water-Clean (Aqueous) Fluxes / 46.4
46.6 No-Clean Flux / 46.7
46.7 Other Fluxing Caveats / 46.9
48.8 Soldering Atmospheres / 46.12
References / 46.15

Chapter 47. Soldering Techniques

47.1 Introduction / 47.1
47.2 Mass Soldering Methods / 47.1
47.3 Oven Reflow Soldering / 47.1
47.4 Wave Solder Defects / 47.39
47.5 Wave Solder Defects / 47.39
47.6 Vapor-Phase Reflow Soldering / 47.42
47.7 Laser Reflow Soldering / 47.43
47.8 Tooling and the Need for Coplanarity affd Intimate Contact / 47.50
47.9 Additional Information Sources / 47.53
47.10 Hot-Bar Soldering / 47.58
47.12 Ultrasonic Soldering / 47.59
References / 47.61

Chapter 48. Soldering Repair and Rework

48.1 Introduction / 48.1 48.2 Hot-Gas Repair / 48.1 44.3

46.1

48.3 Manual Solder Fountain / 48.5 48.4 Automated Solder Fountain / 48.6 48.5 Laser / 48.6 48.6 Considerations for Repair / 48.6 Reference / 48.7

Part 11 Nonsolder Interconnection

Chapter 49. Press-Fit Interconnection

49.1 Introduction / 49.3
49.2 The Rise of Press-Fit Technology / 49.3
49.3 Compliant Pin Configurations / 49.4
49.4 Press-Fit Considerations / 49.6
49.5 Press-Fit Pin Materials / 49.7
49.6 Surface Finishes and Effects / 49.8
49.7 Equipment / 49.10
49.8 Assembly Process / 49.11
49.9 Press Routines / 49.12
49.10 PWB Design and Board Procurement Tips / 49.14
49.11 Press-Fit Process Tips / 49.15
49.12 Inspection and Testing / 49.16
49.13 Soldering and Press-Fit Pins / 49.17
References / 49.17

Chapter 50. Land Grid Array Interconnect

50.1 Introduction / 50.1
50.2 LGA and the Environment / 50.1
50.3 Elements of the LGA System / 50.2
50.4 Assembly / 50.5
50.5 Printed Circuit Assembly (PCA) Rework / 50.7
50.6 Design Guidelines / 50.8
Reference / 50.8

Part 12 Quality

Chapter 51. Acceptability and Quality of Fabricated Boards

- 51.1 Introduction / 51.3
- 51.2 Specific Quality and Acceptability Criteria by PCB Type / 51.4
- 51.3 Methods for Verification of Acceptability / 51.6
- 51.4 Inspection Lot Formation / 51.7
- 51.5 Inspections Categories / 51.8
- 51.6 Acceptability and Quality After Simulated Solder Cycle(s) / 51.8
- 51.7 Nonconforming PCBS and Material Review Board (MRB) Function / 51.10
- 51.8 The Cost of the Assembled PCB / 51.11
- 51.9 How to Develop Acceptability and Quality Criteria / 51.11
- 51.10 Class of Service / 51.13
- 51.11 Inspection Criteria / 51.13
- 51.12 Reliability Inspection Using Accelerated Environmental Exposure / 51.32

50.1

Chapter 52. Acceptability of Printed Circuit Board Assemblies

- 52.1 Understanding Customer Requirements / 52.1
- 52.2 Handling to Protect the PCBA / 52.7
- 52.3 PCBA Hardware Acceptability Considerations / 52.10
- 52.4 Component Installation or Placement Requirements / 52.15
- 52.5 Component and PCB Solderability Requirements / 52.25
- 52.6 Solder-Related Defects / 52.25
- 52.7 PCBA Laminate Condition, Cleanliness, and Marking Requirements / 52.32
- 52.8 PCBA Coatings / 52.34
- 52.9 Solderless Wrapping of Wire to Posts (Wire Wrap) / 52.35
- 52.10 PCBA Modifications / 52.37
- References / 52.39

Chapter 53. Assembly Inspection

53.1 Introduction / 53.1
53.2 Definition of Defects, Faults, Process Indicators, and Potential Defects / 53.3
53.3 Reasons for Inspection / 53.4
53.4 Lead-Free Impact on Inspection / 53.6
53.5 Miniaturization and Higher Complexity / 53.8
53.6 Visual Inspection / 53.8
53.7 Automated Inspection / 53.12
53.8 Three-Dimensional Automated Solder Paste Inspection / 53.14
53.9 PRE-Reflow Aoi / 53.16
53.10 Post-Reflow Automated Inspection / 53.17
53.11 Implementation of Inspection Systems / 53.23
53.12 Design Implications of Inspection Systems / 53.24
References / 53.25

Chapter 54. Design for Testing

54.1 Introduction / 54.1
54.2 Definitions / 54.2
54.3 AD HOC Design for Testability / 54.2
54.4 Structured Design for Testability / 54.4
54.5 Standards-Based Testing / 54.5
References / 54.12

Chapter 55. Loaded Board Testing

55.1 Introduction / 55.1 55.2 The process of Test / 55.1 55.3 Definitions / 55.4 55.4 Testing Approaches / 55.7 55.5 In-Circuit Test Techniques / 55.11 55.6 Alternatives to Conventional Electrical Tests / 55.17 55.7 Tester Comparison / 55.19 References / 55.20

Part 13 Reliability

Chapter 56. Conductive Anodic Filament Formation

56.1 Introduction / 56.3

56.2 Understanding Caf Formation / 56.3

53.1

54.1

55.1

56.3 Electrochemical Migration and Formation of Caf / 56.7
56.4 Factors that Affect Caf Formation / 56.10
56.5 Test Method for Caf-Resistant Materials / 56.14
56.6 Manufacturing Tolerance Considerations / 56.14
References / 56.15

Chapter 57. Reliability of Printed Circuit Assemblies

57.1 Fundamentals of Reliability / 57.2
57.2 Failure Mechanisms of PCBS and Their Interconnects / 57.4
57.3 Influence of Design on Reliability / 57.19
57.4 Impact of PCB Fabrication and Assembly on Reliability / 57.20
57.5 Influence of Materials Selection on Reliability / 57.27
57.6 Burn-in, Acceptance Testing, and Accelerated Reliability Testing / 57.36
57.7 Summary / 57.45
References / 57.47

Chapter 58. Component-to-PWB Reliability: The Impact of Design Variables and Lead Free

58.1 Introduction / 58.1
58.2 Packaging Challenges / 58.2
58.3 Variables that Impact Reliability / 58.5
References / 58.30

Chapter 59. Component-to-PWB Reliability: Estimating Solder-Joint Reliability and the Impact of Lead-Free Solders

59.1 Introduction / 59.1
59.2 Thermomechanical Reliability / 59.3
59.3 Mechanical Reliability / 59.20
59.4 Finite Element Analysis (FEA) / 59.27
References / 59.35

Part 14 Environmental Issues

Chapter 60. Process Waste Minimization and Treatment

- 60.1 Introduction / 60.3
- 60.2 Regulatory Compliance / 60.3
- 60.3 Major Sources and Amounts of Wastewater in a Printed Circuit Board Fabrication Facility / 60.5
- 60.4 Waste Minimization / 60.6
- 60.5 Pollution Prevention Techniques / 60.8
- 60.6 Recycling and Recovery Techniques / 60.15
- 60.7 Alternative Treatments / 60.18
- 60.8 Chemical Treatment Systems / 60.21
- 60.9 Advantages and Disadvantages of Various Treatment Alternatives / 60.26

57.1

58.1

59.1

Chapter 61. Flexible Circuit Applications and Materials	
 61.1 Introduction to Flexible Circuits / 61.3 61.2 Applications of Flexible Circuits / 61.6 61.3 High-Density Flexible Circuits / 61.6 61.4 Materials for Flexible Circuits / 61.8 61.5 Substrate Material Properties / 61.9 61.6 Conductor Materials / 61.13 61.7 Copper-Clad Laminates / 61.14 61.8 Coverlay Material / 61.22 61.10 Adhesive materials / 61.22 61.11 Restriction of Hazardous Substances (ROHS) Issues / 61.23 	
Chapter 62. Design of Flexible Circuits	
 62.1 Introduction / 62.1 62.2 Design Procedure / 62.1 62.3 Types of Flexible Circuits / 62.2 62.4 Circuit Designs for Flexibility / 62.12 62.5 Electrical Design of the Circuits / 62.15 62.6 Circuit Designs for Higher Reliability / 62.16 	

62.6 Circuit Designs for Higher Reliability / 62.16 62.7 Circuit Designs for Rohs Compliance / 62.17

Chapter 63. Manufacturing of Flexible Circuits

63.1 Introduction / 63.1

63.2 Special Issues with HDI Flexible Circuits / 63.1

- 63.3 Basic Process Elements / 63.3
- 63.4 New Processes for Fine Traces / 63.14
- 63.5 Coverlay Processes / 63.24
- 63.6 Surface Treatment / 63.30
- 63.7 Blanking / 63.31
- 63.8 Stiffener Processes / 63.33
- 63.9 Packaging / 63.33
- 63.10 Roll-to-Roll Manufacturing / 63.34
- 63.11 Dimension Control / 63.36

Chapter 64. Termination of Flexible Circuits

64.1 Introduction / 64.164.2 Selection of Termination Technologies 464.1

- 64.3 Permanent Connections / 64.4
- 64.4 Semipermanent Connections / 64.11
- 64.5 Nonpermanent Connections / 64.13
- 64.6 High-Density Flexible Circuit Termination / 64.20

Chapter 65. Multilayer Flex and Rigid/Flex

65.1 Introduction / 65.1 65.2 Multilayer Rigid/flex / 65.1 62.1

63.1

64.1

Chapter 66. Special Constructions of Flexible Circuits

66.1 Introduction / 66.1
66.2 Flying-Lead Construction / 66.1
66.3 Tape Automated Bonding / 66.8
68.4 Microbump Arrays / 66.10
66.5 Thick-Film Conductor Flex Circuits / 66.12
66.6 Shielding of the Flexible Cables / 66.13
66.7 Functional Flexible Circuits / 66.14

Chapter 67. Quality Assurance of Flexible Circuits

- 67.1 Introduction / 67.1
- 67.2 Basic Concepts in Flexible Circuit Quality Assurance / 67.1
- 67.3 Automatic Optical Inspection Systems / 67.2
- 67.4 Dimensional Measurements / 67.3
- 67.5 Electrical Tests / 67.3
- 67.6 Inspection Sequence / 67.3
- 67.7 Raw Materials / 67.6
- 67.8 Flexible Circuit Feature Inspection / 67.6

٠

67.9 Standards and Specifications for Flexible Circuits / 67.8

Appendix A.1 Glossary G.1 Index I.1