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Abstract
An increasing challenge in analysis of microarray data is how to interpret and gain biological insight
of profiles of thousands of genes. This article provides a review of statistical methods for analysis
of microarray data by incorporating prior biological knowledge using gene sets and biological
pathways, which consist of groups of biologically similar genes. We first discuss issues of individual
gene analysis. We compare several methods for analysis of gene sets including over-representation
anlaysis, gene set enrichment analysis, principal component analysis, global test and kernel machine.
We discuss the assumptions of these methods and their pros and cons. We illustrate these methods
by application to a type II diabetes data set.

1 Introduction
Since the intial work of Schena et al.1 in 1995, microarrays have become a commonly used
tool in biological and medical research due to their ability to simultaneously profile the
expression of thousands of genes. Initial experiments were relatively simple with no
replication, one array per condition, and only crude measurements for differential expression
were used – a fold change of 1.5 indicated up-regulation while a fold change of 0.75 indicated
down-regulation. As the complexity of these studies increased with their popularity, the need
for more sophisticated tools became clear.

Currently, a standard microarray experiment consists of the simultaneous expression profiling
of thousands of genes across various experimental conditions. Unless otherwise stated, we
generally assume two conditions. Low-level analyses typically include image analysis (grid
alignment, target detection, intensity extraction and local background correction),
normalisation and computation of a gene expression value for each probe on the chip.
Significant work has been done in this area2–6 as all further analyses are contingent on proper
low-level processing.

High-level analyses typically begin by calculating a statistic (often a t-statistic) for each gene
on the chip, measuring differential expression between experimental conditions. A p-value is
usually generated for each gene, based on the statistic, via permutation or a parametric
distribution. To account for the thousands of comparisons performed, procedures controlling
the family wise error rate (FWER) or the false discovery rate (FDR)7, 8 are performed. Genes
that survive the correction for multiple comparisons are then considered differentially
expressed while genes that fail to meet the criterion for significance are non-differentially
expressed. The list of differentially expressed genes is often the final goal for the statistician
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and once obtained, it is the responsibility of the biological or biomedical researcher to draw
further conclusions.

These traditional approaches have yielded a wealth of information regarding gene interactions,
functions and pathways. Recently, biologists have become interested in exploiting this
information to facilitate and improve the analyses performed. The knowledge can be used to
varying degrees,9 but at the most basic level, it is known that most biological phenomena occur
through the concerted expression of multiple genes. We can thus use our prior knowledge of
what genes belong to various signalling pathways or functional groups and focus our analyses
on sets of related genes, called gene sets. Numerous databases containing gene groupings based
on various criteria have been developed. Examples include KEGG10 and the Gene Ontology
(GO) Consortium.11

Use of information derived from the GO consortium database is the most popular, so we briefly
describe their database. The GO consortium contains three principal ontologies: biological
processes, cellular components and molecular functions. Each ontology is a directed acyclic
graph, creating a hierarchy of terms, called GO terms, that range from very broad functions,
such as ‘physiological process’, down to more specific levels, such as ‘microtubule
depolymerisation’. Each ontology and GO term has a comprehensive list of genes previously
demonstrated to be associated with that ontology or GO term. A number of tools have been
created for mining and using the data from the GO consortium.12

Using groupings from the GO consortium or other annotation databases, our analyses no longer
consider individual genes, but rather groups of genes. This mode of analysis overcomes a
number of drawbacks, which we will explore later, associated with traditional approaches to
microarray analysis and is biologically more meaningful. The goal of this article is to review
methods that test for the differential expression of gene sets defined by prior knowledge.

In the next section, we will briefly review the drawbacks associated with the traditional
approach and discuss the use of prior biological knowledge as a remedy for some of the
problems. Section 3 introduces a few of the many popular methods using prior biological
knowledge. Section 4 presents statistical issues other authors have identified regarding these
methods. In Section 5, we apply these methods to a real data set and compare their
performances. Finally, in Section 6, we briefly summarise the main points of the article and
discuss other practical issues regarding the use of prior biological knowledge.

2 Problems associated with traditional approaches
Advocates have suggested many different reasons for incorporating prior biological knowledge
into the analysis of gene expression data.13–17 We present some of these arguments here.

In terms of biological rationale for testing gene sets, it is well known that most pathways are
not driven by a single gene, but rather by a combination of multiple genes acting in a concerted
fashion. Thus, individual gene analysis may miss important pathway effects since genes that
demonstrate a high level of differential expression between conditions may not be as important
as a group of genes that each shows only moderate differences between conditions. In particular
highly differentially expressed genes tend to be ‘downstream’ genes. Many upstream proteins,
such as transcription factors and other regulatory proteins, may only show very moderate
changes, especially in contrast to high abundance proteins expressed at the end of the biological
cascade. If attention is restricted to only the most highly differentially expressed genes,
upstream effects are likely to be missed, despite the crucial role they play acting as activators
and gatekeepers.
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Practicality also motivates the use of prior biological knowledge. Many investigators have been
faced with the problem after correction for multiple comparisons, no genes meet the threshhold
for statistical significance. Given that sample sizes for microarray experiments tend to be small,
if the signal in the data is not strong relative to the noise, as in situations where exposures are
mild, perhaps due to toxicity restrictions on patients, or where the biological response is simply
weak by nature, then finding highly differentially expressed genes may be quite difficult.
Multiple comparisons exacerbate the problem when high correlations exist in the data: the
typical FDR and FWER controlling procedures assume that all of the hypotheses are
independent, but genes are known to work together in a concerted fashion so tests may be
overly conservative. Use of the empirical null hypothesis serves as a means of correcting for
correlation,18 but assumptions regarding the tail behaviour of the null distribution may not
hold. Regardless, when using traditional approaches, failure to detect differentially expressed
genes lead to failure in drawing conclusions.

The alternative to not detecting any differentially expressed genes is to find that even after
correction for multiple comparisons, a long list of ‘differentially expressed’ genes remains.
Although biological collaborators often prefer a long list of genes that meet the threshhold for
statistical significance, this presents a problem in terms of interpretation. Often it is difficult
to draw out a specific theme or message, or to identify potential mechanisms based on a long
gene list. What conclusions are found also tend to be very subjective.

Further, comparisons of gene lists between different experiments have shown little overlap.
Despite similar exposure conditions, experiments from different groups have shown dissimilar
results when gene lists are compared.19 This presents a confusing picture of what is going on
biologically since each group is presenting hypotheses based on their own lists of genes called
differentially expressed.

Using prior biological knowledge immediately preempts the problem that no genes are
individually differentially expressed after multiple comparisons as we are no longer interested
in any individual gene’s significance. Furthermore, as we are no longer performing thousands
of comparisons, but rather restricting attention to comparatively few pathways of specific
interest, corrections for multiple comparisons need not be as extreme. Interpretation of results
is facilitated as pathways are often the primary interest, and this provides a means by which
the same conclusions will be drawn by different researchers presented with the same data,
improving objectivity. Depending on the method applied, moderate changes can potentially be
detected, and for a pathway shown to be differentially expressed, what genes are driving the
difference can possibly be elucidated as well, identifying which genes are the upstream
regulator genes. Finally, while a single gene is likely to show great variability in differential
expression level from experiment to experiment, a pathway that contains many genes is less
likely to demonstrate such variable behavior, giving more consistent results between
experiments.16

3 Prior knowledge-based methods
Numerous methods utilising prior biological knowledge have been and are being developed.
We here, review a few of the many methods but emphasise that this is by no means a complete
catalogue. We will compare these methods and discuss their assumptions and pros and cons
in Section 4.

3.1 Over-representation analysis
Over-representation analysis (ORA) refers to an entire class of methods which are, by far, the
most commonly used as they are the earliest and the simplest developed. These methods start
from a list of genes that are called differentially expressed, D, and the list of genes in the gene
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set of interest, S. Dc and Sc represent the set of genes not differentially expressed and the set
of genes not in the gene set, respectively. Based on these, the researcher looks for an over-
representation of the genes in the gene set among differentially expresssed genes, or
equivalently, over-representation of differentially expressed genes in the gene set. Practically
speaking, this is done by creating a 2 × 2 contingency table based on membership in D and
membership in S. Letting N be the total number of genes, and for any sets A and B, NA denotes
the cardinality of A and NAB denotes the cardinality of A ∩ B, then we can build Table 1. To
generate a p-value for over-representation, we test for independence between membership in
D and membership in S using a Fisher’s exact test,20 specifically:

Many variations on this method have been developed.21 Differences focus on the construction
of the list of differentially expressed genes and the test used once a 2 × 2 table has been
constructed. Tests besides Fisher’s exact test include the chi-square test, the hypergeometric
test and the binomial proportions z-test. In practice, the choice of test is unimportant. However,
as will be demonstrated later, how the cutoff distinguishing differentially expressed genes from
non-differentially expressed genes is constructed strongly influences whether or not a pathway
is called differentially expressed. Criteria for differential expression may be based on the
multiple comparisons threshold, but can be much simpler, e.g. using the 100 genes with
smallest individual p-value, the top 5% most differentially expressed genes, or all genes with
fold change greater than 2. For a full discussion of ORA methods, see Khatri and Draghici.21

3.2 Gene set enrichment analysis
While ORA is attractive because of its simplicity, it relies heavily a potentially arbitrary hard
cutoff. A method that remedies this is gene set enrichment analysis (GSEA). Instead of using
a set cutoff, GSEA ranks all the genes on the chip based on some signed measure of differential
expression from individual gene analysis and then tests the null that the genes in the gene set
are uniformly distributed throughout the list of ranked genes against the alternative that the
genes in the gene set tend to be closer to the top or bottom of the list. The assumption is that
if a gene set is differentially expressed, then the component genes are likely to be more
differentially expressed and thus clustered towards either the top or bottom of the list. This
assumes that the direction of differential expression for genes in a differentially expressed gene
set is the same.

The original GSEA approach was developed by Mootha et al.22. Using the same notation as
before, the basic algorithm is as follows:

1. Rank the N genes on the chip based on a differential expression measurement, such
as t-statistic, to obtain L, the ranked gene list.

2. An enrichment score (ES) is then calculated for the date set. For gene Gi (the i-th gene
in L), let:
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where NS is the number of genes in Set S and NSc is the number of genes not in set

S. Define the enrichment score .

3. To determine significance, permutation is used to generate the null distribution:

a. Randomly permute the class labels.

b. Re-rank the genes to generate a new ranked gene list L*.

c. Calculate ES(S)*, the enrichment score based on L*.

d. Repeat the above for 1000 permuations.

4. A p-value is generated by comparing our original ES(S) to the distribution of the ES
(S)*.

The ES is essentially a modified Kolmogorov–Smirnov statistic. Several improvements have
been made to the method. Sweet-cordero et al.23 extended GSEA to multiple gene sets and
multiple data sets and the Subramanian et al.13 modified the enrichment score so that each
gene’s contribution is weighted by its correlation with the phenotypic outcome.

Many methods similar to GSEA have been developed. The gene set analysis (GSA) of Efron
and Tibshirani24 is based on the GSEA method, but uses a ‘maxmean statistic’, M, instead of
the Kolmogorov–Smirnov statistic for the enrichment score, potentially leading to greater
power. If ti is the differential expression measurement (t-statistic) for the i-th gene in the gene
set, then the max mean statistic is given by:

Note that the denominator is NS. For evaluation of significance, GSA argues for permutation
of genes in addition to the permuation of class labels. A method by Smythe25 and Tian et al.
26 uses the averaged t-statistic for the enrichment score. Tian et al. also makes further
modifications to GSEA in the case where one wishes to compare differential expression of one
gene set to differential expression of another. Other methods by Pavlidis et al.27 and
Rhanenfhrer et al.28 are similar in flavour.

3.3 Global test method using generalised linear models
The global test14 does not rely on the potentially unstable individual gene analyses. This method
exploits the duality beween association and prediction: if a gene set can be used to predict the
clinical outcome, its expression pattern must differ for different outcomes. If Y is the outcome
of interest (possibly continuous or possibly 1/0 for case/control status), and letting X be the n
× NS matrix of gene expression values for the gene set (where n is the number of samples) so
that xij is the gene expression value of the j-th gene of the i-th sample, the global test is motivated
by a regression model to predict the outcome based on gene set expression:

(1)

where g(·) is a link function in generalised linear models,29 such as the logit link for the two
group comparison, and α is an intercept. Then testing for an overall predictive effect for the
gene set is equivalent to testing:
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In most cases, the number of genes in the gene set is large relative to the sample size, so an
additional assumption that the β’s are iid with mean 0 and variance τ2 is made. Under this
assumption, our null hypothesis is simply:

An alternative interpretation is to rewrite the earlier model by setting . Then under
the null, r = (r1, …, rn) where n is the number of samples, has mean 0 and covariance τ2XX′.
We thus rewrite our model as:

(2)

which corresponds to a random effects model. Assuming α is known, a score statistic for testing
H0: τ2 = 0 is given as

where R = 1/NSXX′, μ = g−1(α), and μ2 and μ4 are the second and fourth central moments of
Y under the null.14, 30 T can be approximated by:

which is also assymptotically normal under H0. However, since the sample size is likely to be
low, Goeman et al. suggest that significance be evaluated by permuting the class labels to
obtain a null distribution for Q and then comparing the original statistic to the permuted
distribution. Since α is never known in real situations, some adjustments are necessary to
estimate μ and μ2.

A nice by-product of the global test statistic is that i-th gene’s contribution to Q is simply:

as Q = 1/NSΣi Qi. Thus, if a pathway is determined to be significantly differentially expressed,
by estimating the contribution (influence score) for each gene, researchers can determine which
genes are driving the difference, giving more information as to the biological mechanisms
involved.
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3.4 Global test method using kernel machines
The global test of Goeman et al.14 assume in model (1) the effects of genes within a gene set
are additive. Genes within a pathway are often correlated and interact to each other. The
additive assumption hence might be too strong in practice. Liu et al.17 proposed modelling the
gene set effects using kernel machines, which allow joint flexible non-linear effects of genes
within a pathway on a phenotype. Specifically, we replace the generalised linear model (1) by
the generalised non-linear model

(3)

where h(·) is a linear or non-linear smooth function and its functional form can be estimated
from the data. When h(·) is linear in x’s, (3) reduces to the generalised linear model (1).

Liu et al. proposed to estimate h(·) using kernel machines, which can proceed by estimating h
(·) using (2) assuming the r are random effects with mean 0 and covariance τ2K, where K is a
kernel matrix whose (i, i′)-th element can be viewed as a measure of similarity of the gene
profile of the i-th subject and that of the i′-th subject. If h(·) is a linear function in x’s, then the
(i, i′)-th element of K is ( ) and K reduces to XX′ if c = 0. If h(·) is a qudratic function

of x’s including two-way interactions of the x’s, the (i, i′)-th component of K is . If
h(·) is a smooth function of x’s expanded by radius basis, the (i, i′)-th element of K is exp{(xi
− xi′)T (xi − xi′)/c}. A variance component test for H0: τ2 = 0 under (3) corresponds to a global
test for no gene set effect by allowing for non-linear effects when an appropriate kernel function
is assumed.

3.5 Principal components analysis
Another set of approaches that do not rely on individual gene analyses are based on the principle
of dimension reduction. Although gene sets already contain far fewer genes than the total
number on a chip, the dimensionality of the gene set still often exceeds the sample size. By
sufficiently reducing the dimentionality of the data, standard univariate or multivariate methods
can be applied. The most commonly used means of dimension reduction is principal
components analysis (PCA).

PCA seeks to identify the b directions of greatest variability in the data and then project the
data onto the space spanned by these directions. Mathematically, these directions are given by
the eigenvectors of the sample covariance matrix (Σ ̂) corresponding to the b largest eigenvalues
of Σ ̂. Suppose that the expression value for each gene has been centered by their respective
sample means, then letting V = [v1, v2, … vp], E = diag(e1, e2, …, ep), and e1 ≥ e2 ≥ ··· ≥ ep,
where vj is the eigenvector corresponding to the j-th largest eigenvalue, ej, V and E can be
found by the singular value decomposition of X:

Projecting the data into a smaller subspace reduces the dimensions of the data while keeping
the most information since the directions of greatest variability are retained.

To our knowledge, the first method of this type to apply these ideas to detection of differentially
expressed gene sets is the method proposed by Tomfohr et al.,15 which we will refer to as
PCAT. The idea is to reduce the gene set to its first principal component, so that we have a
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single ‘supergene’ or ‘metagene’. The supergene’s expression value for the i-th subject is the
first component score:

Since Xnew is now one dimensional, we can then use a standard two-sample univariate test,
e.g. t-test or Wilcoxon test, to evaluate the significance of the supergene. If the supergene is
found to be differentially expressed, then the entire gene set is considered to be differentially
expressed.

Often times, the first principal component may be insufficient for summarising a gene set’s
activity or it may capture variability not associated with differences resulting from clinical
outcomes. For instance, it has been demonstrated in the genome wide association testing
literature that the first principal component identifies variability resulting from differences in
ancestry among subjects.31 Thus, a natural extension of PCAT is to consider additional higher
order components and reduce the gene set to the first b principal components. This approach
was first published by Kong et al.32 and we refer to it as PCAK. Instead of a single supergene,
b supergenes summarise the gene set. Choices for b are briefly discussed below, but b is
necessarily less than the number of positive eigenvalues, d = rank(Σ̂). If V(b) = [v1, v2, …, vb]
then the new component scores, expression values for the super genes, for the i-th subject are:

Since X is now an n × b matrix, one can use Hotelling’s T2 test to evaluate significance. For
completeness, the Hotelling’s T2 statistic is found by:

where nj is the number of subjects with clinical outcome j,  is the vector of mean expression
values for the supergenes among subjects with clinical outcome j, and Σ̂p = ((n1 − 1)Σ ̂1 + (n2
− 1)Σ̂2)/(n − 2) is the pooled covariance matrix (Σ̂j is the covariance matrix of the supergenes
among subjects with outcome j). To generate a p-value, one can either permute the class labels
and generate a permutation distribution for T2, or alternatively, under the commonly used
assumption of normality, it is known that .

A fundamental issue always present when using principal components is the choice of b, the
number of components to use. Kong et al. simply use a hard threshold on the eigenvalues but
admit that this may not be optimal. This problem has been studied in various applied settings
by many authors.33–37 Suggested rules for choosing b are:

1. First component only: b = 1 as in Tomfohr et al.’s method.

2. Proportion of variability explained: The proportion of variability explained by the

first q principal components is given by: . Typical cutoffs range
between 70% and 90%. The number of components to that explain 70% of the total
variability is found by: b = argminq{rq > 0.70}.

Zhu’s Method: A commonly used method of estimating the number of components
is to generate a Scree plot (a barplot of the eigenvalues) and then look for an ‘elbow’
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or ‘big gap’ in the graph. An elbow between the q-th and (q + 1)-th eigenvalue suggests
that there is a rapid decrease in the relative importance of the components. In the past,
this method tended to be subjective and not practical in many situations because it
was not automated, but Zhu and Ghodsi propose a simple algorithm for identifying
elbows.

Suppose we want to see if there is a gap between the q-th and (q + 1)-th eigenvalues.
Let  = {e1, e2, …, eq} and  = {eq+1, eq+2, …, ed}. If there truly is a gap at the q-
th position  and  can be considered as samples from two different distributions,
f (e; θ1) and f (e; θ2), respectively. If we assume the two samples are independent,
then the log-likelihood of our data is given by:

For convenience, we use the normal density for f and we can obtain a profile log-
likelihood by plugging in: θ ̂1 = [ē1, s2] and θ ̂2 = [ē2, s2], where

, and  with  and 
equaling the variances of  and , respectively. b is then set to the value of q that
maximises the profile likelihood.

Despite the naive, but convenient, assumptions of normality and independence,
empirical results suggest that the overall algorithm is still effective.

3. Guttman–Kaiser’s average eigenvalue rule: All eigenvalues greater in magnitude
than the average of the eigenvalues are retained. The method was initially designed
for PCA based on the correlation matrix. If all of the genes were independent, then
the principal components would be identical to the original data and have unit
variance. Thus, any eigenvalue less than 1 in magnitude carries less information than
one of the original variables and is not worth keeping. Noting that 1 is the mean of
the eigenvalues from the correlation matrix, we instead compare the eigenvalues from
the covariance matrix to the mean.

4. Jolliffe’s modified average eigenvalue rule: All eigenvalues greater in magnitude
than 0.7 times the average of the eigenvalues are retained. The constant 0.7 was chosen
based on simulation.

5. Bartlett’s test: This method sequentially tests for equality of eigenvalues starting
from d down to 1. If the last d − q eigenvalues are equal, then they contain equally
little information and should be discarded. To determine b, test whether the last d −
q values are all equal against the alternative that there are at least two that are different.
If we reject the null, then b is set to d − q + 1, otherwise we increase q by 1 and test
again.

To actually test for the equality of the last d − q eigenvalues, we use the statistic:
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which approximately follows a  distribution with ν = 0.5(d − q + 2)(d − q − 1).
 improves the approximation.

The authors do not agree as to which rules are optimal. This may depend on the individual
setting and correlation structure of the gene set.

If a pathway is determined to be significantly differentially expressed by PCAT, genes driving
the difference are identified as the genes with the greatest loadings. Tomfohr et al. refer to
these as ‘activity levels’. If PCAK is used, one can find activity levels by identifying which
supergenes are most differentially expressed and examining the loadings for generating those
supergenes. Multiple differentially expressed supergenes may suggest differing mechanisms
for differential expression.

4 Statistical issues
Numerous methods other than those described exist. In the next section we will compare the
described methods on a real data set, but here we first introduce two statistical considerations
that have recently been identified. This work is largely the result of Goeman and Buhlmann.
38

4.1 The null hypothesis
Each of the methods seeks to test for differential expression of the gene set between
experimental conditions. However, as Goeman and Buhlmann38 and Tian et al.26 point out,
there are two ways of actually formulating the null hypothesis:

1. Formulation 1: : The genes in the gene set S are at most as differentially
expressed as the genes not in S.

2. Formulation 2: : The genes in the gene set S are not differentially expressed.

Methods that use formulation 1 are the most prevalent as they include all of the currently used
over-representation analysis methods and the original GSEA method. The methods described
testing formulation 2 are the global test, PCA, and some later variants of GSEA. While both
null’s seem similar, they are actually quite different. Goeman and Buhlmann call formulation
1 a competitive null hypothesis while formulation 2 is a self-contained null hypothesis.
Fundamentally, a competitive null pits the genes in S against all other genes in the experiment,
while a self-contained null looks only at the genes in the gene set and ignores all of the other
genes on the microarray. Both Tian et al. and Goeman and Buhlmann favour self-contained
tests.

Criticism of tests using  revolve primarily around issues of power. Generally, a self-
contained test will tend to have more power than a competitive test, as  tends to imply

. Under the competitive setup, a gene set’s significance is penalised in experiments where
many genes are differentially expressed as the standard for significance has been raised. Allison
et al.39 and subsequently Goeman and Buhlmann describe the competitive framework as a
‘zero-sum game’. Asside from the power considerations, this creates negative correlation
between p-values and is problematic as the standard false discovery rate corrections may not
be valid under negative correlation. As self-contained nulls completely ignore other gene sets,
this is not an issue.

Goeman and Buhlmann also note that self-contained tests are direct generalisations of single
gene tests. This is a nice property as testing a gene set with a single gene is equivalent to testing
the gene individually. This property does not hold for competitive tests. A related result is that
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a self-contained test can directly test the null that there are no differentially expressed genes
on the chip, potentially serving as a quality check. A competitive null cannot treat the entire
data set as a gene set as there would be no complement to compare with.

The main criticism of self contained tests is that they may be overly powerful in settings where
many genes appear to be highly differentially expressed. In particular, large gene sets may
contain a few genes that appear to be differentially expressed leading to a significant p-value
for that gene set despite it’s biological irrelevance. In such cases, Goeman and Buhlmann
suggest using self-contained tests as an initial screening and then following up with a
competitive test in the second stage.

4.2 The sampling unit
Goeman and Buhlmann identify another important statistical issue that raises the most
fundamental question: what is the sampling unit? Classical tests are based on experiments that
have a population of subjects, and then subject sampling is performed: we consider our data a
sample of subjects drawn from the population. Each subject has the same set of fixed attributes
(in this case genes). In contrast, the over-representation methods described above perform gene
sampling. The tests used still assume the samples are drawn from the population, but in this
case the population considered is the set of genes. This reverses the classical setup: we now
consider our data as a sample of genes coming from a fixed set of subjects. In the first set up,
our sample size is the number of subjects (arrays) while in the latter it is actually the number
of genes. GSEA, GSA, global test and PCA all sample subjects.

This has a dramatic impact on the interpretation of results obtained. Specifically, a significant
p-value gives confidence that if we were to draw a new sample, a gene set would again be
differentially expressed, i.e. results generalise to the population from which we sampled. Under
the subject sampling scheme, this means that we are confident that the association between
genes and the experimental conditions will be found for a new group of samples. In contrast,
under the gene sampling scheme, a significant p-value gives confidence that for a new set of
genes from the same subjects, a similar association between being in the gene set and being
called ‘differentially expressed’ will be found.

The gene sampling scheme is usually not the preferred set up. Generally, experiments are
performed with the intention of finding results that generalise beyond the sample of subjects.
Indeed, a new experiment would likely take a new sample of subjects rather than a new sample
of genes. Also, tests for both sampling schemes assume that sampling units are independent
and identically distributed. Assuming genes are independent is extremely unrealistic: the entire
purpose of using prior biological knowledge is to exploit the information that genes work
together.

5 Comparison on type II diabetes data
This data set consists of gene expression profiles of muscle tissue from 17 subjects with type
II diabetes and 17 subjects with normal glucose tolerance (a third group with impaired glucose
tolerance was omitted from our analysis). It was first analyzed in Mootha et al.22 using GSEA
and is available from the Broad Institute website
(http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi). Details on low-level processing are
available in the original manuscript. After removing all genes with no single measure greater
than 100 (genes not expressed in the data), 10 983 genes remained. To compare the performance
of the described methods, to each of 133 pathways (the original 149 considered by Mootha et
al. less the pathways containing 0 or 1 gene only) we applied:
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1. ORA considering the top 100 genes as ‘differentially expressed’ and testing for
association using Fisher’s exact test.

2. ORA considering the top 100 genes as ‘differentially expressed’ and testing for
association using the χ2-test.

3. ORA considering the top 5% most differentially expressed genes (as determined by
two-sample t-test) as ‘differentially expressed’ and testing for association using
Fisher’s exact test.

4. ORA considering the top 5% most differentially expressed genes as ‘differentially
expressed’ and testing for association using the χ2-test.

5. The original GSEA method, with genes ranked by two-sample t-statistics.

6. GSA, with genes ranked by two-sample t-statistics (software available from the
authors’ website: http://www-stat.stanford.edu/tibs/GSA/index.html).

7. Global test (software available from Bioconductor: http://www.bioconductor.org/).

8. PCAT

9. PCAK with the number of components to use determined by taking the maximum of
3 or the number of components necessary to account for 70% of the variability. For
gene sets with fewer than three genes, the number of components used was equal to
the number of genes in the gene set.

Results comparing the number of gene sets identified as differentially expressed, at the nominal
α = 0.05 level, by each method are given in the diagonal of Table 2. Non-diagonal entries
contain the number of gene sets simultaneously identified by the two methods. As an example,
18 pathways were identified as differentially expressed by GSEA and 9 pathways were
indentified as differentially expressed by both GSEA and GSA.

Over-representation analysis is clearly very sensitive to the cut-off used. If the top 100 genes,
as ranked by t-statistic, were called ‘differentially expressed’, only seven pathways were
identified by Fisher’s exact test. In contrast, if the cutoff is lowered so that the top 5% genes
are called ‘differentially expressed’, then 60 pathways are identified. When comparing the use
of Fisher’s exact test to use of the χ2-test, it initially appears that the χ2-test is able to identify
many more pathways at the same cutoff. However, the pathways identified by using the χ2-test
and not identified by the fisher’s exact test all contain very few genes (less than five genes).
In such situations, the χ2-test may not be appropriate. For pathways comprised of more genes,
results were essentially the same.

GSA identifies only two more pathways as differentially expressed than GSEA, but the
pathways identified by each overlap by only nine pathways despite GSA being developed based
on GSEA.

Though theoretical justifications suggest self-contained tests are more powerful, yet the global
test and PCAT identified only four and five pathways, respectively. The global test may not
perform optimally in identifying pathways consisting of many genes with no predictive ability
and only a few with predictive ability. Under the assumptions of the test, the global test should
identify such pathways, but inclusion of many other genes may dilute the signal and introduce
extraneous noise. A method employing variable selection may perform better.

Using PCAT assumes that the first principal component sufficiently summarises the entire
pathway’s activity. Given that signal is low and noise often high in expression profiling
experiments and that we have not accounted for other baseline effects such as ancestry, it is
not surprising that the first principal component does not provide good separation of diabetics
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from normal patients. Indeed, Bair et al.40 suggest some filtering of genes is necessary in order
for the first component to capture the difference of interest.

PCAK identifies more (16) pathways than PCAT, suggesting that use of more principal
components provides a better summary of a gene set’s expression. On the other hand, of the
five pathways identified as being differentially expressed by PCAT, only one was identified by
PCAK. Truth of the PCAK null implies truth of the PCAT null, so rejection of the PCAT null
should imply rejection of the PCAK null. However, in practice though the first component is
different, this difference is diluted by the additional components used, suggesting that the
number of components used is not optimal. A better method for determining the number of
components to test needs to be developed. Of the 16 pathways identified by PCAK, 6 were also
identified by the original GSEA programme. These six were also identified as being
significantly differentially expressed by GSA. It is important to note, that GSEA and GSA
assume that all of the genes in a significantly differentially expressed pathway will be
differentially expressed in the same direction, i.e. the genes will tend to all be closer to the top
of the ranked gene list or all be closer to the bottom of the ranked gene list. In contrast,
PCAK (as well as PCAT and the global test) does not consider the directionality. This better
matches biological assumptions: in a given pathway, certain genes will be turned on and others
turned off in response to stimuli. Pathways identified by PCAK but not by GSEA or GSA may
be such pathways in which direction of differential expression is different.

6 Discussion
When applied to the type II diabetes data, we see that using prior biological knowledge can
potentially identify pathways of interest. If the traditional approach had been taken, no
conclusions could have been drawn as no genes met the criteria for differential expression after
controlling for the false discovery rate. The number of pathways identified by ORA tends to
be somewhat unstable depending on the number of genes called ‘differentially expressed’,
though if this method is used, the specific test used does not appear to make a difference as
long as the sizes of the gene sets are not small. The interpretation of the ORA results is difficult,
however, as they treat all genes as the sampling unit. These methods should be used very
cautiously, if at all. Global test and PCAT may not perform well for gene sets that include many
irrelevant genes. The enrichment scoring methods appear to function well as does PCAK. All
three methods produce results that are biologically reasonable, but it is not clear which method
is preferable in practice, despite the competitive nature of the enrichment scoring methods.

A major weakness that all prior biological knowledge based described suffer is the quality of
the prior biological knowledge incorporated. The methods we described here all deal with
analysing gene sets which are grouped based on some biological principle and the assumption
is that all of the genes in the biological grouping are associated with each other in a biologically
meaningful fashion. However, this assumption is not always true: the quality of the groupings
is not always guaranteed. Databases such as KEGG are of good quality, as are other databases
curated by humans. Databases curated by algorithms tend to contain the most inaccuracies and
errors. For instance, data from the GO consortium is the most common source of gene set
groupings, but the data also tend to include information from weaker sources. In particular,
annotations based on IAE (Inferred from Electronic Annotation) are viewed quite skeptically,
but according to the GO annotation website (http://www.geneontology.org) as of May, 2009,
only 64 568 of 160 498 human GO annotations are from non-IAE sources. Mistakes also tend
to arrise from inconsistencies and abmbiguity in gene names/symbols. Use of high quality
groupings is absolutely essential.

Use of prior biological knowledge can alleviate some of the problems associated with analysis
of gene expression profiles. Use of these methods has led to a better understanding of the
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biological mechanisms underlying phenotypic responses. These methods do, however, have
problems of their own: in addition to relying heavily on the quality of the information used,
we have seen that methods seeking to accomplish the same task provide differing results, all
of which may be reasonable. Issues regarding multiple comparisons are also of concern since
gene sets may be very highly correlated, differing by only a few genes. Clearly, more research
is necessary to deal with the unresolved statistical issues and the problem of inconsistent results.

Acknowledgments
This research is supported by a grant from the National Cancer Institute (CA–76404).

References
1. Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with

a complementary DNA microarray. Science 1995;270(5235):467. [PubMed: 7569999]
2. Li C, Wong WH. Model-based analysis of oligonucleotide arrays: expression index computation and

outlier detection. Proceedings of the National Academy of Sciences 2001;98(1):31–36.
3. Tseng GC, Oh MK, Rohlin L, Liao JC, Wong WH. Issues in cDNA microarray analysis: quality

filtering, channel normalization, models of variations and assessment of gene effects. Nucleic Acids
Research 2001;29(12):2549. [PubMed: 11410663]

4. Bolstad B, Collin F, Simpson K, Irizarry R, Speed T. Experimental design and low-level analysis of
microarray data. International Review of Neurobiology 2004;60:25. [PubMed: 15474586]

5. Speed, T. Statistical analysis of gene expression microarray data. CRC Press; Boca Raton, FL: 2003.
6. Wu Z, Irizarry RA, Gentleman R, Martinez-Murillo F, Spencer F. A model-based background

adjustment for oligonucleotide expression arrays. Journal of the American Statistical Association
2004;99 (468):909–17.

7. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to
multiple testing. Journal of the Royal Statistical Society Series B (Methodological) 1995;57:289–300.

8. Storey J. A direct approach to false discovery rates. Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 2002;64(3):479–98.

9. Nacu S, Critchley-Thorne R, Lee P, Holmes S. Gene expression network analysis and applications to
immunology. Bioinformatics 2007;23(7):850–58. [PubMed: 17267429]

10. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research
2000;28(1):27. [PubMed: 10592173]

11. Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. Nature
Genetics 2000;25(1):25–29. [PubMed: 10802651]

12. Gentleman, R. Using GO for statistical analyses. In: Antoch, J., editor. Proceedings in Computational
Statistics COMPSTAT 2004. Physica Verlag; Heidelberg: 2004. p. 171-180.

13. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based
approach for interpreting genome-wide expression profiles. Proceedings of the National Academy
of Sciences 2005;102(43):15545–50.

14. Goeman JJ, Van De Geer SA, De Kort F, Van Houwelingen HC. A global test for groups of genes:
testing association with a clinical outcome. Bioinformatics 2004;20(1):93–99. [PubMed: 14693814]

15. Tomfohr J, Lu J, Kepler TB. Pathway level analysis of gene expression using singular value
decomposition. BMC Bioinformatics 2005;6(1):225. [PubMed: 16156896]

16. Manoli T, Gretz N, Groene HJ, Marc K, Eils R, Brors B. Group testing for pathway analysis improves
comparability of different microarray datasets. Bioinformatics 2006;22(20):2500–06. [PubMed:
16895928]

17. Liu D, Lin X, Ghosh D. Semiparametric regression of multidimensional genetic pathway data: least-
squares kernel machines and linear mixed models. Biometrics 2007;63(4):1079–88. [PubMed:
18078480]

18. Efron B. Correlation and large-scale simultaneous significance testing. Journal of the American
Statistical Association 2007;102(477):93–103.

Wu and Lin Page 14

Stat Methods Med Res. Author manuscript; available in PMC 2010 February 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



19. Fortunel N, Otu H, Ng H, et al. Comment on “‘Stemness’: transcriptional profiling of embryonic and
adult stem cells” and “a stem cell molecular signature”. Science 2003;302(5644):393. [PubMed:
14563990]

20. Draghici S, Khatri P, Martins RP, Ostermeier GC, Krawetz SA. Global functional profiling of gene
expression. Genomics 2003;81(2):98–104. [PubMed: 12620386]

21. Khatri P, Draghici S. Ontological analysis of gene expression data: current tools, limitations, and
open problems. Bioinformatics 2005;21(18):3587–95. [PubMed: 15994189]

22. Mootha VK, Lindgren CM, Eriksson KF, et al. PGC-1α-responsive genes involved in oxidative
phosphorylation are coordinately downregulated in human diabetes. Nature Genetics 2003;34(3):
267–73. [PubMed: 12808457]

23. Sweet-Cordero A, Mukherjee S, Subramanian A, et al. An oncogenic KRAS2 expression signature
identified by cross-species gene-expression analysis. Nature Genetics 2004;37:48–55. [PubMed:
15608639]

24. Efron B, Tibshirani R. On testing the significance of sets of genes. Annals of Applied Statistics 2007;1
(1):107–29.

25. Smyth GK. Linear models and empirical Bayes methods for assessing differential expression in
microarray experiments. Statistical Applications in Genetics and Molecular Biology 2004;3(1):3.

26. Tian L, Greenberg SA, Kong SW, Altschuler J, Kohane IS, Park PJ. Discovering statistically
significant pathways in expression profiling studies. Proceedings of the National Academy of
Sciences 2005;102(38):13544–49.

27. Pavlidis, P.; Lewis, DP.; Noble, WS. Exploring gene expression data with class scores. Pacific
Symposium on Biocomputing; New Jersey. 2002. p. 474-85.

28. Rahnenfuhrer J, Domingues FS, Maydt J, Lengauer T. Calculating the statistical significance of
changes in pathway activity from gene expression data. Statistical Applications in Genetics and
Molecular Biology 2004;3(1):16.

29. Mccullagh, P.; Nelder, JA. Generalized linear models monographs on statistics and applied
probability. Chapman and Hall; London: 1989.

30. Lin X. Variance component testing in generalised linear models with random effects. Biometrika
1997;84(2):309–26.

31. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components
analysis corrects for stratification in genome-wide association studies. Nature Genetics 2006;38(8):
904–09. [PubMed: 16862161]

32. Kong SW, Pu WT, Park PJ. A multivariate approach for integrating genome-wide expression data
and biological knowledge. Bioinformatics 2006;22(19):2373. [PubMed: 16877751]

33. Cangelosi R, Goriely A. Component retention in principal component analysis with application to
cDNA microarray data. Biology Direct 2007;2(1):2. [PubMed: 17229320]

34. Peres-Neto PR, Jackson DA, Somers KM. How many principal components? Stopping rules for
determining the number of non-trivial axes revisited. Computational Statistics and Data Analysis
2005;49(4):974–97.

35. Valle S, Li W, Qin SJ. Selection of the number of principal components: the variance of the
reconstruction error criterion with a comparison to other methods. Industrial & Engineering
Chemistry Research 1999;38(11):4389–4401.

36. Jolliffe, I. Principal component analysis. Springer; New York: 2002.
37. Zhu M, Ghodsi A. Automatic dimensionality selection from the scree plot via the use of profile

likelihood. Computational Statistics and Data Analysis 2006;51(2):918–30.
38. Goeman JJ, Buhlmann P. Analyzing gene expression data in terms of gene sets: methodological issues.

Bioinformatics 2007;23(8):980. [PubMed: 17303618]
39. Allison DB, Cui X, Page GP, Sabripour M. Microarray data analysis: from disarray to consolidation

and consensus. Nature Reviews Genetics 2006;7(1):55–65.
40. Bair E, Hastie T, Paul D, Tibshirani R. Prediction by supervised principal components. Journal of the

American Statistical Association 2006;101(473):119–37.

Wu and Lin Page 15

Stat Methods Med Res. Author manuscript; available in PMC 2010 February 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Wu and Lin Page 16

Table 1

2 × 2 ORA Contingency table based on membership in the list of differentially expressed genes (D) and the list
of genes in the gene set (S)

Diff. expressed Not diff. expressed

In gene set NSD NSDc NS

Not in gene set NSc D NSc Dc NSc

Total ND NDc N

Stat Methods Med Res. Author manuscript; available in PMC 2010 February 23.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Wu and Lin Page 17

Ta
bl

e 
2

D
ia

be
te

s d
at

as
et

 re
su

lts

T
op

 1
00

 g
en

es
T

op
 5

%
G

SE
A

G
SA

G
lo

ba
l

PC
A T

PC
A K

Fi
sh

er
χ2

-te
st

Fi
sh

er
χ2

-te
st

10
0 

(F
is

he
r)

7
7

7
7

2
5

2
2

2

10
0 

(χ
2 -

te
st

)
32

10
32

3
5

3
3

2

5%
 (F

is
he

r)
60

60
8

17
4

3
14

5%
 (χ

2 -
te

st
)

82
9

17
4

4
14

G
SE

A
18

9
1

0
6

G
SA

20
2

2
10

G
lo

ba
l

4
1

3

PC
A T

5
1

PC
A K

16

Stat Methods Med Res. Author manuscript; available in PMC 2010 February 23.


