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Abstract

This paper discusses Bayesian inference in change-point models.
The main existing approaches either attempt to be noninformative by
using a Uniform prior over change-points or use an informative hi-
erarchical prior. Both these approaches assume a known number of
change-points. We show how they have some potentially undesirable
properties and discuss how these properties relate to the imposition
of a �xed number of change-points. We develop a new Uniform prior
which allows some of the change-points to occur out-of sample. This
prior has desirable properties, can reasonably be interpreted as �non-
informative� and handles the case where the number of change-points

�We would like to thank Edward Leamer for useful conversations and also seminar
participants at the Federal Reserve Bank of St. Louis and University of Kansas. The
views expressed in this paper are those of the authors and do not necessarily re�ect the
views of the Federal Reserve Bank of New York or the Federal Reserve System.
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is unknown. We show how the general ideas of our approach can be ex-
tended to informative hierarchical priors. With arti�cial data and two
empirical illustrations, we show how these di¤erent priors can have a
substantial impact on estimation and prediction even with moderately
large data sets.

1 Introduction

Change-point modeling has become popular due to an increasing awareness of
the importance of this issue for empirical practice.1 For instance, papers such
as Ang and Bekaert (2002) and Stock and Watson (1996) have documented
the widespread structural instability in many macroeconomic and �nancial
time series. The importance of this for empirical �nance and macroeconomics
cannot be overstated. Empirical work which ignores this instability can miss
important patterns in the data and can result in misleading policy advice. As
one example (among many), there has recently been interest in the volatility
of US real activity which appears to have been greatly reduced in the last
few decades. This �nding is sometimes referred to as the Great Moderation
of the business cycle. For instance, Kim, Nelson and Piger (2004) investigate
breaks in the volatility of various measures of aggregate activity. For most of
the measures they consider, they �nd strong evidence of an abrupt break in
the early 1980s. Stock and Watson (2002) �nd similar evidence for a change
in volatility, but �nd the decline to have been more gradual. Empirical
research which ignores this change in volatility risks, e.g., substantially over-
estimating the uncertainty in GDP growth forecasts.
We should de�ne from the beginning what change-point models are dis-

cussed in this paper. We consider ones where the parameters of the likelihood
function change at discrete points in time, � 1; ::; �M�1 and, thus, there the
data is divided into M regimes. So, for instance, if the likelihood function is
obtained from a regression model using data on a dependent variable yt and
explanatory variables (in the vector xt), we have

1In economics, the terminology �structural break� modeling is often used. We prefer
to use the concept of a change-point because the term �structural break� suggests some
underlying structure has changed. There are many cases in economics where reduced form
relationships can change with the underlying structure remaining constant.
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yt = x
0

t�1 + �1"t if t � � 1
yt = x

0

t�2 +�2"t if � 1 + 1 � t � � 2
.
.
yt = x

0

t�M +�M"t if t � �M�1

(1.1)

where "t is i.i.d. standard Normal. Equation 1.1 de�nes a likelihood function
for the model (although the methods discussed in this paper can be used
with any likelihood function). However, Bayesian inference requires a prior
and this is what the present paper is about.
As a digression, we stress that, in this paper, we are focussing on prior

elicitation with regards to the change-points, � 1; ::; �M�1 and not the parame-
ters which characterize the likelihood function within a regime (e.g. �1; ::; �M
and �1; ::; �M). This is not because we think prior elicitation for the latter
parameters is unimportant, but merely to focus the discussion on the change-
point issue. Indeed, in Koop and Potter (2007), we have stressed how priors
linking coe¢cients across regimes can be very useful when forecasting (see
also Pastor and Stambaugh, 2001, and Pesaran, Pettenuzzo and Timmer-
man, 2007).2 Classical analyses of change-point models almost invariably
assume that, after a break occurs, anything can happen (e.g. �2 and �1 can
potentially be completely di¤erent) and the present paper makes a similar
assumption. However, we stress that the basic insights of the present paper
would still hold if we used more sophisticated priors which link parameters
in di¤erent regimes in some fashion.
Our starting point, in the next section of this paper, will be a prior which

is Uniform over the set of all possible change-points. For the Bayesian, Uni-
form priors are often used to be noninformative; to express a lack of prior
information. This can be thought of as the Bayesian analogue of what the
classical econometric literature does. That is, a priori every change-point is
treated as being equally likely. In the case of a single change-point, the de�-
nition of a Uniform prior is relatively non-controversial. But with more than
one change-point we show how an apparently sensible �noninformative� prior
can be very informative indeed in a potentially undesirable manner. We use
this insight to develop a new prior which can be more sensibly interpreted as

2Furthermore, time varying parameter (TVP) models are also a popular choice when
faced with structural instability and they involve close links across regimes through state
equations (e.g. �

t
= �

t�1
+ ut).
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�noninformative�. However, a property of this new prior is that it allows for
change-points to occur out-of-sample. We show how this apparently unusual
property is actually a very desirable one since it allows us to treat the number
of change-points in-sample as unknown (and, thus, estimate it).
In contrast to the classical literature, the existing Bayesian literature

often uses informative hierarchical priors for the change-points. Perhaps the
most popular Bayesian approach is that of Chib (1998). In the third section
of this paper, we develop the insight of Chib (1998) on the relationship
between change-point models and hidden Markov chains with a particular
focus on the role of prior information. In particular, we show that a prior
which imposes a speci�ed number of change-points also leads to potentially
undesirable behavior at the end of the sample. We discuss how such behavior
can be avoided with an extension of our new prior.
This discussion of prior elicitation may sound abstract and of little practi-

cal importance for the classical econometrician and practical Bayesian alike.
The former may feel prior elicitation issues are not relevant for classical
econometrics. However, the issues which we discuss (e.g. the imposition of
a �xed number of change-points) have their parallels in classical economet-
rics. Furthermore, many of our �prior elicitation� issues can be thought of
more generally as modeling issues. For instance, the hierarchical prior of
Chib (1998) would be thought of as part of the likelihood function by the
classical econometrician. The posterior simulation algorithm of Chib (1998)
could (with minor adaptations) be used to carry out maximum likelihood
estimation. Thus, the issues we discuss are of relevance for the classical
econometrician.
The practical Bayesian may feel that minor changes in the prior are unim-

portant if one has a moderately large data sets. A key point of this paper
is to show that these are not minor changes, but ones that can have sub-
stantive e¤ects on posterior and predictive inference, even with sample sizes
of relevance in macroeconomics. We make this point by using arti�cial data
sets and by providing two empirical illustrations. The �rst of these uses US
real GDP growth data from 1947Q2 through 2006Q4 to investigate the Great
Moderation of the business cycle. The second uses the coal mining disaster
data analyzed in Chib (1998).
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2 Uniform Priors for Change-points

2.1 Theoretical Considerations

The classical econometric literature on change-points (see, among many oth-
ers, Bai and Perron, 1998) typically gives equal weight, before seeing the
data, to every possible change-point (apart, perhaps from a �prior� restric-
tion that each regime must contain X% of the observations). The Bayesian
wishing to proceed in a comparably �noninformative� manner would turn to
the class of discrete Uniform distributions for prior elicitation. In the case
where there is a single change-point, � 1, such an approach is straightforward.
Simply setting:

p (� 1) =
1

T � 1
for � 1 = 1; ::; T � 1 (2.1)

yields an unambiguously ��at� prior and imposes exactly two regimes in the
sample (M = 2).
However, such a prior does not generalize well to more than one change-

point. We illustrate this in the case with two change-points, � 1 and � 2. The
apparently sensible extension of (2.1) would write the prior as p (� 1; � 2) =
p (� 1) p (� 2j� 1) where

p (� 1) =
1

T � 2
for � 1 = 1; ::; T � 2 (2.2)

p (� 2j� 1) =
1

T � � 1 � 1
for � 2 = � 1 + 1; ::; T � 1: (2.3)

This prior does impose exactly two regime changes in sample and the prior
for � 2j� 1 appears noninformative over all values of � 2 after the �rst change-
point. However, it can be veri�ed that, if we integrate out � 1, the marginal
prior for � 2 is very non-Uniform, giving more weight to change-points late in
the sample:

p (� 2 = j) =
1

T � 2

jX

i=2

1

T � i
for j = 2; ::; T � 1: (2.4)

This prior (for a sample size of 100) is shown in Figure 1. Its shape is
the reverse of a Geometric distribution. Similar results and prior shapes
hold when we have M > 3 regimes in our sample. Is this property of this
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Uniform prior undesirable? Of course, this depends on the empirical context
(something we will investigate below). However, there is a possibility that a
researcher could use this prior, thinking it is �noninformative�, but empirical
results could be a¤ected by the greater prior weight for � 2 near the end of
the sample.

Figure 1

We will refer to priors such (2.2) and (2.3) as Restricted Uniform priors
since they restrict the prior to impose a �xed number of change-points on
the model. Let us now consider what would happen if we worked with a
prior which is ��at� in another sense. We again will illustrate using the two
change-point case, with the extension to more change-points being obvious.
We refer to this new prior as the Unrestricted Uniform prior since, as we shall
see, it does not restrict the model to have a �xed number of change-points
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in-sample. As with the Restricted Uniform prior we begin with p (� 1; � 2) =
p (� 1) p (� 2j� 1) and assume

p (� 1) =
1

T � 2
for � 1 = 1; ::; T � 2: (2.5)

However, we replace (2.3) by

p (� 2j� 1) =
1

T � 2
for � 2 = � 1 + 1; ::; T + � 1 � 2: (2.6)

Note that this prior has the very sensible property that both p (� 2j� 1) and
p (� 2) are Uniform and have same number of points of support. There is
no pile-up of prior probability near the end of the sample as in Figure 1.
However, it also has the unconventional property that it allocates prior weight
to change-points outside the observed sample. We will argue that this is a
highly desirable property since, not only does this prior not place excessive
weight on change-points near the end of the sample, but also there is a sense
in which it allows us to handle the case where there is an unknown number
of change-points. That is, the prior given by (2.5) and (2.6) does impose
that there are two change-points, but since one of them can occur out of
sample, it implicitly allows for one (in-sample) change-point as well. We will
elaborate on these points below.
We now describe our general Unrestricted Uniform prior which allows for

a maximum of M � 1 change-points in-sample and adds one possible useful
generalization to (2.5) and (2.6). We write the Unrestricted Uniform prior
as p (� 1; � 2; ::; �M�1) = p (� 1)

PM�1
j=2 p (� jj� j�1) and assume

p (� 1) =
1

[cT ]
for � 1 = 1; ::; [cT ] : (2.7)

and

p (� jj� j�1) =
1

[cT ]
for � j = � j�1 + 1; ::; � j�1 + [cT ] (2.8)

Note that this prior still has the desirable property that p (� 1), p (� jj� j�1)
and p (� j) (for j = 2; ::;M � 1) are all Uniform (and have the same number
of points of support). Thus, it is truly noninformative with respect to the
change-points. It also introduces a scalar parameter c which controls the
maximum duration of each regime. The notation [cT ] indicates the smallest
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integer such that cT � [cT ]. Thus, if c = 1
T
we obtain the time varying-

parameter (TVP) model, whereas as c becomes larger we obtain priors which
place more weight on models with fewer regimes. For instance, the prior
in (2.5) and (2.6) had a maximum of two change-points in-sample and set
c = T�2

T
. At the extreme, the researcher might wish to consider values for

c in the interval
�
1
T
; 2
�
as this would nest everything from the TVP model

(with a break every period) through a model which allocates appreciable (i.e.
50%) prior weight to a model with no change-points at all (in-sample). In
practice, the researcher would likely wish to consider a much narrow range
of values for c.
In our previous work, Koop and Potter (2007), we argued that it is rarely

sensible to restrict the maximum duration of regimes ex ante. With the prior
given in (2.7) and (2.8), provided c � 1, the maximum duration of regimes
in-sample will not be restricted. Such a consideration could be useful when
selecting c or in eliciting a prior for c.
Values for c and M can be selected by the researcher. However, it is

also possible to treat them as unknown parameters and they can either be
estimated or integrated out in the standard Bayesian fashion. To see how
this would be done, suppose we have data on a time series variable, yt for
t = 1; : : : ; T and letYi = (y1; : : : ; yi)

0 denote the history through time i. The
marginal likelihood for given values of c, M and the change-points is given
by:

p (YT j� 1; ::; �M�1; c;M) : (2.9)

The exact form of this marginal likelihood will depend on the likelihood and
prior for the parameters in each regime (below we will provide examples).
Suppose �rst that the researcher has selected speci�c values of c andM . It is
possible to base empirical results on a particular choices of � 1; ::; �M�1 (e.g.
one can choose the values of � 1; ::; �M�1 which yield the maximum value for
the marginal likelihood). However, the Bayesian would prefer to integrate out
the change-points so that empirical results re�ect the uncertainty associated
with them. The rules of probability imply:

p (YT jc;M) =
X

�1

::
X

�M�1

p (YT j� 1; ::; �M�1; c;M) p (� 1; ::; �M�1jc;M) ;

(2.10)
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where each summation is over all possible values of the appropriate change-
point. The marginal likelihood in (2.10) could be used as a basis for empirical
work. Provided an analytical form for (2.9) exists and M is not too large,
(2.10) can be calculated in a straightforward manner by simply evaluating
(2.9) at every possible change-point. Alternatively, various simulation algo-
rithms (see, e.g., Koop and Potter, 2003) for drawing the change-points can
be used to evaluate (2.10).
Now let us suppose the researcher is interested in treating c and M as

random variables. This requires knowledge of their posterior, p (c;M jYT ).
But Bayes� rule tells us that:

p (c;M jYT ) / p (YT jc;M) p (c;M) : (2.11)

Thus, (2.10) and a prior for c and M can be used to evaluate the requisite
posterior. Since c and M are scalar parameters, (2.11) can be calculated by
evaluating each component on the right-hand side at a grid of values for c and
every possible choice for M . Alternatively, a posterior simulation algorithm
(e.g. a Metropolis-Hastings algorithm) can be developed for c.
Our preferred empirical strategies are either to simply select values for c

andM or to select a value forM (i.e. chooseM�1 as the maximum number
of in-sample regimes that the researcher thinks is plausible) and treat c as
an unknown parameter. For instance, many classical structural break papers
using macroeconomic data allow for one or two breaks. Combining this
consideration with a desire not to restrict the maximum duration of regimes
ex ante, would suggest setting M = 2 and c = T .
We have now derived two priors: the Restricted and Unrestricted Uniform

priors. We have seen how the former of these has an undesirable property (i.e.
the pile-up of prior probability near the end of the sample) while the latter
has an apparently unusual property (i.e. the fact that some of the change-
points can occur out-of-sample). We will now provide a theoretical discussion
of this latter property (an empirical consideration of both properties will be
provided shortly). It is worth stressing that out-of-sample change-points
cause no technical nor computational problems for the Bayesian. Bayesian
analysis involves a prior and a likelihood function. The likelihood function, of
course, re�ects data information. If, say, � 2, occurs out-of-sample then there
will be no data information about � 2 and, thus, no likelihood information.
However, there still will be prior information about � 2. Provided the prior
is proper (as is the case for all priors used in this paper), a valid posterior
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density for � 2 exists. This is merely a re�ection of the well-known Bayesian
result that non-identi�cation does not pose a di¢culty for Bayesians, but that
the posterior for a non-identi�ed region of the parameter space will typically
be equal to the prior (see, e.g., Poirier, 1998).3

In one sense, our Unrestricted Uniform prior can be thought of as a simple
trick for avoiding the �pile-up of prior probability at the end-of-sample�
problem of the Restricted Uniform prior. We would argue that this reason
alone makes it a useful addition to the literature. However, the value of
the Unrestricted Prior goes well beyond this in that it allows for us treat
the number of change-points in-sample as unknown. For the same reason as
the Restricted Uniform prior will have the �pile-up of prior probability at the
end-of-sample� problem, any model with a �xed number of change-points will
exhibit this problem. Thus, we argue that it is important to develop models
where the number of change-points is unknown and estimated from the data.
The discussion after (2.6) makes clear that the Unrestricted Uniform prior
treats the number of change-points in-sample as unknown. Other models do
exist with this property (e.g. Giordani and Kohn, 2006, Koop and Potter,
2007 and McCulloch and Tsay, 1993). However, the existing literature uses
priors which are informative over the change-points. To our knowledge, the
Unrestricted Uniform prior is the only existing prior which in noninformative
over the change-points. Our empirical section will show how this prior works
in practice.

2.2 Empirical Illustrations Using Uniform Priors

We illustrate our Restricted and Unrestricted Uniform priors in the context
of the AR(p) model with change-points (i.e. equation 1.1 with xt containing
an intercept and p lags of the dependent variable). A prior is required for the
coe¢cients in each regime and, for these, we choose the natural conjugate
prior so that (conditional on � 1; ::; �M�1; c and M) analytical results for the
marginal likelihood (i.e. equation 2.9), posterior and predictive distributions
are available (see, e.g., Koop, 2003, chapter 3).Throughout this section, we
use a relatively noninformative prior which re�ects a weak belief in station-
arity for the AR coe¢cients. Of course, in a more substantive empirical
exercise, a prior sensitivity analysis could be done or a more objective prior

3Formally, the prior for a non-identi�ed parameter is equal to its posterior, unless it is
a priori correlated with an identi�ed parameter.
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elicitation procedure used (e.g. the g-prior or a prior based on a training
sample).To be precise, our prior for the intercept and AR coe¢cients in each
regime is:

�jj�
2
j � N(0; 0:25�

2
jI)

and

��2j � G(1; 1);

where G (a; b) denotes the Gamma distribution with mean ab and variance
ab2. Note that the prior for the error precision is relatively noninformative
(its degrees of freedom parameter is two) but has mean one. In our example
using real GDP growth, our data is measured as a percentage so that this
prior covers a reasonable region of the parameter space.
There are many ways we could compare our di¤erent models and priors

(and we illustrate several below). However, especially since many of the
problems with priors which impose a �xed number of change-points occur at
the end of the sample, predictive results are of particular relevance and these
receive much emphasis in all of our empirical illustrations.

2.2.1 Illustrations Using Arti�cial Data

In this section, we will illustrate several aspects of our priors using arti�cial
data generated from two di¤erent data generating processes (DGPs). Both
of our DGPs have T = 100 and the error variances in each regime are set to
one. The conditional mean within each regime is given by an AR(1) model
with intercept set to zero. Our DGPs thus di¤er only in the number of
change-points and the value taken for the AR(1) coe¢cient (which we will
label �j for j = 1; ::;M) in each regime.
We calculate results for the Restricted and Unrestricted Uniform priors

for M = 1; 2; 3 (with AR(1) processes within each regime). The M = 1 case
is simply the AR(1) model without a change-point. For the Unrestricted
Uniform prior we set c = 2. Given the likelihood and natural conjugate prior
assumed, analytical results are available and we can simply evaluate the
marginal likelihood for given change-points in (2.9) at every possible change-
point and average as in (2.10) to produce an overall marginal likelihood for
each model.
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Our �rst DGP, DGP1, does not have any change-points and sets �1 = 0:5
and illustrates how our Unrestricted Uniform prior yields more sensible in-
ference than the Restricted Uniform prior. Figure 2 plots the posterior mean
of �1 for these two priors withM = 2. Since c = 2, the Unrestricted Uniform
prior says that there is a 50% probability that the change-point occurs out of
sample. Thus, in essence, it is allocating 50% of the prior probability to the
(correct) model with no change-points. In Figure 2, the point estimate of the
AR(1) coe¢cient resulting from the Unrestricted Uniform prior is close to a
horizontal line near the true value of �1 = 0:5, although the prior is pulling
slightly towards the prior mean of zero. The Restricted Uniform prior, which
says that there is a 100% probability of a change-point occurring, is far dif-
ferent, especially at the end of the sample (note that the posterior mean of
the AR(1) coe¢cient is pulled down below 0:2 by the end of the sample).
This shows the risks of incorrectly imposing a change-point on a model when
none exists. We stress that the Unrestricted Uniform prior will never run
this risk.
Figure 3, which plots the posterior for the change-point using the Unre-

stricted Uniform prior withM = 2 shows how this prior achieves this sensible
result. Most of the posterior probability is allocated out-of-sample indicating
that no change-points occur in-sample. The posterior out-of-sample is simply
equal to the prior (and it, thus, �at) but this does not cause and problems
for estimation (see Figure 1) nor prediction (see Table 1).
Table 1 presents the log of marginal likelihoods for the various models for

this DGP. As expected, the true model (with no change-point) has a higher
marginal likelihood. Regardless of whetherM = 2 orM = 3 the Unrestricted
Uniform prior yields a higher marginal likelihood than the Restricted Uniform
Prior, despite the fact that it is noninformative over a much larger support.
Table 1 also presents predictive means and standard deviations for yT+1

for the various models and priors we are using. Since DGP1 has no change-
points, we would expect the predictive results for the AR(1) to be most
reliable. Note that the Unrestricted Uniform priors are producing predic-
tive results which are much closer to the AR(1) results than those from the
Restricted Uniform prior. Clearly, incorrectly imposing a �xed number of
change-points in-sample (as the Restricted Uniform prior does) can have
negative implications for posterior and predictive inference. The use of the
Unrestricted Uniform prior allows us to avoid this risk.
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Figure 2: Comparing the AR Coe¢cient when the DGP Has No Breaks
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Figure 3: The Posterior of the Change-Point when the DGP Has No Breaks

Table 1: Log Marginal Likelihoods for Di¤erent Uniform Priors for DGP1
Log Marginal
Likelihood

Predictive
Mean

Predictive
St. Deviation

AR(1) -143.67 -0.17 1.00
Restricted (M = 2) -145.99 -0.16 1.06
Restricted (M = 3) -147.75 -0.21 1.07
Unrestricted (M = 2) -145.32 -0.17 1.01
Unrestricted (M = 3) -146.13 -0.18 1.05

Our second DGP, DGP2, is the same as DGP1 with the exception that
�1 = 0:0 (which holds for t � 50) and �2 = 0:75 (for other values of t).
For this DGP, M = 2 is the correct choice and results presented in Table
2 indicate this. The Restricted and Unrestricted Priors with M = 2 have
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the highest marginal likelihoods and their predictive densities have the same
mean and standard deviation (to two decimal places). More interesting is
what happens when M = 3. For this case, the Unrestricted Uniform prior is
producing a predictive mean and standard deviation which are very similar
to M = 2 results, whereas the Restricted Uniform prior is producing very
di¤erent results. Clearly, the Restricted Uniform prior is yielding reasonable
results when M is selected correctly and a well-de�ned change-point occurs
in the middle of the sample. But in other cases the Restricted Uniform
prior can be misleading (but the Unrestricted Uniform prior yields sensible
results).
It is also worth noting that in DGP2 with the Restricted Uniform prior,

the marginal likelihood for the (correct) M = 2 model is only slightly higher
than that of the (incorrect) M = 3 model. Thus, in a Bayesian model
averaging exercise involving only the Restricted Uniform prior, the incorrect
M = 3 case will get substantive weight. Furthermore, this is only one DGP.
If one were to use other randomly generated DGPs it would, of course, be
possible to select the wrong model. With the Unrestricted Uniform prior we
do not run these risks.
For the sake of brevity, we do not reproduce �gures comparable to Figures

2 and 3 for DGP2. If we had, they would have shown that the Unrestricted
Uniform prior with M = 2 would have yielded sensible posterior results
for the AR(1) coe¢cient, capturing the abrupt regime switch in the DGP.
Furthermore, the posterior for the second change-point allocates almost all of
its probability out-of-sample. Overall, we are �nding strong support for our
story that the Unrestricted Uniform prior is an e¤ective way of estimating
the number of change-points in-sample (as opposed to imposing it on the
model) and avoiding the �pile-up of prior probability at the end-of-sample�
problem associated with the Restricted Uniform prior.

Table 2: Log Marginal Likelihoods for Di¤erent Uniform Priors for DGP2
Log Marginal
Likelihood

Predictive
Mean

Predictive
St. Deviation

AR(1) -153.76 0.17 1.09
Restricted (M = 2) -149.18 0.46 1.01
Restricted (M = 3) -150.21 0.29 1.27
Unrestricted (M = 2) -149.88 0.46 1.01
Unrestricted (M = 3) -150.06 0.45 1.04
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2.2.2 Empirical Illustration Using Real GDP Growth Data

There are many papers which investigate structural breaks in real GDP
growth. Of particular interest is the volatility of US real activity and the
question of whether it has decreased over time. In this section we shall inves-
tigate this issue using U.S. real GDP growth from 1947Q2 through 2006Q4.
We use an AR(2) in each regime and the priors for the coe¢cients are de-
scribed at the beginning of this section.
Given the �ndings of Kim, Nelson and Piger (2004) and a wish not to

restrict the maximum duration of each regime in-sample, we select M = 3
and c = 1. This allows for up to three regimes in-sample, and since the
maximum regime duration is T it also allows for no change-points to occur
in-sample. Given that this paper relates to change-point modeling and the
related empirical literature relates to changes in volatility, Figure 4 presents
the posteriors for � 1,� 2 as well as the posterior mean of the volatility (i.e.
the standard deviation of the error) at each point in time.
An examination of Figure 4 show that there does seem to be strong ev-

idence of a change-point in the early 1980s (with E (� 1jYT ) = 1983:2 with
posterior standard deviation of 3:8). This is re�ected in the plot of the
volatility which shows the Great Moderation decrease found by others in the
early 1980s. Most evidence indicates that the second change-point occurs
out-of sample, showing how, with the Unrestricted Uniform prior, M �1 can
play the role of a maximum number of change-points with the actual num-
ber occurring in-sample being estimated. In particular, the posterior for � 2
implies that there is a 96:5% probability that the second change-point occurs
out-of-sample (and, thus, that there is one change-point in-sample). The
remaining 3:5% of the posterior probability indicates that there is a second
change-point in volatility in the early- to mid-1980s.
It is also worth noting that the fact that our change-points are treated

as random parameters means that changes in coe¢cients over time do not
have to be abrupt. For instance, if we set � 1 = 1983 (with � 2 being out-
of-sample), then the graph of volatility would have been a step function.
However, in Figure 4, the decline in volatility is much more gradual than
a step function. We are �nding appreciable probability (e.g. one percent
or more) of a change-point in all quarters between 1982 and 1985. Thus,
the stochastic treatment of change-points can be quite useful when modeling
gradual evolution of coe¢cients in that even a small number of change-points
can allow for quite �exible behavior.
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A good benchmark to compare our Unrestricted Uniform prior (with
M = 3) results is the Restricted Uniform prior withM = 3. Figure 5 presents
results for this prior in the same format as Figure 4. If nothing else, a com-
parison of Figures 4 and 5 makes the point that priors matter. At �rst pass,
the Restricted and Unrestricted Uniform priors might seem like very similar
�noninformative� priors. Clearly they are yielding quite di¤erent posteriors.
In contrast to the Unrestricted Uniform prior, the Restricted Uniform prior is
yielding much evidence that the �rst change-point is occurring at the begin-
ning of the sample and it is the second change-point that is occurring in the
early 1980s (although there is also some evidence that � 2 is occurring at the
end of the sample). This di¤erence in posterior inference about change-points
between the two priors can, of course, have consequences for posterior infer-
ence about other parameters or for prediction. In terms of volatility �ndings,
although the main �Great Moderation in the early 1980s� pattern is found
using both Unrestricted and Restricted Uniform priors, non-negligeable dif-
ferences between these two priors are found at both the beginning and the end
of the sample. Furthermore, Table 3 presents predictive means and standard
deviations for yT+1 obtained using the two priors. Although the predictive
means are quite similar to one another, the predictive standard deviation is
substantially larger using the Restricted Uniform prior. This is due to the
small upturn in the stochastic volatility at the end of the sample found using
this prior. This small upturn is due to the fact that the Restricted Uniform
Prior is �nding a small probability of a change-point occurring at the end of
the sample. This �nding, in turn, is due to the pile up of prior probability
at the end of the sample which arises with the Restricted Uniform prior.
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Figure 5: Results Using Restricted Uniform Prior with M=3

Table 3 presents marginal likelihoods and predictive results for a wider
range of models. Note that, for c = 1, the Restricted and Unrestricted Uni-
form priors with M = 2 are the same. Using our approach, there seems
strong evidence in favor of one change-point occurring in-sample. One mes-
sage from this table is that, with the Unrestricted Uniform prior, we can
correctly obtain this result (even if we set M = 3). Another message is
that the Restricted Uniform prior can lead you astray (as evidenced, e.g., by
an examination of predictive means and standard deviations) unless you get
the the number of change-points exactly correct. Our preferred strategy is
to select a maximum number of regimes, M , and then use the Unrestricted
Uniform prior to tell us the number of change-points in-sample. This seems
to work well with this data set. An alternative strategy would be to use the
Restricted Uniform prior with several values for M and then select the value
for M which yields the highest marginal likelihood (or do Bayesian model
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averaging over di¤erent values forM). In this case, these two strategies yield
roughly the same results (although Bayesian model averaging would attach
almost �ve percent of the probability to the misleadingM = 3 results). How-
ever, with model selection there is always the chance of selecting an inferior
model. Furthermore, this example provides strong evidence for one change-
point and, as we have seen, the �pile-up of prior probability at the end of the
sample� problem occurs most prominently when more change-points occur.

Table 3: Log Marginal Likelihoods and
Predictive Properties for Di¤erent Uniform Priors

Log Marginal
Likelihood

Predictive
Mean

Predictive
St. Deviation

AR(2) -327.75 0.71 0.93
Restricted (M = 2) -302.60 0.61 0.49
Restricted (M = 3) -305.90 0.58 0.62
Unrestricted (M = 2) -302.60 0.61 0.49
Unrestricted (M = 3) -303.05 0.61 0.49

In the previous material, we have chosen particular values for c for the
Unrestricted Uniform prior. We remind the reader that it is possible to
treat c as an unknown parameter and either choose a particular value for
it (e.g. choose the posterior mode of c) or integrate it out (see equation
2.11 and surrounding discussion). For this empirical application we do not
present detailed results using either approach since they are similar to those
presented above (provided c is big enough to allow for � 2 to occur out-of-
sample). Figure 6 plots the posterior of c (for M = 3).
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Figure 6: Posterior Results using Unrestricted Uniform Prior with M=3

3 Other Priors for Change-Points

The main purpose of this paper is to discuss priors for change-points which
are noninformative, comparable to the methods used by classical econome-
tricians. However, it is worth noting that several informative priors are
popularly used with change-point models. In this section, we brie�y describe
some approaches and show how similar issues arise with them. In particular,
if a particular number of change-points is imposed in-sample then one can
end up with priors which are informative (particularly near the end of the
sample) in an undesirable way. This can have a substantial impact on poste-
rior inference in empirically-reasonable data con�gurations. It is preferable
to treat the number of change-points as unknown and estimate it. In a simi-
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lar manner as the Restricted Uniform prior has undesirable properties which
can be eliminated if we use an Unrestricted Uniform prior, we discuss how
other existing approaches can be extended.
Perhaps the most in�uential Bayesian change-point model in economet-

rics is developed in Chib (1998).4 Variants on this model are commonly-used
in empirical work in economics and �nance [e.g. Pastor and Stambaugh
(2001) and Kim, Nelson and Piger (2004)]. See also Pesaran, Pettenuzzo
and Timmerman (2007) and Maheu and Gordon (2007) for recent extensions
of relevance for forecasting in change-point models. Chib�s model grew out
of early work by Cherno¤ and Zachs (1964). The latter presented a model
where, in each period there is a constant probability of a change to a new
regime. If a change occurs the mean of the dependent variable is perturbed
by a mean zero Normally distributed shock, if no change occurs the mean
remains the same. Chib (1998) generalized the Cherno¤ and Zachs approach
so that the probability of change could vary through time by treating the
change-point problem using hidden Markov chains. In the approach of Chib
(1998), the problem of locating the change-points is converted into the prob-
lem of determining the duration of a Markov regime. As argued by Chib, this
allows for the estimation of models, using modern Bayesian methods, with
multiple change-points that appear infeasible under the standard approach
to change-point problems.
To explain the approach of Chib (1998), we extend our earlier nota-

tion. Remember that we have data on a time series variable, yt for t =
1; : : : ; T and let Yi = (y1; : : : ; yi)

0 denote the history through time i. Regime
changes depend upon a discrete random variable, st, which takes on values
f1; 2; : : : ;Mg. The likelihood function is de�ned by assuming p (ytjYt�1; st = m) =
p (ytjYt�1;�m) for a parameter vector �m for m = 1; : : : ;M . Thus, change-
points occur at times �m de�ned as

�m = ft : st+1 = m+ 1; st = mg for m = 1; : : : ;M � 1: (3.1)

To avoid confusion, it is worth stressing that change-point models can be
parameterized in di¤erent ways. With our Uniform priors, we parameterized
directly in terms of the change-points (i.e. � 1; ::; �M�1). But one can also
work in terms of states which denote each regime (i.e. st). It is also possible
to write models in terms of durations of regimes. In the following material,

4Other key early Bayesian work in the statistics literature includes Carlin, Gelfand,
and Smith (1992), Barry and Hartigan (1993) and Stephens (1994).
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we use all of these parameterizations, depending on which best illustrates the
points we are making. However, we do stress that they are equivalent. So,
for instance, a time series of 100 data points with a break at the 60th can be
expressed as � 1 = 60, or st = 1 for t = 1; ::; 60;and st = 2 for t = 61; ::; 100,
or d1 = 60 and d2 = 40 (where dm denotes the duration of regime m).
Chib (1998) puts a particular structure on this framework by assuming

that st is Markovian. That is,

Pr (st = jjst�1 = i) =

8
>><

>>:

pi if j = i 6=M
1� pi if j = i+ 1
1 if i =M
0 otherwise

(3.2)

In words, the time series variable goes from regime to regime. Once it has
gone through the mth regime, there is no returning to this regime. It goes
through regimes sequentially, so it is not possible to skip from regime m to
regimem+2. Once it reaches theM th regime it stays there (i.e. it is assumed
that the number of change-points in the sample is known). In Bayesian
language, (3.2) describes a hierarchical prior for the vector of states.5

There are many advantages to adopting the framework of Chib (1998).
For instance, previous models typically involved searching over all possible
sets of change-points. This is what we have done with our Uniform priors
in the previous section.6 If the number of change-points is even moderately
large, then computational costs can become overwhelming. By using the
Markov mixture model, the posterior simulator is recovering information
on the most likely change-points given the sample and the computational
burden is greatly lowered, making it easy to estimate models with many
change-points. As a digression, it is worth acknowledging that not all non-
Bayesian approaches require searching over all possible sets of change-points.
The in�uential approach of Bai and Perron (1998) is less computationally
burdensome. Bai and Perron start from the observation that there are T (T +
1)=2 ways of partitioning the sample. Bai and Perron then show how an
e¢cient dynamic programming method can be used to �nd the global least
squares minimizer in the special case of all parameters in a linear conditional

5A non-Bayesian may prefer to interpret such an assumption as part of the likelihood,
but this is merely a semantic distinction with no e¤ect on statistical inference [see, e.g.,
Bayarri, DeGroot and Kadane (1988)].

6Although, as discussed in Section 2, it is possible to develop posterior simulation
algorithms which do not require this.
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mean changing at each change-point with no restrictions on the coe¢cients
changes. In this special case they require onlyO(T 2) computations to �nd the
least squares minimizer. But for more general cases, computational problems
can be serious with change-point models. Bayesian inference in the model of
Chib (1998) is based on a Markov Chain Monte Carlo (MCMC) algorithm
with data augmentation and we refer the reader to that paper for details.
Chib chose to model the transition probabilities of the states as having a

constant hazard. This is similar to Cherno¤ and Zachs (1964) who assumed
a constant probability of transition (although Chib allowed the transition
probability to be di¤erent for di¤erent regimes). One consequence of the
constant hazard is that regime duration satis�es a Geometric distribution.
The Geometric distribution is decreasing in the duration and, thus, the im-
plied distribution of the change-points also adopts this property. Thus, this
prior is not noninformative in the sense that the Uniform prior is. For many
applications, Chib�s prior might be sensible. However, for others it may be
too restrictive. For instance, in the case of a single change-point, � 1, is it
always the case that earlier values of � 1 should be preferred to later? The
classical change-point literature implicitly reveals a preference for priors on � 1
which are Uniform (i.e. before seeing the data, every value for � 1, apart from
initial conditions and endpoints, is treated as being equally likely). Such in-
formal discussion suggests we should at least investigate the consequences of
this particular choice of hierarchical prior and consider possible alternatives.
Equation (3.2) de�nes a hierarchical prior for the states. To complete

the model, a prior for pm is required. Chib (1998) and subsequent papers
have assumed this to be a Beta prior with hyperparameters �1; �2:

7 In this
section, we will refer to the change-point model with hierarchical prior given
by (3.2) with a Beta prior for the transition probabilities as the Chib model.
Note, also, that in the following material, we discuss hierarchical priors for
various features (e.g. in the Chib model, the hierarchical prior for durations
is Geometric and depends upon the transition probabilities which have a
Beta prior) as well as marginal priors (e.g. in the Chib model, we can
derive a marginal prior for the durations by integrating out the transition
probabilities using their Beta prior). It is important for the reader to keep
clear these two types of priors. Note that the marginal prior probability for

7See, e.g., Poirier (1995), pages 104-105 for the de�nition and properties of the Beta
distribution.
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the regime durations for the Chib model is:

p(dm) =
B(�1 + dm � 1; �2 + 1)

B(�1; �2)
; d = 1; 2 : : : ; : (3.3)

where B(�1; �2) =
�(�

1
)�(�

2
)

�(�
1
+�

2
)
is the Beta function. It can be con�rmed that if

�2 � 1 then the expected duration does not exist. Further, p(dm) > p(dm+1)
so that this distribution is monotonically decreasing. This illustrates a point
we have mentioned above: this prior implies that regime durations of dm are
more likely than dm+1 . Note that this property is present both both in the
hierarchical prior, p (dmjpm), and the marginal prior, p (dm).
The hierarchical prior in (3.2) can be combined with a likelihood function

within each regime (e.g. equation 1.1) to produce a change-point model with
M regimes. However, note that so far there is nothing in (3.2) alone which
imposes that exactly M regimes occur in-sample. Indeed, if pi > 0, (3.2)
implies there is some probability that a change will never occur in �nite
time. One way to see this is to consider the duration of each regime. As we
have seen, by construction the duration of each regime, dm, has a Geometric
distribution and, thus, the expected duration is given by 1=(1�pm). Without
further restrictions, there is positive probability that even the second regime
will not be reached in a sample size of T: Such a change-point model would
be analogous to our Unrestricted Uniform prior where some of the change-
points could occur out of sample (and indeed such a prior would be desirable
for this very reason).
Nevertheless, the existing literature using the Chib model does impose

M regimes in-sample. This can be done through restricting the prior. To see
what form these restrictions take, note that (3.2) on its own implies

Pr[sT =M jsT�1 =M ] = 1;Pr[sT =M jsT�1 =M � 1] = 1� pM�1:

In words, this says �if at time T�1, you are in regimeM�1, there is nothing
which guarantees you will go to regime M next period�. But this can easily
be restricted to:

Pr[sT =M jsT�1 =M ] = Pr[sT =M jsT�1 =M � 1] = 1 (3.4)

which says �if at time T � 1, you are in regime M � 1, then you must
switch regimes to ensure that exactly M regimes occur in-sample�. Such
a restriction is enough to ensure the model with M = 2 has exactly one
change-point. For M = 3 we require the additional restriction:
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Pr[sT�1 =M � 1jsT�2 =M � 2] = 1

and analogous additional restrictions are required for M > 3.
In the working paper version of this paper,8 we provide further details

on both these priors (i.e. the unrestricted Chib model and the Chib model
with prior restrictions imposed to ensure exactly M � 1 change-points occur
in-sample). In particular, we show how the algorithm of Chib (1996) can
be used even with the prior restrictions. Furthermore, we show how these
prior restrictions can be undesirable in the sense of placing a great deal of
prior weight in favor of change-points near the end of the sample. Since the
reasons for this �pile up of prior probability at the end of the sample� are
much the same as for the Restricted Uniform prior, we will not repeat this
material here. They will be illustrated empirically below. But we do stress
that the same issues as discussed in the previous section hold with the Chib
model, and indeed for any model which imposes an exact number of regimes
in-sample.
Before turning to an empirical illustration, it is worthwhile stressing that

extending Chib�s model to allow for change-points to occur out-of-sample
is trivial. One can simply not impose prior restrictions such as (3.4). One
aspect of the model developed in Koop and Potter (2007) has a similar prop-
erty.9 That is, in our previous work we use a Poisson distribution for the
duration distribution. This allows for change-points to occur out-of-sample
in a similar manner as our Unrestricted Uniform prior. The Poisson distri-
bution, however, implies a prior distribution for the change-points which is
far from �at and, hence, may not be suitable for the Bayesian wishing to
have a �noninformative� prior over the change-points. McCulloch and Tsay
(1993) and Giordani and Kohn (2006) are other approaches to change-point
modeling which do not impose a �xed number of change-points in-sample.
The basic idea of both these approaches is that there is some probability of
switching regimes each period (e.g. McCulloch and Tsay, 1993, simply have
a Bernoulli probability of change, p, which is the same in every period) and,

8Available at http://personal.strath.ac.uk/gary.koop/.
9Much of Koop and Potter (2007) relates to hierarchical prior elicitation relating to

regime coe¢cients (e.g. to link coe¢cients in di¤erent regimes together in a sensible
manner). Our previous paper also develops hierarchical priors for parameters of duration
distributions (e.g. so that the duration of a past regime can provide some information
about the likely duration of the current regime). Such considerations are not discussed in
this paper, although they could easily be added to our Unrestricted Uniform prior.

25



thus, the number of switches which actually occur in-sample is unknown and
estimated from the data. Like Koop and Potter (2007), these models do not
have �at priors over the change-points.

3.1 Empirical Illustration Using Coal Mining Data

In this section, following Chib (1998), we investigate the empirical perfor-
mance of our priors in a commonly-used data set. We consider the coal
mining disaster data of Jarrett (1979) and consider the cases of zero, one
or two change-points using the Chib model as well as the Restricted and
Unrestricted Uniform priors.
The prior for the Chib model requires the selection of prior hyperpara-

meters for the transition probabilities, �1 and �2. To aid in prior elicitation,
an examination of (3.3) indicates that, for values of �2 close to zero and �1
relatively large, we have p(dm) � p(dm + 1) for larger values of dm: Perhaps
re�ecting a preference for priors which are ��at� over possible change-points,
in many applications (for example Chib, 1998, Kim and Nelson, 1999, and
Kim, Nelson and Piger, 2004) �2 has been set to a small value less than 1:
In Chib (1998) the choice �2 = 0:1 and �1 = 8 was made: We will also use
these values for the case with one change-point. Note that this implies that
the marginal prior of regime duration is approximately �at, but the expected
duration does not exist (see discussion after equation 3.3). Hence, such a
choice of prior hyperparameters may get around the possibly unattractive
property that the prior is informative for the change-points (e.g. it favors
shorter durations to longer ones), but raises the possibility that the problems
relating to the restrictive prior required to ensure exactly M regimes exist
may be exacerbated.
As we have seen, the model of Chib requires us to add restrictions analo-

gous to (3.4) to ensure that number of change-points assumed in the model
do in fact occur. In the case of M = 2, this can be done by truncating the
distribution of the duration of regime 1 at d1 = T � 1 and assigning all the
remaining probability to this point. In the coal mining disaster data there
are 112 observations, hence, for the one change-point case we can use (3.3)
to get

P [� 1 = 111] = P [d1 = 111] = 1�
110X

d=1

B(7 + d; 1:1)

B(8; 0:1)
= 0:76: (3.5)
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Thus, the prior required to impose exactly one change-point is allocating a
great deal of weight to regime changes at the end of the sample. The prior
required to impose exactly two change-points has a similar property. For this
case, we follow Chib (1998) and assume independent Beta priors for the two
transition probabilities, each with hyperparameters 5 and 0:1 (and impose
prior restrictions on the endpoints analogous to equation 3.5). In this case
as well, there is a huge spike in the prior at the end of the sample.
To carry out our application, we need to specify a likelihood and a method

for posterior analysis. Since this data is a count of mining disasters by year
a Poisson likelihood is reasonable. Chib assumes the priors on the Poisson
intensities in the di¤erent regimes, �m, to be G(�m; �m) for m = 1; : : : ;M .
Throughout the following material, we use the same values for �m; �m as
in Chib (1998). That is, for the zero and one change-point cases, we set
�m = 2; �

m
= 1. For the two change-point case, we set �m = 3; �

m
= 1.

Under these assumptions the posterior of the change-points can be found (see
Chib, 1998, or the appendix to the working paper version of this paper).
With regards to the Unrestricted Uniform prior we set M = 3 and c =

T�2
T
, values consistent with previous work with this data which has indicated

one or two change-points. For the Chib model and Restricted Uniform prior
we try M = 2 and M = 3 (as well as the model with no change-points). For
the sake of brevity, we do not present �gures for the priors, although it is
worth stressing that the priors for change-points in the Chib model has the
huge spikes near the end noted previously (see equation 3.5).
For the case where a single change-point is assumed to exist, the Chib

model and the Restricted Uniform prior yield essentially the same posterior
so, for the sake of brevity, they are not plotted. However, when we assume
two change-points we begin to see the e¤ects of prior assumptions. The
posteriors for � 1 and � 2 for the Chib model and Unrestricted Uniform prior
are plotted in Figures 710 and 8, respectively. For � 1, the posteriors under
the two priors are not too di¤erent, although the informativeness of the prior
used in the Chib model is clearly having an impact at the beginning of the
sample. However, for � 2 the two priors are yielding substantively di¤erent
posteriors. Note in particular that the posterior of � 2 for Chib�s model has a
huge spike at the end of the sample. This is due to the prior (see equations
3.4 or 3.5) which imposes exactly two change-points in-sample. We do not

10The coal mining data ends in 1962, but Figure 7 is truncated in 1900 since the prob-
ability that �1 occurs after 1900 is essentially zero.
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present results for the Restricted Uniform Prior with M = 3, but note that
the pile up of probability in the posterior for � 2 near the end of the sample
is much less appreciable than for the Chib model. Thus, we are �nding prior
sensitivity even when staying in the class of models which impose a precise
number of change-points.

Figure 7: Posteriors of First Change-point using Coal Mining Disaster
Data

The reader may suspect that our �ndings of prior sensitivity are occurring
in a model which is not supported by this data. To investigate this issue,
Table 4 reports marginal likelihoods for the various models. Note that, as
with the AR model used in the previous empirical illustrations, these can be
calculated analytically since, conditional on the change-points, a closed form
expression for the marginal likelihood exists (see the appendix to the working
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paper version of this paper available at http://personal.strath.ac.uk/gary.koop/).
These conditional marginal likelihoods can be averaged over the change-
points using the appropriate prior to yield an exact (unconditional) marginal
likelihood (see equation 2.10).
Table 4 presents strong evidence that at least one change-point is present.

The one and two change-point models receive roughly equal support. Note
also that the models with Uniform priors receive more support from the data
than the Chib model. Thus, we are �nding sensitivity to the prior in a
model which does receive appreciable support from the data. Furthermore,
one might argue that it is the more reasonable prior (i.e. the Unrestricted
Uniform prior) that is receiving more support from the data.

Table 4: Log Marginal Likelihoods for Di¤erent Models/Priors
No change-points �206:21
1 change-point Chib model �178:35
Restricted Uniform (M = 2) �176:76
2 change-point Chib model �178:96
Restricted Uniform (M = 2) �177:35
Unrestricted Uniform �177:19

Another way of examining the e¤ect of the various priors is to exam-
ine the predictive distribution, p (yT+1jYT ), for an out-of-sample observa-
tion. The appendix to the working paper version of this paper describes how
Bayesian predictive inference can be done in the Chib model with Poisson
likelihoods in each regime. For the Chib model and the Restricted Uniform
prior, we do Bayesian model averaging across models with di¤ering number
of change-points. This can be done in a straightforward fashion by weight-
ing the resulting predictive distribution by the posterior probabilities of the
various change-point models. The latter can be directly calculated from the
log marginal likelihoods in Table 4. Predictions using the Unrestricted Uni-
form prior already implicitly average across models with di¤ering numbers
of change-points.
It can be seen that the calculation of the predictive distributions depends

crucially on the prior over the change-points assumed. The di¤erent panels of
Figure 9 are predictive distributions using our three di¤erent classes of prior.
For the Chib model and Restricted Uniform prior, we average over one and
two change-point models. The Chib model prior yields a forecast distribution
which is very di¤erent from either of the Uniform priors. Note that the Chib
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model places probability of more than
1

3
on two or more disasters per year.

However, our Uniform priors yield forecast distributions (see the bottom two

panels of Figure 9) which indicate roughly
1

5
chance of two or more mining

disasters per year. This reinforces a central message of this paper: priors
matter in change-point models.
It is worth mentioning that an unrestricted version of the prior used in

the Chib model can be derived in an analogous manner to what we have done
with our Uniform priors (i.e. by not imposing a restriction such as (3.4) and
allocating prior weight outside of the observed sample). For brevity we do
not do this here. Such a prior does not have the poor properties seen in the
top panel of Figure 9 and the resulting posteriors look a bit more like those
found using the Uniform priors. But substantive di¤erences exist and, in this
application, marginal likelihoods indicate that Uniform priors are preferred.
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Figure 9: Predictive Distributions for Coal Mining Disaster Data

Finally, as with our GDP growth example, it is worth noting that, in-
stead of selecting c for the Unrestricted Uniform prior, we can treat it as an
unknown parameter and estimate it (or integrate it out). For forecasting,
the use of such a hierarchical prior has a great advantage in that the updat-
ing of c implies that information in-sample can be used for predicting the
likelihood of a break out-of-sample. Many authors have argued that poor
forecasting performance of many macroeconomic models is largely due to
structural breaks (see, among many others, Clements and Hendry, 1999, or
Pesaran, Pettenuzzo and Timmerman, 2007). In light of this issue, a model,
such as the one introduced here, which attempts to model the probability of
out-of-sample change is potentially of great use.11

11Hierarchical priors for regime-speci�c likelihood parameters, �m, can also be of use in
improving forecast performance in the presence of structural change. See Koop and Potter
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In the coal mining disaster data, there is fairly clear evidence of one or
two breaks, but not more. If we set M = 3 and p (cja) = U

�
1
2
; 2
�
we obtain

predictive distributions which are quite similar to those given in the bottom
two panels of Figure 9. Furthermore, the posterior mode occurs at c = 1

2
and,

for this value, the log of the marginal likelihood is �176:71 which is better
than any of the other priors. Marginal likelihoods have a strong reward for
parsimony and it is reassuring to see that this (less parsimonious) model is
out-performing the (more parsimonious) one change-point models despite the
fact that Table 4 indicates only weak evidence in favor of the presence of a
second change-point. And it is worth stressing that, with our Unrestricted
Uniform prior, we did not need to assume a �xed number of change-points
(in-sample). We are successfully recovering the reasonable inferences from
other models, without making the assumptions that were necessary in those
other models.

4 Conclusions

In this paper, we have discussed prior elicitation in change-point models. We
have shown how some common and apparently sensible priors have poten-
tially undesirable properties. Relaxing these priors to eliminate these prop-
erties results in priors which allocate probability to change-points occurring
out-of-sample. Much of the paper is devoted to showing how this apparently
odd property actually is highly desirable, leading to a model which e¤ec-
tively allows for the number of change-points to be unknown. Of particular
interest is our Unrestricted Uniform prior which can be thought of as a rea-
sonable noninformative prior (what an objective Bayesian may wish to use
or comparable to what the classical econometrician does). We present ex-
tensive empirical work which shows that the issue of prior elicitation can be
of substantive importance in change-point models and that our Unrestricted
Uniform prior yields results which are more sensible than other approaches.
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