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PRIOR ENVELOPES BASED ON BELIEF FUNCTIONS!

BY LARRY ALAN WASSERMAN 2

University of Toronto

We show that the mathematical structure of belief functions makes them
suitable for generating classes of prior distributions to be used in robust
Bayesian inference. In particular, the upper and lower bounds of the poste-
rior probability content of a measurable subset of the parameter space may
be calculated directly in terms of upper and lower expectations (Theorem
4.1). We also extend an integral representation given by Dempster to infinite
sets (Theorem 2.1).

1. Introduction. Upper and lower probabilities induced from set-valued
mappings were introduced by Dempster (1967, 1968). Shafer (1973, 1976, 1979)
called these lower probabilities belief functions and generalized Dempster’s
theory. Associated with a belief function is a convex set of probability measures
of which the belief function is a lower bound. (On the other hand, the lower
bound of a convex set of probability measures is not necessarily a belief
function.) We will show that robust Bayesian inference based on convex sets of
prior distributions takes on a particularly tractable form if the set of priors is
generated by a belief function (Theorem 4.1).

The theory of belief functions is briefly reviewed in Section 2. Some technical
details are omitted. These may be found in Wasserman (1988). Bayesian infer-
ence based on envelopes, or sets of probability measures, is discussed in Section
3. Following this, the theory of prior envelopes derived from belief functions is
developed in Section 4. In particular, we show that robust Bayesian inference
using these envelopes is mathematically tractable and amenable to straightfor-
ward numerical approximations. In Section 5 we show that some classes of priors
that are commonly used may be generated by belief functions. Section 6 develops
a general class of belief function envelopes that can be used to model local
uncertainty about a prior distribution. Finally, Section 7 contains a discussion of
the results.

2. Belief functions. Let © be a Polish space with Borel o-algebra %(0)
and let X be a convex, compact, metrizable subset of a locally convex topological
vector space with Borel o-algebra #(X). Let p be a probability measure on
(X, #(X)) and let T be a map taking points in X to nonempty, closed subsets of
0. If X is countable, then the restriction that each I'(x) be closed may be
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dropped. For each A C O, define
Ay, ={xe X; T(x) c A}
and
A*={xeX;T(x) NA+ &}.

I is called strongly measurable if A € #(0) implies A* € Z(X). [It follows
that A, € #(X) as well.] Natural conditions, such as upper or lower semiconti-
nuity, may be imposed on I' to guarantee measurability; see Matheron (1975)
and Wasserman (1988). Define Bel and Pl on (0, £(0)) by

Bel(A) = p(A)
and
PI(A) = p(A*).

Bel is called a belief function and Pl is called a plausibility function. The
four-tuple (X, #(X), p, ') is called a source for Bel. Bel and P1 are related by
Bel(A) = 1 — PI(A®). An intuitive explanation of Bel and Pl is as follows. Draw
x randomly according to p. Then Bel(A) is the probability that the random set
T'(x) is contained in A and Pl(A) is the probability that the random set I'(x)
hits A. Note that Bel(@) = PI(@) = 0, Bel(®) = PI(®) = 1 and Bel(A) < PI(A)
with equality if and only if Bel is a probability measure. Thus, belief functions
contain probability measures as a special case.

A probability measure P is said to be compatible with Bel and Pl if for every
A € #(0), Bel(A) < P(A) < PI(A). Let II be the set of all probability mea-
sures compatible with Bel and Pl. It can be shown that IT is nonempty and that
for each A € #(0),

Bel(A) = ggfnP(A)

and

PI(A) = sup P(A).
Pell
This fact implies that Bel and Pl may be the thought of as the lower and
upper bounds of a class of probability measures. This is the interpretation we
shall emphasize in this paper. We should point out that in general, Bel is treated
as an object of interest itself, rather than as a lower bound of a set of probability
measures.
Now we define the notion of upper and lower expectation. For each %(0)-
measurable, bounded, real-valued function f on ©, define the upper expectation
E*(f) and the lower expectation E .(f) by

E*(f)=l§ur;[Ep(f) and E.(f)= inf E(f),

where Ep(f) = [f(6)P(d0). It follows easily that P € II if and only if E,(f) <
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E*(f). It can be shown that

E*(f) = [f*(x)u(dx) and E.(f)= [fu(x)p(dx),

where f* and f, are defined by f*(x)= SUPger) f(0) and fu(x) =
infy c 1,y f(8). This fact has important implications for computation because it
reduces the problem of calculating extrema over the set II to that of finding
extrema of f over subsets of ® followed by a single integral over X. It may be
verified that the strong measurability of I' implies that f* and f, are #(X)-
measurable. Conversely, if f* and f, are %(X)-measurable whenever f is
%(0)-measurable, then T is strongly measurable.

Now we show how a theorem of Strassen’s may be applied to derive an
integral representation for the set of compatible measures of a belief function. A
proof of this representation in the case where @ is finite is given in Dempster
(1967).

THEOREM 2.1. P €1l if and only if there exists, for p-almost all x, a
probability measure ©, on %(0) supported by T'(x) such that

P(4) = [ n(A)n(dx) -
for each A € %(0).

ProOF. Suppose P € I1. Recall that function 7 on #(0) X X is a Markov
kernel if 7(-) is a probability measure on %#(0) for each x € X and 7(A) is
#(X )-measurable for each A € #(0). An application of Theorem 3 of Strassen
(1965) shows that for each P € 1II, there is a Markov kernel # such that
P(A) = [m(A)u(dx) for each A € #(0) and such that =, € K, for p-almost all
x, where K _ is the set of all probability measures on #(0) with support in I'(x).
(The facts stated earlier guarantee that the appropriate conditions necessary to
apply Strassen’s theorem hold.) On the other hand, if the integral equation
holds, it follows easily that P € II.

Theorem 2.1 may be given the following interpretation. To construct a
compatible measure, draw points from © randomly in the following fashion. First
draw x randomly from X. Next draw 6 randomly from I'(x) according to .

3. Robust Bayesian inference. Thorough discussions of robust Bayesian
inference may be found in Berger (1984, 1985). A related approach based on
upper and lower probabilities is discussed in Walley (1981). We begin by giving a
precise statement of Bayes’ theorem; See DeRobertis and Hartigan (1981) for
details. Let (Y, 2(Y)) be a sample space and let f(y|f), 6§ € O, be a class of
densities on Y with respect to a dominating o-finite measure », where (0, %(0))
is the parameter space. If P is a prior probability measure on (0, #(0)) and
f(y10) is B(Y) X #(0)-measurable, then there is a unique probability measure
on (Y X 0, #(Y) X %#(0)) with #-marginal P and whose conditional distribution
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given %#(0) has density f(y|#) with respect to » X P. The regular conditional
probability of this measure, given #(Y), has density f(y|0)/(f(y|6)P(d6) with
respect to P, given y. This measure is called the posterior distribution given the
data. If more than one observation is sampled independently, we can use the
product measure on the sample space. Thus, no loss of generality occurs by
assuming a single observation.

Now suppose a prior P cannot be accurately specified. Then we might consider
using a class of priors II. We call a nonempty convex set of probability measures,
an envelope. Each prior P in the envelope IT may be updated by Bayes’ theorem
to produce a posterior measure P,. Denote this class of posterior probability
measures by II,. Define P,(A)=infp.; P(A) and P*(A) = suppq P(A).
These functions are related by P,(A) = 1 — P*(A°®). Similarly define P (A)=
infpyeny P(A)and P}A) = SUpp 1, P(A).

A robust Bayesian analysis proceeds by reporting P,,(A) and P}*(A) rather
than a single posterior probability. The difference between the lower and upper
bound is an indication of the robustness of the analysis to the specification of the
prior. It is therefore of interest to develop simple methods for computing these
bounds. The next section considers this issue in the context of belief functions.

4. Envelopes based on belief functions. Let Bel be a belief function on
(®, #(0)) with source (X, #(X), u, T) and let II be the convex class of mea-
sures compatible with Bel. Here we are viewing Bel as a convenient method for
constructing a class of priors. Let L,(6) = L(0)I1,(8) where L(6) = f(y|0) is the
likelihood function and I,(6) is the indicator function for the set A. Now we
state our main result which shows that the bounds of the posterior probability
derived from a belief function envelope take a special form.

THEOREM 4.1. If L(0) is bounded, then for any A € %(0),

E*(LA) EF(LA*)
EW(Ly) + E*"(Ly)  E(La,) + E (L)

Py*(A) =

and
E*(Ly,) E,(Lj)
E*(Ly) + Eu(Ly)  E(LF) + E(Lyw)’

Pr(A) =

ProoF. We shall prove the formula for P*(A). The proof for the lower
bound is similar. The strategy of the proof is to define =, to be a probability
measure supported by I'(x) that puts all its mass in the location that maximizes
the posterior probability. If I'(x) has a nonempty intersection with A, this
means putting the mass where the likelihood is greatest. Otherwise, we put the
mass where the likelihood is smallest. We now proceed with the details.

For any P € 11,

fAf(y|0)P(d0) _ EP(LA)

BLA) = L0 P(a) ~ BAL,) + ElLy)
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Clearly
E*(Ly,)
E*(L,) + E,(L,)

is an upper bound for P*(A) and by our remarks in Section 2, this upper bound
is equal to

E,(L})
E(L}) + E(Lgex)

We shall now show that there is a net of measures @ € II such that QYA)
converges to this upper bound, implying that this is the least upper bound.

Since for any measurable function f, suppc Ep(f) = E*(f), there is a net
P such that Ep«(L,) - E*(L,). Corresponding to P there is a net of Markov
kernels 7 such that P%(B) = [ynX(B)u(dx) for every B € #(0). Similarly,
there are nets P# and 7 such that Eps(Ly) — E.(L,) and PA(B) =
JxmP(B)p(dx). We define a net g2 by

7F(B), if 7F(A) = 0,
B(B)={nf(BNnA
m(A)
It is straightforward to show that for each @, ¢ is a Markov kernel. This
defines a net @* in II by Q*(B) = [xq%(B)u(dx). In a similar way, define nets
q? and Q* by

mf(B), if nf(A) =
B(BY={ ##(Bn A
2(B) %2)—), it 7A(A) > 0,

and QA(B) = [xqP(B)u(dx). Now define a net g} by
qs, ifx e A*
g = .
qf, ifx ¢ A*.

It can be verified that the g are also Markov kernels and define a net " by
way of Q'(B) = [yqX(B)u(dx). Since L4(8) is nonnegative and vanishes outside
A, and since Q* dominates P* for subsets of A,

Ep(Ly) < En(Ly) < E*(L,).

The convergence of the quantity on the left-hand side to the quantity on the
right implies that Eye(L,) — E*(L,). Also, L,.(f) is nonnegative and vamshes
outside A¢ and P” dominates Q® on A°. Hence,

EPﬂ(LAc) 2 EQﬂ(LAc) Z E*(LAc).
The convergence of Eps(L,.) to E ,(L,.) implies that Egs(Lye) = E ((Lye).
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Now, applying Theorem 2.1 and using the fact that L, vanishes on the
support of g# for each x € (A*)¢,

Eg(L,) = /@ L,(6)Q"(d6) = /X f@ L,(6)q}(d6)u(dx)

= L*LLA((*)q:(dﬂ)u(dx) = Eq.(Ly).

Now,
Eq(Lye) = [L(8)Q"(d6) = [ [ Lo(6)qX(d0)n(dx)
® x’0
= [ [La(8)qk(d0)n(ax).
(A*)Y0
This last equality follows from the fact that ¢g2(A€) = 0 for each x € A*. Also,

Eor(Le) = [ [ Lac(8)a£(d0)n(dx)

B f(A*)JeLAC(o)qf(da)ﬂ(dx) = Eg(Ly).

Finally, this leads to

lim, Q1(A) = lim Eq(La) _ lim, Eq-(Ly)
v @y " Eg(Ly) + Eg(Ly)  lim, Ega(L,) + limg Ege( L)
E*(L,)

= ELy) Y EMLy) N

This theorem shows that when a class of priors can be generated by a belief
function, the upper and lower bounds of the posterior probability for a subset of
the parameter space take on a tractable form. There always exists, at least in
principle, a Monte Carlo method for estimating P,, and P}. One may simply
draw x’s randomly from X and estimate the expectations with the sample
average. Thus the problem of finding extrema over II may be approached by
sampling from a single measure p on X. This is what distinguishes sets of
probability measures that are compatible with belief functions from other sets of
probability measures. l

For a general class of priors I, not necessarily generated by a belief function,
we can still define an upper and lower expectation via E*(f) = suppe g Ep(f)
and E . (f) = infp.q Ep(f). It is tempting to use the formula given in Theorem
4.1 in this case. To see that the formula does not hold in general, consider the
following example. Let ® = {1,2,3,4} and let the vector of likelihood values on
© be (a, b, ¢, d). Suppose that a, b, ¢ and d are all positive and that a > c,
b > d and ad > bc. Now let P be a probability measure with values (3, £,0,0)
on the singletons of ® and let @ have values (0,0, %, ;). Finally, let II be the
convex closure of P and Q. It may be verified that P* is not a plausibility
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function where P* is the upper probability generated by II. Let A = {1,3}.
Then PX(A) = a/(a + b). However, E*(L,)/(E*(Ly) + E«(Ly)) = a/
(a + d) > P}(A), so equality in the theorem fails.

Recall that a normed set function P*, defined on the subsets of a finite set 0,
is an alternating Choquet capacity of order n if, for each 4,,..., A

n?

P*(NA,) < Y P*(A) - LP(A,UA) + - +(=1)""'P*(4, U --- UA,).
i i%j

P* is alternating of order oo if it is alternating of order n for each n. See
Choquet (1953) and Huber and Strassen (1973) for details. It can be shown that a
function is alternating of order oo if and only if it can be represented as a
plausibility function [Matheron (1975) and Shafer (1979)]. A version of Theorem
4.1 will be proved in a forthcoming paper for capacities of order 2. [See
Wasserman and Kadane (1990). Also, see Walley (1981).] The proof of that result
is considerably different than the proof of Theorem 4.1. In particular, there is no
notion of sampling random sets, nor do we have the luxury of a Markov kernel
representation in that case. In this paper, we have exploited the properties that
distinguish belief functions from other lower probabilities. This is particularly
important for gaining insights into the mathematical structure of the compatible
class IT and for suggesting methods of computation and approximation.

5. Some examples. In this section we show that two well-known classes of
probability measures may be generated by belief functions.

ExAMPLE 5.1 (Probabilities on partitions). Let A = (k,,..., h;) be a parti-
tion of ® and suppose that one only specifies the prior probability content p; of
each h;. Let Il = {P; P(h;) = p;}. Then II is generated by a belief function
with source (X,2%, p, ') where X = {x,,..., x,}, p({x;})) = p; and T'(x;) = h,.
Applying Theorem 4.1, we see that

L
Pr(h;) = ——
pL¥ + Ej#iijj*
and
p;L;
Py*(hi) = >

pLiv +Xj. DL} ’

where L;, = inf,;, L(6) and L} = supyc, L(8). These bounds were given in
Berliner and Goel (1986) using a different argument.

ExaMPLE 5.2 (Contaminated priors). Suppose we have an initial prior # on
0. We are not completely confident about the prior so we form the following
class of priors:

I={P;P=(1-¢)7+¢Q,Qc2},

where ¢ is a fixed number between 0 and 1 and 2 is the set of all probability
measures on %(0). This is the class of e-contaminated priors considered by
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Huber (1973) and Berger and Berliner (1986). The corresponding belief function
has source (X, #(X), u, ') where X = O U {x,}, Z(X) = B(O) X {x,}, p =
1 —¢e)m + ed and I'(x) = {x} if x € ©® and equals O if x = x,. Here, v’ is a
probability measure on X that gives zero probability to x, and is identical to «
on X — {x,} while § is a point mass on x,. In words, we draw {#} with
probability (1 — &)7(d@) and draw ® with probability e. We then have that

(1—¢€)f,L(0)n(dO) + ea
(1 —¢€)foL(0)n(d8) + ea

PX(A) =

and

(1 = £)[4L(8)7(d6)
(1 —¢)fgL(0)n(db) + &b’

Py*(A) =

where a = supy . 4 L(0) and b = sup, . 4o L(8). This result was stated in Huber
(1973) and Berger and Berliner (1986).

6. Local perturbations to priors. We can exploit the rich mathematical
structure of belief functions to define new interesting classes of probability
measures. A general class of measures is examined in this section. Suppose we
begin with a prior measure 7 on %4(0). Not being completely confident about the
prior, we wish to consider a class of priors II. It may be that we are less certain
about some parts of the prior than others. For example, we may feel confident
about the central portion of the prior but not the tails. This suggests that we
model our uncertainty locally. Thus, to each § € ©, we attach a subset I'(§) C ©
such that § € I'(8). Any probability measure that results by starting with = and
moving the mass at § to any point of I'(8) will be called a local perturbation of
. Formally, we call a belief function Bel a local perturbation of « if Bel has
source (0, 4(0), 7, ') and 6 € I'(9) for each § € B. I'(#) is taken to be a large
subset in a region of high uncertainty and is taken to be small in a region of low
uncertainty. Theorem 4.1 can then be applied to find bounds on the posterior
probabilities. Consider an example.

Suppose Y is normally distributed with mean 8 and variance 1. Let our initial
prior 7 be normal with mean 0 and variance 2. Set T'(0) = [0 — ¢, 0 + c]. Let
P* be the upper prior probability based on I',. The first graph in Figure 1 shows
P*({6}) for ¢ = 0.01, 0.1 and 1. Let P* be the upper probability derived from
the e-contaminated class of priors. For comparison, P*({8}), with ¢ = 0.1, is also
graphed. This graph allows us to inspect the local behavior of the upper
probability. A more vivid comparison between the local perturbation method
and the e-contaminated model is given in the second graph of Figure 1 which
plots P*({0})/7(8) and P*({8})/7(6) which we call the relative upper probabil-
ity. Here we see that P.*({6}) allows too much mass in the tails. In particular, an
¢ point mass is permitted at any point 6. On the other hand, the local
perturbation model restricts the mass that may travel to the tail. This model
takes into account the topological structure of ©. The e-contaminated model
ignores the information that certain points are closer together than others.
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UPPER PROBABILITIES

0.30

0.20

0.10
p o

0.0

RELATIVE UPPER PROBABILITIES

Fic. 1. The upper graph gives the values of P*({0}). The lower graph gives the values of
P*({8})/m(0). In each graph, the solid line is based on the e-contaminated prior with ¢ = 0.1 and
the remaining curves, in increasing order, are based on T, for ¢ = 0.01, 0.1 and 1.

Now consider two numerical examples. A reasonable way to choose c¢ is to set
an upper bound on the probability of some reference set R. Consider the set
R = (- V/2,y2) which has a prior probability of 0.683 under 7. Suppose we felt
that an upper probability of 0.714 is reasonable. An e-contaminated class
of priors with &= 0.1 gives P*(R) = 0.714. Choosing ¢ = 0.095 also gives
P*(R) = 0.714. Let us proceed with these chosen values for ¢ and c. Suppose
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first the Y = 0.5 is observed. Then the usual 95% credible region based on 7 is
T =[-1.267,1.93). Let @* be the upper posterior corresponding the prior P*
and let @* denote the upper posterior corresponding to P.*. The lower posteriors
are denoted in a similar way. We find that @*(T) = 0.958 and Q,.(T') = 0.887
while @*(T) = 0.970 and @_.(T) = 0.923 so that the local perturbation method
gives slightly tighter bounds on the posterior. Now suppose we have the more
extreme observation Y = 4. The 95% credible region is T = [1.07,4.27]. Then
QX(T) = 0987 and Q,.(T) = 0.259 while @*(T) = 0972 and @ .(T) = 0.917.
The large point mass permitted in the e-contaminated model makes the posterior
bounds overly sensitive to extreme observations.

The problems with e-contaminated priors are well known and much effort has
gone into finding restrictions on this class of priors to overcome these difficulties;
see Berger and Berliner (1986), for example. We propose that the local perturba-
tion method might be a reasonable alternative class.

Future research on these classes should focus on choosing the shape and size
of the sets I'(#). In a multiparameter problem, we might construct I' to reflect a
greater uncertainty about nuisance parameters. Also, efficient computation and
theoretical study of the behavior of @* are issues deserving further attention.

7. Discussion. We have shown that robust Bayesian inference based on
classes of priors generated by belief functions enjoy special properties. In particu-
lar, the problem of finding extrema over the set of priors is reduced to that of
maximizing and minimizing the likelihood over sets in the parameter space
followed by an integration. This is not an easy task, but sometimes might be
simpler than maximizing and minimizing over the set of priors.

Much remains to be done from a practical point of view. For example,
methods of choosing prior belief functions such as those introduced in Section 6
need to be studied and exemplified. Other useful belief functions need to be
investigated as well. Also note that Theorem 4.1 is a vehicle with which
theoretical properties of posterior probability bounds may be studied.

Another problem that might be fruitfully studied is that of approximation.
That is, given a class of probability measures II, does there exist a way of
approximating this class with a set of measures generated by a belief function?
Computationally, such an approximation might make otherwise intractable
problems accessible.

Finally, it would be useful to know when the lower posterior probability can
be represented as a belief function. This could simplify the process of computing
posterior expectations and would also be useful for sequentially updating the
posterior probabilities.
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