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Abstract
Rapidly adapting a speech recognition system to new speakers
using a small amount of adaptation data is important to improve
initial user experience. In this paper, a count-smoothing frame-
work for incorporating prior information is extended to allow
for the use of different forms of dynamic prior and improve the
robustness of transform estimation on small amounts of data.
Prior information is obtained from existing rapid adaptation
techniques like VTLN and PCMLLR. Results using VTLN as a
dynamic prior for CMLLR estimation show that transforms es-
timated on just one utterance can yield relative gains of 15% and
46% over a baseline gender independent model on two tasks.
Index Terms: automatic speech recognition, speaker adapta-
tion, VTLN, prior knowledge

1. Introduction
In many speech recognition applications, such as telephone
dialogue systems and in-car satnavs, rapid adaptation to new
speakers is vital as users’ perception of a system can depend
heavily on their initial experiences. However, adapting to a new
speaker or environment given limited data remains a challenge.

The standard successful linear speaker adaptation tech-
niques such as MLLR [1] and CMLLR [2] rely on sufficient
adaptation data being available. Although they can be used with
limited data by restricting the number of transform parameters,
a robust estimate is not guaranteed. Existing rapid adaptation
techniques such as CAT-CMLLR [3] and vocal tract length nor-
malisation (VTLN) [7, 8, 9] for speaker adaptation, and PCM-
LLR [10, 11] for noise robustness only require a small number
of parameters to be estimated. This enables them to perform
well on limited data but they saturate quickly with, typically,
only small gains seen over the baseline system.

Several authors have proposed using prior information to
improve the robustness of adaptation transform estimates. MAP
approaches such as MAP linear regression [4] have used prior
information in the form of a distribution over transforms to con-
strain linear transform estimation. In [4], the prior distribu-
tion over transforms is estimated from training data. This prior
distribution is static, not changing over utterances. Structured
MAPLR (SMAPLR) is related and obtains prior information
from the test utterances themselves [5, 6]. A regression class
tree is used and the prior transform for any node is the transform
estimated at its parent node. Thus transforms estimated higher
up the tree using more frames are propagated down the tree and
used as priors to obtain more robust estimates for transforms at
nodes with few observations.

Rapid adaptation techniques such as VTLN and PCMLLR
are potential sources of prior information for estimating adap-
tation transforms. Since the strength of these methods is their
ability to adapt quickly to new data the use of such knowledge
sources inevitably leads to a dynamic prior, which can change
with each utterance. This is in contrast to previous work which

has used static prior information. The use of a dynamic prior es-
timated online should be beneficial as it will be better matched
to the target environment.

In [11], a count-smoothing framework is used to com-
bine standard adaptive statistics with dynamic prior information
from PCMLLR. This paper builds on that framework and uses
rapid adaptation methods as a dynamic prior to obtain more ro-
bust estimates of transforms with small amounts of adaptation
data.

The paper is arranged as follows. VTLN and PCMLLR for
rapid adaptation are discussed in section 2. A count-smoothing
framework for incorporating dynamic prior information and two
implementations of this framework are presented in section 3.
Results obtained using one of the implementations with VTLN
as a prior are presented in section 4, before conclusions are
drawn in section 5.

2. Rapid Adaptation
This section discusses two forms of rapid adaptation which
make use of knowledge about the mismatch due to both speaker
variation and noise environment to robustly estimate adaptation
transforms.

2.1. Speaker Adaptation - Linear VTLN
In quantised linear vocal tract length normalisation (VTLN) [8,
9] a set of possible linear transformsW(α) = [ b

(α)
A

(α) ]
is pre-computed for a discrete number of different vocal tract
lengths. These transforms are deterministic and are based on the
known effect of vocal tract length on MFCC calculation, where
the parameter α represents the degree of frequency warping.
Linear VTLN applies a transform to the feature vectors

p(ot|m) = |A(α)|N (A(α)
ot + b

(α); μ(m)
,Σ

(m)) (1)

where component m has mean and variance μ
(m) and Σ

(m).
VTLN adaptation is rapid as only α must be estimated,

which can be done based on the auxiliary function Q(α, α̂).
To estimate α given the current value α̂

α = arg max
α̃

{Q(α̃, α̂)} (2)
where

Q(α, α̂) = T log |A(α)| (3)
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and the associated linear transform W
(α) is selected using a

brute-force search over the set of pre-computed transforms. The
above expression assumes multiple regression classes, indexed
using r, and a bias term in the transformation. For VTLN, α is
normally global and there is no bias term, i.e. b(α) = 0.

The adaptive statistics needed to estimate α,G(r)
adi and k

(r)
adi ,

are accumulated from adaptation data
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where γ
(m)
t is the posterior probablity of component m gen-

erating the observation at time t using the current value of the
transform α̂. Estimates of α̂ can be iterated to achieve the max-
imum likelihood estimate of α. Linear VTLN is constrained
by the frequency warping function and the discrete values of α
chosen to precompute the set of transforms {W(α)}. Hence,
as the amount of adaptation data increases, VTLN does not im-
prove and so its effect is limited.

2.2. Noise robustness - PCMLLR
Model-based noise robustness techniques can be used for rapid
adaptation bymaking use of a noise mismatch function to model
the effect of noise on speech. It is assumed that the observation
ot is based on a clean speech observation xt, with mean and
covariance matrix μ

(m) and Σ
(m), and additive noise nt with

mean and covariance μn and Σn. Convolutional noise is ig-
nored for this discussion. For example, in VTS model-based
compensation [12] the final distribution is given by

p(ot|m) = N (ot; μ
(m)
vts ,Σ

(m)
vts ) (6)

and the corrupted speech mean μ
(m)
vts can be found from

μ
(m)
vts = C log(exp(C-1

μ
(m)) + exp(C-1

μn)) (7)

whereC is the DCT. A similar expression can be derived for the
noise covariance Σ

(m)
vts . Compensation is rapid as only estima-

tion of the noise distribution parameters, μn andΣn is required.
It is possible to approximate a compensated acoustic model

such as that in equation 6 by a linear transform using the predic-
tive linear transform framework [10, 11]. The predictive trans-
form parameters are obtained by minimising the KL divergence
between a CMLLR adapted distribution and a target distribu-
tion. The statistics that are used to estimate the predictive trans-
forms are
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where E{o|m} and E{oo
T|m} are estimated from the target

distribution in equation 6, and component occupancies, γ(m),
are obtained from the training data. Thus

E{o|m} = μ
(m)
vts ; E{oo

T|m} = Σ
(m)
vts + μ

(m)
vts μ

(m)T
vts (10)

PCMLLR uses these predictive statistics to estimate transforms
directly from the standard CMLLR formulae. Decoding is then
based on

p(ot|m) = |A(rm)
pr |N (A(rm)

pr ot + b
(rm)
pr ; μ(m)

,Σ
(m)) (11)

where component m belongs to regression class rm. In the
limit, as the number of regression classes increases to the num-
ber of components, the same compensation as VTS is possible.

3. Incorporating Prior Knowledge
The methods described in the previous section allow adapta-
tion to new speakers or environments using small amounts of
data, but are only approximate. Linear VTLN relies on a lim-
ited set of quantised transforms which quickly saturate, while
PCMLLR relies on an accurate mismatch function being de-
fined. An alternative is to use these rapid adaptation approaches
as prior information for CMLLR transform estimation. This
allows fast, robust estimation of adaptation transforms without
the limitations of the previous approaches.

A conjugate prior distribution for CMLLR is not possible,
so a count-smoothing framework for incorporating prior knowl-
edge is used instead, as in [11]. Statistics for estimating the
CMLLR transform, G(r)

i
and k

(r)
i
, are based on interpolating

adaptive and prior statistics, given by

G
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i
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(13)

The prior statistics G
(r)
pri and k

(r)
pri are normalised so that they

effectively contribute τ frames to the final statistics. For trans-
form estimation, the total occupancy count for a regression class
β(r) =

P
m∈r

P
T

t=1 γ
(m)
t + τ . As more data becomes avail-

able, the adaptive CMLLR statistics G(r)
adi and k

(r)
adi will domi-

nate, but for small amounts of data the prior statistics are more
important.

Under this count-smoothing approach, the prior is not con-
strained to be static. It may be dynamic, and change across ut-
terances. In this work, appropriate prior statistics are obtained
by using the predictive statistics in equations 8 and 9 with a
target distribution incorporating prior knowledge. Two frame-
works for making use of this approach are discussed below.

3.1. Direct Transform Estimation
For direct transform estimation, decoding is based only on the
transform

h
b

(rm)
A

(rm)
i
estimated from smoothed statistics

p(ot|m) = |A(rm)|N (A(rm)
ot + b

(rm); μ(m)
,Σ

(m)) (14)

For this form of model, all statistics for estimating the transform
are based on the original feature-space and model parameters.

Appropriate prior statistics depend on the form of prior be-
ing used. If noise model compensation is used as a prior then
the prior statistics are the same as those in equations 8, 9 and 10.
If a linear transform prior is used, such as VTLN, then equation
1 can be rewritten as

p(ot|m) = N (ot;A
(α)-1(μ(m) − b

(α)),A(α)-1
Σ

(m)
A

(α)-T) (15)

This can be used as the target distribution to accumulate the
prior statistics from equations 8 and 9 where

E{o|m} = A
(α)-1(μ(m) − b

(α)) (16)

It is not necessary to transform each model component using
the prior. Equivalently, statistics that are pre-cached for each
regression class can be transformed by the prior. For example
the following statistics, based on the original model set, can be
cached [13]

k
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(17)
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Considering only the second term in equation 9, the predictive
statistics, k(r)

pri can be written as
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which is equivalent to the cached statistics k
(r)
cai above trans-

formed by the prior
h
b

(α)
A

(α)
i
, and is true for all elements

of k(r)
pri andG

(r)
pri
.

This efficient caching allows a dynamic prior such as VTLN
to be used with very little additional computational cost. The
adaptive statistics accumulated from adaptation data are used to
select the VTLN prior for each utterance. The prior is then used
to transform the cached statistics k(r)

cai and G
(r)
cai and obtain the

prior statistics. The same adaptive statistics that were used to
select the prior are then interpolated with the prior statistics to
estimate a new transform.

3.2. Cascades of Transforms
For situations where the prior is more complex than the
smoothed transform being estimated, whether in terms of the
structure of the transform or number of regression classes, di-
rect estimation of the transform may degrade performance. To
address this, the rapidly estimated prior transform can also be
used as a parent transform in the count-smoothing framework.

For the case of using a feature space linear transform as
parent, such as linearised VTLN, the following decoding ex-
pression is used

p(ot|m) = |A(rm)
A

(α)| (19)

N (A(rm)(A(α)
ot + b

(α)) + b
(rm); μ(m)

,Σ
(m))

A similar expression can be derived using PCMLLR or any
other form of feature transform prior as a parent. Now, both
adaptive and prior statistics need to be obtained in the space de-
fined by the parent,A(α) and b

(α). The correct adaptive statis-
tics can be obtained by transforming previously accumulated
adaptive statistics of equations 4 and 5 in the same fashion as
the cached statistics above. Alternatively, adaptive statistics are
simply accumulated after the parent transform has been applied.

In the parent transform domain the prior statistics, k(r)
pri , are

simply the predictive statistics in 9 with an identity matrix prior.
For the feature space linear transform parent case this is equiv-
alent to the cached statistics in 17.

If the parent transform to be used is a general linear trans-
form applied to the model parameters, the appropriate prior
statistics are more complicated. For example, when using VTS
as a prior, in place of equation 19 decoding would be based on

p(ot|m) = |A(rm)|N (A(rm)
ot + b

(rm); μ(m)
vts ,Σ

(m)
vts ) (20)

As both the mean and covariance matrix for each compo-
nent have changed, the adaptive and prior statistics are also al-
tered. For example the adaptive k

(r)
adi and prior k

(r)
pri would be

given by
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As for the feature space transform discussed above, the
prior statistics in the space of the VTS compensated model set
use an identity matrix prior. However, this change to the prior
statistics means they cannot be efficiently cached, as is the case
when using a feature space transform as prior.

4. Experimental Results
This section presents results obtained using the methods de-
scribed in section 3. The linear transform version of VTLN in
[9] is used as a convenient prior which is expected to yield more
information than a static identity transform. VTLN was not
used in a cascade, described in section 3.2 as it is a weaker trans-
form than the CMLLR transform being estimated, and hence
will be subsumed. Future work will look at the interaction of
noise robustness techniques such as JUD and VTS with the
methods presented above.

4.1. Experimental Setup
Gender independent US English acoustic models were trained
using a 39 dimensional MFCC feature vector, with static, delta
and delta-delta parameters. A total of 312 hours of data from
WSJ, TIDIGITS, TIMIT and internally collected noisy data was
used for training triphone acoustic models. Decision tree clus-
tering was used to yield 650 unique states. 12 Gaussian compo-
nents were used per speech state and 24 Gaussian components
per silence state, yielding approximately 8000 components. For
adaptive training, transforms were estimated on a per-speaker
basis, using a transform type consistent with decoding. Experi-
ments were carried out on two tasks

• Toshiba in-car task - a database recorded in real driving
conditions with phone numbers, 4 digits, command and
control, and citynames subtasks. Each sub task includes
two noisy conditions, engine on and highway, and there
are a total of 8983 utterances spoken by native speakers
with an average of 463 frames per utterance.

• Multi-accent task - a database recorded in studio condi-
tions with additional noise. There are approximately 14k
utterances split between telephone and TV control, spo-
ken by users with a mixture of accents, with an average
of 226 frames per utterance.

A separate transform is estimated for each test set utterance us-
ing two regression classes - speech and silence - to limit the
number of parameters and allow for rapid adaptation. The base-
line hypothesis was used for estimation of all transforms.

4.2. Results and Discussion
Experimental results are given in table 1. The first lines show
results obtained for the baseline system without adaptation, and
with standard VTLN and CMLLR. VTLN consistently yields
small gains, e.g. on the multi-accent set the baseline error rate
of 15.90% is improved to 15.44%. Diagonal CMLLR improves
over VTLN on both test sets but full CMLLR does not impact
on performance, suggesting that one utterance does not give
enough data to robustly estimate the parameters.

Next, VTLN was used as a parent transform only when es-
timating a CMLLR child transform to be used in a cascade. The
results show that using VTLN as a parent transform for estimat-
ing a diagonal CMLLR transform can give performance gains.
For example, on the Toshiba in-car set, the error rates are 2.33%
and 1.86% for VTLN and diagonal CMLLR respectively, but
1.79% when cascading VTLN and CMLLR. However, when
used as a parent to estimate a full CMLLR transform, very lit-
tle difference in error rate is seen. The error rates for VTLN
and full CMLLR on the Toshiba set are 2.33% and 2.36% re-
spectively, and 2.35% when cascading the two transforms. This
suggests that incorporating prior knowledge as parent transform
with no prior does not improve the robustness of poorly esti-
mated CMLLR transforms on limited data.

Section 3 discussed combining prior and adaptive statistics
for more robust transform estimates. Experiments were carried
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Standard Adaptive
Parent Prior In-car Mlt-acc In-car Mlt-acc

Baseline - - - 2.38 15.90 - -
VTLN Block - - 2.33 15.44 2.17 15.11
CMLLR Diag - - 1.86 15.17 1.74 14.96
CMLLR Full - - 2.36 15.90 2.34 15.84
CMLLR* Diag VTLN - 1.79 14.98 1.77 14.94
CMLLR* Full VTLN - 2.35 15.90 2.35 15.90
CMLLR Full - Identity 1.92 15.11 2.11 14.58
CMLLR Full - VTLN 1.87 14.82 1.63 13.54

Table 1: WER (%) on Toshiba in-car, and multi-accent tasks for standard and adaptive training (*adaptive training uses only VTLN)

out using an identity matrix as prior and also using VTLN as a
dynamic prior with the method described in section 3.1. A full
CMLLR transform was trained for each utterance by combining
the prior and adaptive statistics using equations 12 and 13.
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Figure 1: Effect of prior on Multi-accent set WER
Figure 1 shows the performance on the multi-accent set as

the value of τ is increased - note that full CMLLR transforms
are equivalent to τ = 0. As can be seen, the resulting trans-
form can give better performance than either the full CMLLR or
VTLN transforms alone. For some values of τ , the transforms
from interpolated statistics give gains over the robust diagonal
CMLLR transform. VTLN appears to be a relatively weak prior
as it does not give large gains by itself, and only gives small im-
provements over an identity prior. Results are given in table
1 for τ = 50000 for the two test sets. On the in-car set, the
identity prior yields an error rate of 1.92% and the VTLN prior
gives 1.86%, which are relative gains of 20% and 22% respec-
tively over the baseline model.

Finally, adaptive training was carried out using VTLN, CM-
LLR, and CMLLR with a prior. As expected, gains are seen
from adaptive training using both VTLN and CMLLR. The use
of the VTLN prior in adaptive training yields further improve-
ment in error rate. On the Toshiba in-car set, adaptive training
using VTLN and diagonal CMLLR yielded results of 2.17% and
1.77% WER respectively, but a further improvement to 1.63%
was seen using the approach proposed in section 3.1. This is
an improvement of 46% relative over the baseline performance.
Relative improvement on the multi-accent task is 15%.

5. Conclusions
This paper has addressed the problem of producing robust esti-
mates of complex adaptation techniques such as CMLLR from
limited data. A count-smoothing framework was extended to

use dynamic prior statistics, derived from rapid adaptation tech-
niques, are interpolated with the main adaptive statistics. Two
implementations were proposed: direct transform estimation
and cascades of transforms. Using VTLN in the direct trans-
form estimation framework as a prior for estimating CMLLR
transforms was shown to be more robust than standard CMLLR
to small amounts of data, and more robust than using a cascade
of transforms where no prior was used. Where the prior is more
complex than the smoothed transform being estimated a cas-
cade of transforms is more powerful than the direct estimation
approach. In future work the ability to efficiently use a complex
parent transform as a prior to estimate a simpler child transform
will be investigated.
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