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Abstract 

We explore methods for incorporating prior knowledge about a problem 
at hand in Support Vector learning machines. We show that both invari

ances under group transfonnations and prior knowledge about locality in 
images can be incorporated by constructing appropriate kernel functions. 

1 INTRODUCTION 

When we are trying to extract regularities from data, we often have additional knowledge 

about functions that we estimate. For instance, in image classification tasks, there exist 
transfonnations which leave class membership invariant (e.g. local translations); moreover, 

it is usually the case that images have a local structure in that not all correlations between 
image regions carry equal amounts of infonnation. 

The present study investigates the question how to make use of these two sources of know
ledge by designing appropriate Support Vector (SV) kernel functions. We start by giving 

a brief introduction to SV machines (Vapnik & Chervonenkis, 1979; Vapnik, 1995) (Sec. 
2). Regarding prior knowledge about invariances, we present a method to design kernel 

functions for invariant classification hyperplanes (Sec. 3). The method is applicable to 

invariances under the action of differentiable local 1-parameter groups of local transfonna
tions, e.g. translational invariance in pattern recognition. In Sec. 4, we describe kernels 

which take into account image locality by using localized receptive fields. Sec. 5 presents 
experimental results on both types of kernels, followed by a discussion (Sec. 6). 

2 OPTIMAL MARGIN HYPERPLANES 

For linear hyperplane decision functions f(x) = sgn((w· x) + b), the VC-dimension 

can be controlled by controlling the nonn of the weight vector w. Given training data 

(xl,yd, ... ,(Xl,Yl), Xi E RN,Yi E {±1}, a separating hyperplane which generalizes 
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well can be found by minimizing 

~llwl12 subject to Yi' ((Xi' w) + b) ~ 1 for i = 1, ... , f, (I) 

the latter being the conditions for separating the training data with a margin. Nonseparable 

cases are dealt with by introducing slack variables (Cortes & Vapnik 1995), but we shall 

omit this modification to simplify the exposition. All of the following also applies for the 
nonseparable case. 

To solve the above convex optimization problem, one introduces a Lagrangian with multi

pliers Qi and derives the dual form of the optimization problem: maximize 

iIi i 

L Qi - '2 L QiYiQkYk(Xi . Xk) subject to Qi ~ 0, L QiYi = 0. (2) 

i=l i,k=l i=l 

It turns out that the solution vector has an expansion in terms of training examples, W = 
L:=l QiYiXi, where only those Qi corresponding to constraints (1) which are met can 
become nonzero; the respective examples Xi are called Support Vectors. Substituting this 

expansion for W yields the decision function 

f(x) = sgn (t o,y,(x. Xi) + b) . (3) 

It can be shown that minimizing (2) corresponds to minimizing an upper bound on the VC 

dimension of separating hyperplanes, or, equivalently, to maximizing the separation margin 

between the two classes. In the next section, we shall depart from this and modify the dot 

product used such that the minimization of (2) corresponds to enforcing transformation 

invariance, while at the same time the constraints (1) still hold. 

3 INVARIANT HYPERPLANES 

Invariance by a self-consistency argument. We face the following problem: to express 

the condition of invariance of the decision function, we already need to know its coeffi
cients which are found only during the optimization, which in turn should already take into 

account the desired invariances. As a way out of this circle, we use the following ansatz: 

consider decision functions f = (sgn 0 g), where g is defined as 

i 

g(Xj) := L QiYi(Bxj . BXi) + b, (4) 

i=l 

with a matrix B to be determined below. This follows Vapnik (1995), who suggested to 

incorporate invariances by modifying the dot product used. Any nonsingular B defines a 

dot product, which can equivalently be written as (Xj . AXi), with a positive definite matrix 

A = BTB. 

Clearly, invariance of g under local transformations of all Xj is a sufficient condition for 

the local invariance of f, which is what we are aiming for. Strictly speaking, however, 

invariance of g is not necessary at points which are not Support Vectors, since these lie in 

a region where (sgn 0 g) is constant - however, before training, it is hard to predict which 

examples will turn out to become SVs. In the Virtual SV method (Scholkopf, Burges, & 

Vapnik, 1996), a first run of the standard SV algorithm is carried out to obtain an initial SV 

set; similar heuristics could be applied in the present case. 

Local invariance of g for each pattern Xj under transformations of a differentiable local 

I-parameter group of local transformations Lt, 

~ I g(LtXj) = 0, (5) 
ut t=o 
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can be approximately enforced by minimizing the regularizer 

1 i (8 )2 eL 8tlt=og(.ct Xj) 
j=1 

(6) 

Note that the sum may run over labelled as well as unlabelled data, so in principle one could 

also require the decision function to be invariant with respect to transformations of elements 

of a test set. Moreover, we could use different transformations for different patterns. 

For (4), the local invariance term (5) becomes 

using the chain rule. Here, 81 (B.coxj . BXi) denotes the gradient of (x· y) with respect to 

x, evaluated at the point (x . y) = (B.coxj . BXi). Substituting (7) into (6), using the facts 

that.co = I and 81 (x, y) = Y T, yields the regularizer 

1 i (i 8)2 i 
- '" '" OWi(Bxi)T B-8 1 .ctXj = '" (};iYi(};kYk(Bxi' BCBT BXk) (8) e ~ ~ t t=O ~ 

j=1 ~=1 i,k=1 

where 

1i (8 )(8 )T 
C:=-'" -I .ctx· -I .ctx· e ~ 8t t=O J 8t t=O J 

j=1 

(9) 

We now choose B such that (8) reduces to the standard SV target function IlwW in the form 

obtained by substituting the expansion w = 2::=1 (};iYiXi into it (cf. the quadratic term of 

(2», utilizing the dot product chosen in (4), i.e. such that (BXi . BCBT BXk) = (f3Xi . 

BXk). Assuming that the Xi span the whole space, this condition becomes BT BC B B = 
B T B, or, by requiring B to be nonsingular, i.e. that no information get lost during the 

preprocessing, BCBT = I. This can be satisfied by a preprocessing (whitening) matrix 

B =C-t (10) 

(modulo a unitary matrix, which we disregard), the nonnegative square root of the inverse 

of the nonnegative matrix C defined in (9). In practice, we use a matrix 

C>. := (1 - A)C + AI, (11 ) 

o < A ~ 1, instead of C. As C is nonnegative, C>. is invertible. For A = 1, we recover the 

standard SV optimal hyperplane algorithm, other values of A determine the trade-off be

tween invariance and model complexity control. It can be shown that using C>. corresponds 

to using an objective function 4>(w) = (1 - A) 2:i(W' ttlt=0.ct Xi)2 + Allw112. 

By choosing the preprocessing matrix B according to (10), we have obtained a formulation 

of the problem where the standard SV quadratic optimization technique does in effect min

imize the tangent regularizer (6): the maximum of (2), using the modified dot product as in 

(4), coincides with the minimum of (6) subject to the separation conditions Yi . g(Xi) 2: I, 

where 9 is defined as in (4). 

Note that preprocessing with B does not affect classification speed: since (Bxj . BXi) = 

(Xj . BT BXi), we can precompute BT BXi for all SVs Xi and thus obtain a machine (with 

modified SVs) which is as fast as a standard SV machine (cf. (4». 

Relationship to Principal Component Analysis (PCA). Let us now provide some inter

pretation of (10) and (9). The tangent vectors ± tt It=o.ctxj have zero mean, thus C is a 
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sample estimate of the covariance matrix of the random vector s . %t It=OLtX, s E {±1} 
being a random sign. Based on this observation, we call C (9) the Tangent Covariance 

Matrix of the data set {Xi: i = 1, . .. ,f} with respect to the transformations Lt. 

Being positive definite,1 C can be diagonalized, C = SDST , with an orthogonal matrix 

S consisting of C's Eigenvectors and a diagonal matrix D containing the corresponding 

positive Eigenvalues. Then we can compute B = C-! = SD-! ST, where D- ~ is 

the diagonal matrix obtained from D by taking the inverse square roots of the diagonal 

elements. Since the dot product is invariant under orthogonal transformations, we may 

drop the leading S and (4) becomes 

l 

g(Xj) = 2:>~iYi(D-t ST Xj . D-~ sT Xi) + b. ( 12) 

i=l 

A given pattern X is thus first transformed by projecting it onto the Eigenvectors of the 

tangent covariance matrix C, which are the rows of ST. The resulting feature vector is 

then rescaled by dividing by the square roots of C's Eigenvalues.2 In other words, the 

directions of main variance of the random vector %t It=OLtX are scaled back, thus more 
emphasis is put on features which are less variant under Lt. For example, in image analysis, 

if the Lt represent translations, more emphasis is put on the relative proportions of ink in 
the image rather than the positions of lines. The peA interpretation of our preprocessing 

matrix suggests the possibility to regularize and reduce dimensionality by discarding part 
of the features, as it is common usage when doing peA. 

In the present work, the ideas described in this section have only been tested in the linear 
case. More generally, SV machines use a nonlinear kernel function which can be shown 

to compute a dot product in a high-dimensional space F nonlinearly related to input space 
via some map <P, i.e. k(x, y) = (<fl(x) . <fl(y)). In that case, the above analysis leads to a 

tangent covariance matrix C in P, and it can be shown that (12) can be evaluated in terms 

of the kernel function (Scholkopf, 1997). To this end, one diagonalizes C using techniques 
of kernel peA (Scholkopf, Smola, & Muller, 1996). 

4 KERNELS USING LOCAL CORRELATIONS 

By using a kernel k(x,y) = (x· y)d, one implicitly constructs a decision boundary in 
the space of all possible products of d pixels. This may not be desirable, since in natural 

images, correlations over short distances are much more reliable as features than long-range 
correlations are. To take this into account, we define a kernel k~l ,d2 as follows (cf. Fig. 1): 

1. compute a third image z, defined as the pixel-wise product of x and y 

2. sample Z with pyramidal receptive fields of diameter p, centered at ~ 11 locations 

(i,j), to obtain the values Zij 

3. raise each Zij to the power d1 , to take into account local correlations within the 

range of the pyramid 

4. sum ztJ over the whole image, and raise the result to the power d2 to allow for 

longe-range correlations of order d2 

lIt is understood that we use C>. if C is not definite (cf. (11)). Alternatively, we can below use the 

pseudoinverse. 

2 As an aside, note that our goal to build invariant SV machines has thus serendipitously provided 

us with an approach for an open problem in SV learning, namely the one of scaling: in SV machines, 

there has so far been no way of automatically assigning different weight to different directions in input 

space - in a trained SV machine, the weights of the first layer (the SV s) form a subset of the training 

set. Choosing these Support Vectors from the training set only gives rather limited possibilities for 

appropriately dealing with different scales in different directions of input space. 
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Figure I: Kernel utilizing local correlations in images, corresponding to a dot product in a 

polynomial space which is spanned mainly by local correlations between pixels (see text). 

The resulting kernel will be of order d1 • d2 , however, it will not contain all possible corre

lations of d1 . d2 pixels. 

5 EXPERIMENTAL RESULTS 

In the experiments, we used a subset of the MNIST data base of handwritten characters 

(Bottou et aI., 1994), consisting of 5000 training examples and 10000 test examples at a 

resolution of 20x20 pixels, with entries in [-1, 1]. Using a linear SV machine (i.e. a sep

arating hyperplane), we obtain a test error rate of 9.8% (training 10 binary classifiers, and 

using the maximum value of 9 (cf. (4» for lO-class classification); by using a polynomial 

kernel of degree 4, this drops to 4.0%. In all of the following experiments, we used degree 

4 kernels of various types. The number 4 was chosen as it can be written as a product of 
two integers, thus we could compare results to a kernel k~l ,d2 with d1 = d2 = 2. For the 

considered classification task, results for higher polynomial degrees are very similar. 

In a series of experiments with a homogeneous polynomial kernel k(x, y) = (x· y)4, using 

preprocessing with Gaussian smoothing kernels of standard deviation 0.1, 0.2, ... ,1.0, we 

obtained error rates which gradually increased from 4.0% to 4.3%; thus no improvement 
of this performance was possible by a simple smoothing operation. Applying the Virtual 

SV method (retraining the SV machine on translated SVs; Scholkopf, Burges, & Vapnik,-

1996) to this problem results in an improved error rate of 2.8%. For training on the full 

60000 pattern set, the Virtual SV performance is 0.8% (Scholkopf, 1997). 

Invariant hyperplanes. Table 1 reports results obtained by preprocessing all patterns with 

B (cf. (10», choosing different values of ..\ (cf. (11». In the experiments, the patterns were 

first rescaled to have entries in [0,1], then B was computed, using horizontal and vertical 

translations, and preprocessing was carried out; finally, the resulting patterns were scaled 

back again. This was done to ensure that patterns and derivatives lie in comparable regions 

of RN (note that if the pattern background level is a constant -1, then its derivative is 

0). The results show that even though (9) was derived for the linear case, it can lead to 

improvements in the nonlinear case (here, for a degree 4 polynomial), too. 

Dimensionality reduction. The above [0, 1] scaling operation is affine rather than linear, 

hence the argument leading to (12) does not hold for this case. We thus only report results 

on dimensionality reduction for the case where the data is kept in [0, 1] scaling from the very 
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Table I: Classification error rates for modifying the kernel k(x, y) = (X·y)4 with the invari-
I 

ant hyperplane preprocessing matrix B).. = C~ 'i ; cf. (10) and (11). Enforcing invariance 

with 0.1 < A < 1 leads to improvements over the original performance (A = 1). 

A 0.1 0.2 0.4 0.6 

error rate in % 4.2 3.8 3.6 3.8 

Table 2: Dropping directions corresponding to smaIl Eigenvalues of C (cf. (12)) leads to 
substantial improvements. AIl results given are for the case A = 0.4 (cf. Table 1); degree 4 

homogeneous polynomial kernel. 

principal components discarded 

error rate in % 

beginning on. Dropping principal components which are less important leads to substantial 

improvements (Table 2); cf. the explanation foIlowing (12). The results in Table 2 are 

somewhat distorted by the fact that the polynomial kernel is not translation invariant, and 

performs poorly on the [0, 1] data, which becomes evident in the case where none of the 
principal components are discarded. Better results have been obtained using translation 

invariant kernels, e.g. Gaussian REFs (Scholkopf, 1997). 

Kernels using local correlations. To exploit locality in images, we used a pyramidal 
receptive field kernel k;l,d 2 with diameter p = 9 (cf. Sec. 4). For d1 = d2 = 2, we ob

tained an improved error rate of 3.1%, another degree 4 kernel with only local correlations 

(d l = 4, d2 = 1) led to 3.4%. Albeit significantly better than the 4.0% for the degree 4 

homogeneous polynomial (the error rates on the 10000 element test set have an accuracy 

of about 0.1%, cf. Bottouet aI., 1994), this is still worse than the Virtual SV resultof2.8%. 
As the two methods, however, exploit different types of prior knowledge, it could be ex

pected that combining them leads to still better performance; and indeed, this yielded the 
best performance of all (2.0%). 

For the purpose of benchmarking, we also ran our system on the US postal service database 
of 7291 +2007 handwritten digits at a resolution of 16 x 16. In that case, we obtained the 
foIlowing test error rates: SV with degree 4 polynomial kernel 4.2%, Virtual SV (same ker

nel) 3.5%, SV with k~,2 3.6%, Virtual SV with k~,2 3.0%. The latter compares favourably 

to almost all known results on that data base, and is second only to a memory-based tangent

distance nearest neighbour classifier at 2.6% (Simard, LeCun, & Denker, 1993). 

6 DISCUSSION 

With its rather general class of admissible kernel functions, the SV algorithm provides am
ple possibilities for constructing task-specific kernels. We have considered an image classi

fication task and used two forms of domain knowledge: first, pattern classes were required 
to be locally translationaIly invariant, and second, local correlations in the images were 

assumed to be more reliable than long-range correlations. The second requirement can be 

seen as a more general form of prior knowledge - it can be thought of as arising partiaIly 

from the fact that patterns possess a whole variety of transformations; in object recognition, 

for instance, we have object rotations and deformations. Typically, these transformations 

are continuous, which implies that local relationships in an image are fairly stable, whereas 

global relationships are less reliable. 

We have incorporated both types of domain knowledge into the SV algorithm by construct

ing appropriate kernel functions, leading to substantial improvements on the considered 

pattern recognition tasks. Our method for constructing kernels for transformation invari

ant SV machines, put forward to deal with the first type of domain knowledge, so far has 
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only been applied in the linear case, which partially explains why it only led to moderate 

improvements (also, we so far only used translational invariance). It is applicable for dif

ferentiable transformations - other types, e.g. for mirror symmetry, have to be dealt with 

using other techniques, e.g. Virtual SVs (Scholkopf, Burges, & Vapnik, 1996). Its main 

advantages compared to the latter technique is that it does not slow down testing speed, 

and that using more invariances leaves training time almost unchanged. The proposed ker

nels respecting locality in images led to large improvements; they are applicable not only 

in image classification but in all cases where the relative importance of subsets of products 

features can be specified appropriately. They do, however, slow down both training and 

testing by a constant factor which depends on the specific kernel used. 

Both described techniques should be directly applicable to other kernel-based methods 

as SV regression (Vapnik, 1995) and kernel PCA (Scholkopf, Smola, & Muller, 1996). 

Future work will include the nonlinear case (cf. our remarks in Sec. 3), the incorporation 

of invariances other than translation, and the construction of kernels incorporating local 

feature extractors (e.g. edge detectors) different from the pyramids described in Sec. 4. 
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