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Abstract. In a recent paper we have proposed terminological default logic as a formalism that 

combines means both for structured representation of classes and objects and for default inheritance 

of properties. The major drawback that terminolo~cal default logic inherits from general default 

logic is that it does not take precedence of more specific defaults over more general ones into 

account. This behavior has already been criticized in the general context of default logic, but it 

is all the more problematic in the terminological case where the emphasis lies on the hierarchical 
organization of concepts. 

The present paper addresses the problem of modifying terminological default logic such that more 

specific defaults are preferred. We assume that the specificity ordering is induced by the hierarchical 

organization of concepts, which means that default information is not taken into account when 

computing priorities. It turns out that the existing approaches for expressing priorities between 

defaults do not seem to be appropriate for defaults with prerequisites. Therefore we shall consider 

an alternative approach for dealing with prioritization in the framework of Reiter's default logic. 

The formalism is presented in the general setting of default logic where priorities are given by 

an arbitrary partial ordering on the defaults. We shall exhibit some interesting properties of the 

new formalism, compare it with existing approaches, and describe an algorithm for computing 

extensions. In the terminological case, we thus obtain an automated default reasoning procedure 
that takes specificity into account. 

Key words: terminological default logic, default theories with priorities, knowledge representa- 
tion. 
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1. I n t r o d u c t i o n  

E a r l y  k n o w l e d g e  r e p r e s e n t a t i o n  f o r m a l i s m s  such  as s e m a n t i c  n e t w o r k s  and  f r ames  

c o m p r i s e d  m e a n s  for  s t ruc tu red  r e p r e s e n t a t i o n  o f  c l a s ses  and  ob jec t s  and  for  

* This is an extended version of a paper presented at the 13th International Joint Conference 
on Artificial Intelligence, August 1993, Chambery, France. 
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default inheritance of properties. However, these formalisms did not have a 

well-defined formal semantics, and subsequent formalisms trying to overcome 

this problem usually concentrated on one of these two means of representation. 

Nonmonotonic inheritance networks are concerned with defeasible inheritance, 

sometimes in combination with strict inheritance, but the nodes in these networks 

are unstructured objects or classes. 1 Terminological representation formalisms, 

on the other hand, can be used to define the relevant concepts of a problem 

domain in a structured and well-formed way. This is done by building complex 

concept descriptions out of atomic concepts (unary predicates) and roles (bin- 

ary predicates) with the help of operations provided by the concept language 

of the particular formalism. In addition, objects can be described with respect 

to their relation to concepts and their interrelation with each other. The concept 

descriptions are interpreted as universal statements, which means that they do 

not allow for exceptions. As a consequence, the terminological system can use 

descriptions to insert concepts automatically at the proper place in the concept 

hierarchy (classification), and it can use the facts stated about objects to deduce 

to which concepts they must belong, but objects cannot inherit properties by 

default. 

The problem addressed in this paper is how to bring together both means 

of representation originally present in semantic networks and frames, without 

losing the advantages of terminological formalisms, such as being equipped with 

a formal and well-understood semantics and providing for automated reasoning 

services such as concept classification. An integration of defaults would often 

greatly enhance applicability of terminological systems, or would at least make 

their use more convenient in most applications (see, e.g., [18], which shows that 

embedding defaults into terminological systems is an important item on the wish 

list of users of such systems). For this reason, several existing terminological 

systems, such as BACK [16], CLASSIC [4], K-Rep [13], LOOM [14], or SB- 

ONE [11], have been or will be extended to provide the user with some kind of 

default reasoning facilities. As the designers of these systems themselves point 

out, however, these approaches usually have an ad hoc character and thus do not 

satisfy the requirement of having a formal semantics. 

As a first attempt to give a formally well-founded solution to this problem, 

an integration of Reiter's default logic into a terminological formalism was pro- 

posed in [1]. One reason for selecting default logic, out of the wide range of 

nonmonotonic formalisms, was that Reiter's default rule approach fits well into 

the philosophy of terminological systems. Most of these systems already provide 

their users with a form of 'monotonic'  forward rules, and it turned out that these 

rules can be viewed as specific default rules where the justifications are absent. 

A second pleasant feature of terminological default logic, as introduced in [1], is 

that it becomes decidable provided that applicability of default rules is restrict- 

ed to objects explicitly present in the knowledge base. It should be noted that 

this constraint is also imposed on the monotonic rules in terminological systems. 
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Decidability of reasoning in the formalism is an indispensable requirement here; 

otherwise, the important inference services of terminological systems (such as 

classification) could not be implemented in a satisfactory way. 

The major drawback, which terminological default logic inherits from general 

default logic, is that it does not take precedence of more specific defaults over 

more general ones into account. For example, assume that we have a default 

that says that penguins cannot fly,2 and another one that says that birds can fly, 

and that classification shows that penguins are a subconcept of birds. Intuitively, 

for any penguin the more specific first default should be preferred, which means 

that there should be only one default extension in which the penguin cannot fly. 

However, in default logic the first default has no priority over the second one, 

which means that one also gets a second extension where the penguin can fly. 

This behavior has already been criticized in the general context of default logic, 

but it is all the more problematic in the terminological case where the emphasis 

lies on the hierarchical organization of concepts. 

In the present paper we shall consider the problem of modifying terminolog- 

ical default logic such that more specific defaults are preferred. After a short 

recapitulation of default logic and its specialization, terminological default logic, 

in Section 2, we shall consider the existing approaches for expressing priorities 

between defaults and shall point out why they do not seem to be appropriate 

for our purpose (see Section 3). For this reason we present in Section 4 an 

alternative approach for dealing with prioritization in the framework of Reiter's 

default logic. The formalism is presented in the general setting of default logic 

where priorities are given by an arbitrary partial ordering on the defaults. For 

terminological default theories the priorities between defaults will be induced by 

the position of their prerequisites in the concept hierarchy. Thus, the specificity 

relation that we use is determined by the strict information. We do not consider 

specificity induced by the defaults. 

We shall exhibit some interesting properties of the new formalism and shall 

compare it with existing approaches. It turns out that every extension according 

to our definition (P-extension) is an extension according to Reiter's definition 

(R-extension); however, R-extensions that are not compatible with the partial 

ordering on defaults are excluded by our formalism. Not all default theories with 

an R-extension have a P-extension, but every normal default theory has a P- 

extension. If the defaults are further restricted to prerequisite-free normal defaults, 

then our approach coincides with the 'ordered default theories' of Brewka and 

Junker [7, 10]. In Section 5 we describe a method for computing P-extensions. For 

terminological default theories with specificity, this method is effective, which 

shows that this type of default reasoning can be automated. During the preparation 

of this report we have learned that Brewka [6] has also proposed a generalization 

of his ordered default theories to the case of normal defaults with prerequisites. 

In Section 6 we shall briefly introduce Brewka's approach and point out the 

differences in our approach. All proofs are deferred to the appendix. 
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2. Default Logic 

This section briefly reviews Reiter's default logic and its specialization, termi- 

nological default logic (see [19] and [1] for details). 

2.1. REITER'S DEFAULT LOGIC 

Reiter [19] deals with the problem of how to formalize nonmonotonic reasoning 

by introducing nonstandard, nonmonotonic inference rules, which he calls default 

roles. A default rule is any expression of the form 

c~:/3 

9' 

where c~,/3, 7 are first-order formulae. Here c~ is called the prerequisite of the 

rule, /3 is its justification, and 3' its consequent) For a set of default rules i9, 

we denote the sets of formulae occurring as prerequisites, justifications, and 

consequents in 79 by Pre(79), Jus(79), and Con(/)), respectively. 

A default rule is closed iff o~,/3, 3' do not contain free variables. It is semi- 

normal iff its justification implies the consequent, and it is normal if its justifi- 

cation and consequent are identical. A default theory is a pair (W, 79), where W 

is a set of closed first-order formulae (the world description) and 79 is a set of 

default.rules. A default theory is closed iff all its default rules are closed. 

Intuitively, a closed default rule can be applied, that is, its consequent is 

added to the current set of beliefs, if its prerequisite is already believed and its 

justification is consistent with the set of beliefs. Formally, the consequences of 

a closed default theory are defined with reference to the notion of an extension 

(called R-extension in this paper), which is a set of deductively closed first-order 

formulae defined by a fixed point construction (see [19], p. 89). In general, a 

closed default theory may have more than one R-extension, or even no extension. 

Depending on whether one wishes to employ skeptical or credulous reasoning, 

a closed formula 3 is a consequence of a closed default theory iff it is in all 

R-extensions or if it is in at least one R-extension of the theory. 

Reiter also gives an alternative characterization of an R-extension, which we 

shall use, in a slightly modified way, as the definition of R-extension. Here and in 

the following, Th(I') stands for the deductive closure of a set of formulae 1". 

DEFINITION 2.1. Let g be a set of closed formulae, and (W,79) be a closed 

default theory. We define E0 := W and for all i >/0 

Ei+l  :=  u L 79, c Th(Ei), and -"9 ¢ E}. 

Then C is an R-extension of (W, 79) iff g : Ui~>0 Th(Ei). 

Note that the R-extension g to be constructed by this iteration process occurs 

in the definition of each iteration step. Since we are only adding consequents 
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of defaults during the iteration, any R-extension £ of (l/V, D) is of the form 

Th(W U Con(7~)) for a subset 7~ of D. An easy consequence of the definition is 

that (l/V, D) has an inconsistent R-extension iff W is inconsistent. 

To generalize the notion of an R-extension to arbitrary default theories, one 

just assumes that a default with free variables stands for all its ground instances. 

In Reiter's original semantics the world description and the consequents of 

all defaults have to be Skolemized before building ground instances (over the 

enlarged signature). As shown in [1], Skolemization leads to both semantic and 

algorithmic problems, which is the reason why we shall dispense with it in the 

case of terminological default theories. 

2.2. TERMINOLOGICAL DEFAULT LOGIC 

Instead of formally introducing a particular terminological language (see, e.g., [1] 

for details), we shall just mention the features of terminological languages that 

will be important for the following. The terminological part of such languages 

allows one to build complex concept descriptions out of atomic concepts (unary 

predicates) and roles (binary predicates). For our purposes it suffices to know 

that a concept description C can be regarded as a first-order formula C(z) with 

one free variable z. The subsumption hierarchy between concepts corresponds to 

implication of formulae: U is subsumed by D iff Vz: C(z) --+ D(z) is valid. 

The assertional part of the language can be used to state that an object is 

an instance of a concept C or that two individuals are connected by a role R. 

Logically, this means that one has constant symbols a, b as names for objects 

and can build formulae C(a) and R(a, b) by respectively substituting a for the 

free variable in C(z) and applying the binary predicate R to the constants a, b. 

A finite set of such formulae is called an ABox. Important inference problems 

for ABoxes are whether a given ABox is consistent (consistency problem) and 

whether an object a is an instance of a concept C (instantiation problem), that 

is, whether C(a) is a logical consequence of the given ABox. It should be noted 

that the formulae C(cc) obtained as concept descriptions of a terminological 

language belong to a restricted subclass of all first-order formulae with one free 

variable. For this reason the subsumption, consistency, and instantiation problems 

are usually decidable for these languages. 

A terminological default theory is a pair (A, D), where A is an ABox and 39 

is a finite set of default rules whose prerequisites, justifications, and consequents 

are concept descriptions. Obviously, since ABoxes can be seen as sets of closed 

formulae, and since concept descriptions can be seen as formulae with one free 

variable, 4 terminological default theories are subsumed by Reiter's notion of an 

open default theory. However, as motivated in Sections 3 and 4 of [1], we do not 

Skolemize before building ground instances. This means that an open default of a 

terminological default theory is interpreted as representing all closed defaults that 

can be obtained by instantiating the free variable by all object names occurring 
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in the ABox. With this interpretation, it is possible to compute all R-extensions 

of terminological default theories (see [1], Sections 5 and 6). 

3. Previous Approaches to Prioritization 

When conflicts occur in reasoning with defaults, it is quite obvious that the more 

specific information should prevail over the more general one. In the context of 

terminological default theories this means that, for an instance of the concepts 

C and D, a default with prerequisite C should be preferred if C is strictly 

subsumed by D. As mentioned in the introduction, this requirement is not taken 

into account by Reiter's approach. If we assume that penguin, bird, and flies 
are appropriately defined concept descriptions, where penguin is subsumed by 

bird, then the terminological default theory consisting of the world description 

{penguin(Danny)} and the defaults 

penguin(x)'-~flies(x) and bird(x)" flies(x) 

-~flies (x) flies (x) 

has two R-extensions. One contains flies(Danny) and the other -~ f lies( Danny), 
and the semantics gives no reason for preferring the second one, in which the 

more specific default was applied. 

To overcome this kind of problem, several approaches for realizing priori- 

ties among defaults have been proposed in the literature. The priorities may be 

induced by specificity of prerequisites (as described above), but may also come 

from other sources (such as reliability of defaults). Note, however, that we assume 

this ordering to be given before applying defaults. Thus, specificity information 

induced by defaults will usually not be taken into account, unless there is some 

way of doing this independently and a priori. 

3.1 .  PRIORITIZATION VIA SEMI-NORMAL DEFAULTS 

Reiter and Criscuolo show how some kind of prioritization between defaults can 

be achieved without changing the formalism by encoding the priority information 

into the justifications of semi-normal defaults [20]. If the first (more specific) 

default of our example should be preferred over the second one, the negated 

prerequisite of the first default has to be conjoined with the justification of the 

second one. In other words, the second default has to be rewritten to 

bird(x) : flies(x) A -~penguin(x) 

flies(x) 

Although our simple example can be handled with this approach, it is not 

clear how to treat more complex situations. For example, if there is no direct 

conflict between the consequents of two defaults, then the default of lower priority 

should not generally be blocked by the prerequisite of the one of higher priority. 



PRIORITIES ON DEFAULTS 47 

Blocking of the default of lower priority should be activated only if one is in 

a context where both consequents together lead to a contradiction. Reiter and 

Criscuolo do not describe a general method for solving these problems; they 

just "focus on certain fairly simple patterns of default rules". Another problem 

is that, even if one starts with normal defaults (as in our example), one ends 

up with semi-normal defaults when realizing priorities this way. But this means 

that one has to face the undesirable properties of nonnormal defaults, such as 

nonexistence of extensions. As an additional problem, Brewka [8] points out that 

"whenever additional knowledge requires blocking of a default, the default has 

to be rewritten". 

3.2. PRIORITIZED DEFAULT THEORIES 

To avoid the introduction of semi-normal defaults, Brewka [8] takes the ideas 

underlying prioritized circumscription [12] and defines an iterated version of 

default logic, which he calls prioritized default logic (PDL). Instead of one set 

of defaults he takes a finite number of sets 791,. • •, 79n of closed defaults, with 

the intended meaning that defaults in 79i have higher priority than those in 79j if 

i < j .  PDL-extensions are defined by iterated application of Reiter's definition 

of an extension: A set of closed formulae g is a PDL-extension of a prioritized 

default theory (W, D 1 , . . . ,  79n) iff for all i, 1 ~< i ~< n, gi is an R-extension of 

(£i-1,79i), where go = W and £ = £n. 
As pointed out by Brewka himself, this approach makes sense only if it is 

restricted to prerequisite-free normal defaults. The problem caused by prerequi- 

sites is demonstrated by the following abstract example. Assume that we have 

two levels of priority, the first consisting of the default dl  = /3 : ' y / 'y ,  and the 

second of d2 = : fl/fl. If we start with the empty world description, then the 

default dl cannot be applied when constructing the R-extension on the first level. 

On the second level, d2 fires, and we get/3 in the extension g = g2. Now the 

default dl could fire, but it is no longer considered on the second level. 

If restricted to prerequisite-free normal defaults, prioritized default logic yields 

a prioritized version of Poole's approach to default reasoning [7], and it seems to 

exhibit a quite reasonable behavior. One reason why this is nevertheless not an 

appropriate formalism for treating specificity in terminological default theories is 

that the defaults have to be put into levels of priorities which are totally ordered. 

However, subsumption gives us only a partial ordering on defaults. 

3.3. ORDERED DEFAULT THEORIES 

In [7, 10] the approach just described is generalized to the situation where pri- 

orities are given by an arbitrary partial ordering on defaults. 

To be more precise, an ordered default theory is a triple (142, 79, <), where 142 

is a set of closed first-order formulae, 79 is a set of closed prerequisite-free normal 
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defaults, and < is a strict partial ordering on 79 such that {dt E 79 [ d' < d} is 

finite for every d C 79. 

The principal idea is to consider total extensions of the partial ordering when 

computing extensions of the ordered default theory (which we shall call B- 

extensions in the following). Any enumeration dl, d2, • .. of 79 that is compatible 

with the partial ordering (i.e., i < k if di < dk) 5 defines a B-extension as follows. 

One starts with W, and in the i-th step of the iteration, the consequent fli of the 

default di = : fli/fli is added if/3i is consistent with the set of formulae obtained 

after step i - 1. Otherwise, the current set of formulae remains unchanged. The 

limit of this process is the extension. 

Interestingly, even for this simple case of normal defaults without prerequi- 

sites, there are different reasonable ways of handling priorities. In fact, Brass [5] 

has proposed an approach that is different from the one described above. 

Even though Brewka's ordered default theories allow for priorities given by 

a partial ordering, this approach (as well as the one described by Brass) cannot 

directly be used to realize specificity in terminological default theories. The 

reason is that the restriction to prerequisite-free defaults is too severe. In fact, 

for terminological default theories the priorities we wished to consider were 

induced by subsumption relationships between the concept descriptions in the 

prerequisites. But this means that for prerequisite-free terminological defaults 

we no longer have a need for prioritization. 

The situation is, however, not as bad as it seems. As shown in [3, 9], the closed 

normal default o< :/3//3 can be approximated by the closed prerequisite-free nor- 

mal default : o< --+/3/o< --+/3. Thus one could start with a normal terminological 

default theory, determine the priorities between defaults from their prerequisites, 

and then transform the defaults into the corresponding ones without prerequisites. 

This way one ends up with an ordered default theory, which approximates the 

terminological default theory and which handles priorities induced by specificity 

of prerequisites in the terminological default theory. 

However, we claim that this approach is still not satisfactory because it gives 

us a lot more than we bargained for. As pointed out in [9], the approximation 

not only gets rid of prerequisites but also equips the defaults with properties 

of classical implication, such as reasoning by cases and reasoning using contra- 

positives of the original defaults. For example, assume that, in addition to the 

concept descriptions penguin, bird, and flies, we have a description winged for 

objects having wings and that the only subsumption relation is the one between 

penguin and bird. If we consider the terminological default theory consisting of 

the world description {penguin(Danny)} and the defaults 

penguin(x):-~f l ies(x)  bird(x): winged(x) winged(x): f l ies(x) 

-~flies(x) ' winged(x) ' f l ies(x) ' 

then the preferred extension should be the one in which Danny has wings but 

does not fly.6 
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The approach we have described yields this extension; but it also yields anoth- 

er one in which Danny does not have wings, because as soon as the (approxi- 

mation of the) first default has fired, the contrapositive of the third one can be 

fired, which gives us ~winged(Danny). 
This shows that in this approach the defaults no longer behave like simple 

forward rules. But the similarity of default rules with the monotonic forward rules 

of terminological systems was one of our reasons for choosing default logic in 

the first place. 

4. Default Theories with Priorities 

To overcome the problems pointed out in the preceding section, we shall now 

propose a new approach for handling priorities among defaults with prerequisites. 

The semantics will be very close to Reiter's semantics, and the properties of our 

theory will also resemble those of Reiter's theory. 

DEFINITION 4.1. A default theory with priorities is a triple (W, 79, <)  consist- 

ing of a closed default theory (W, 79) and a strict partial ordering < on 79 such 

that {d' E D [ d' < d} is finite for every d E 79. 

In the terminological case, VF is an ABox, and D is obtained by instantiating 

the terminological default roles by all constants occurring in the ABox. For two 

instantiated terminological default roles dl, d2 with prerequisites C1 (al), C2(a2) 

we have d l <  d2 iff they are concerned with the same object (i.e., al = a2) and 

C1 is more specific than C2 (i.e., C~ is subsumed by C2 but not vice versa). 

The restriction on the ordering is satisfied because D is finite by definition of 

terminological default theories. In this case, (W, 7?, <) is called terminological 

default theory with specificity. 
Our definition of an extension for a default theory with priorities is modeled 

on Reiter's iterative characterization of R-extensions (see Definition 2.1). The 

main idea for treating priorities is that the consequent of a default can only be 

added during an iteration step if the default is not delayed by a preferred default, 

that is, there does not exist a smaller default that is currently active. 

DEFINITION 4.2. For a set E of closed formulae, and a closed default d : o~ : 

/3/'7 we say that d is active in E iff its prerequisite is a consequence of E (i.e., 

E Th(E)) ,  its justification is consistent with E (i.e., -7/3 ~ Th(E)) ,  and its 

consequent is not a consequence of E (i.e., ~/~ Th(E)) .  

Using this notation, we can now give the main definition of this article. 

DEFINITION 4.3. Let (W, D, <) be a default theory with priorities, and let g 

be a set of closed formulae. We define Eo := l/Y, and for all i >~ 0 

E i +  1 : =  E i U {~/ [ 3d  E :D: d = ct : ~ / ' / ,  ol E Th(Ei ) , - -n~  ~ E, 

and all d ~ < d are not active in Ei}. 
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Then C is a P-extension of (14;,7), <) iff C = Ui>~0Th(E). 

The only difference in Reiter's characterization is the additional requirement that 

smaller defaults must not be active in the current state of the iteration. With this 

definition of an extension we get the intuitively correct result in our example with 

the three defaults concerning penguins, birds, and objects with wings. In fact, for 

any penguin the second default (asserting that birds normally have wings) can 

fire only after the more specific default (asserting that penguins normally cannot 

fly) has been applied. But this means that the third default (asserting that winged 

objects normally can fly) will never become applicable for a penguin (before its 

prerequisite becomes derivable, the negation of its justification must have been 

added). This means that our definition of a P-extension chooses from the two 

existing R-extensions the one that respects priorities. 

Our first theorem states that this will always be the case, that is, that the set 

of all P-extensions is always a subset of the set of all R-extensions. 

THEOREM 4.4. Let E be a P-extension of the default theory with priorities 

(14;, D, <). Then C is an R-extension of (l/V, 73). 

The proof is given in the appendix. The main idea is to take a P-extension C 

that has been obtained from the sequence E0, E1 , . .  • and to use it to construct a 

sequence F0, F1, • • • as in the characterization of R-extensions. It is easy to see 

that E~ C_ F~ for all i/> 0, but the converse is not true. In fact, the consequent ~, 

of a default d may be added to Fi but not to Ei because d is delayed by a smaller 

default that is active. A straightforward way to prove that Fi C_ C = [-Ji>~0 Th(Ei) 

would thus be to show that the set of active defaults delaying d decreases along 

our F-iteration. Unfortunately, the set of defaults delaying d may also increase 

because prerequisites of smaller defaults that have not been derivable at step 

i may become derivable in a later step of the iteration. In the proof we shall 

circumvent this problem by considering the set of defaults that may potentially 

delay d, namely, defaults smaller than d that are currently active or may become 

active as soon as their prerequisite is derivable (see Appendix A.1 for details). 

Since not all default theories have R-extensions, it follows that a default theory 

with priorities need not have a P-extension. But even if we have R-extensions, 

there need not exist P-extensions of a default theory with priorities. This is 

demonstrated by the following example. 

EXAMPLE 4.5. Assume that ]/V is empty, and consider the three defaults 

"/3 "~t3 and / 3 " a  

We assume that the first default is smaller than the second one and that there 

are no other comparabilities with respect to <. This default theory has the R- 

extension Th({~/3)), but it does not have a P-extension. In fact, a P-extension 
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would prefer the first default, which yields/3; but then the third default (which 

is a modified version of the well-known one-rule example of a default theory 

having no R-extension) would become relevant. 

As in the case without priorities, normal default theories with priorities have 

much nicer properties than arbitrary default theories with priorities. 

THEOREM 4.6. Every closed normal default theory with priorities has a 

P-extension. 

The proof, as given in the appendix, is a relatively straightforward adaption of 

Reiter's proof for R-extensions. To construct an R-extension g = Ui~>0 Th(E,i) 

of a normal default theory (W, 77), Reiter starts with the world description (i.e., 

E0 := W) and in successive steps adds as many consequents of active defaults 

as is possible without destroying consistency (i.e., Ei+l := Ei U Con(7~), where 

75 is a maximal subset of the set of defaults active in Ei such that Ei UCon(~)  is 

consistent). To take priority information given by a strict partial order < on 7? into 

account, this construction is simply modified by considering only those active 

defaults that are minimal with respect to < (see Appendix A.2 for details). 

In Appendix A.2 we shall show that this construction always yields a 

P-extension of a normal default theory with priorities. But in general not all 

P-extensions can be obtained this way. The following example shows that this is 

true even for normal default theories without priorities. 

EXAMPLE 4.7. Assume that W is empty and 79 contains the defaults 

:/3 
dl = - - ,  d2 = - -  and d3 = 

/3 --/3 

We assume that the ordering on defaults is empty, which means that here the 

notions R-extension and P-extension coincide. The default theory has two 

R-extensions, namely, ga = Th({c~,/3}) and g2 = Th({o~, ~/3}). However, g2 

cannot be obtained by successively adding maximally consistent sets of conse- 

quents of active defaults. In fact, da and d2 are the only defaults that are active 

in E0 = (~. Since E0 U {o~,/3} is consistent, there is exactly one maximal set 

7~ C {dl, d2} such that E0 U Con(79) is consistent, namely, {dl, d2} itself. Thus 

the only set E1 that one can get this way is E1 = {o~,/3}. This shows that 

extension g2 (which does not contain/3) cannot be obtained. 

Note that an alternative strategy, which adds only one consequent of a minimal 

active default in each step of the iteration, may result in an R-extension that is 

not a P-extension (see Example 6.2). 

If we further restrict the attention to normal defaults without prerequisites, 

then the notion of a P-extension coincides with that of a B-extension, which 

shows that our approach is a generalization of ordered default theories. 
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THEOREM 4.8. Let 79 be a set of closed prerequisite-free normal defaults. Then 

g is a P-extension of the default theory with priorities (l/V, 79, <) iff g is a 

B-extension of the ordered default theory (14), 79, <). 

If 79 was assumed to be finite, the proof would be relatively easy; but in the 

general case of possibly infinite sets of defaults, it becomes more involved (see 

Appendix A.3). 

5. Computing P-Extensions 

Since all P-extensions are R-extensions, one could first generate all R-extensions 

of a default theory, and then for each R-extension g directly use the definition of 

P-extensions to check whether g is a P-extension. For terminological default the- 

ories this provides us with an effective procedure for computing all P-extensions. 

In fact, in [1] it is shown how to compute all R-extensions of a terminological 

default theory. Since one has only finitely many closed defaults, and since the 

instantiation problem for the terminological languages we use in [1] is decidable, 

the iteration in the definition of a P-extension is effective as well. 

However, there may exist a lot more R-extensions than P-extensions, and 

computing R-extensions is rather expensive. For this reason, it would be prefer- 

able to have an algorithm for directly computing P-extensions. The idea behind 

the algorithm presented below is to make an iteration similar to the one in the 

definition of a P-extension, but without already having the final set g for control- 

ling which consequents of defaults are added. After the iteration becomes stable 

(which will always be the case for finite sets of closed defaults), one has to check 

an additional condition to make sure that the result really is a P-extension. 

The main problem is to determine which sets of consequents are candidates 

for being added in each step of the iteration. Of course there can be more than 

one correct choice because there may exist more than one P-extension. If we 

look at the definition of Ei+l in Definition 4.3, we see that the defaults whose 

consequents are added are defaults active in Ei that are minimal w.r.t, the priority 

order <. Which subset of their consequents is taken depends on the set g used 

for the iteration. Since our algorithm does not know the final g, it has to consider 

arbitrary subsets; but we shall see that there are some constraints that reduce the 

number of possible choices. 

It should be noted that neither a greedy procedure (which takes maximal 

subsets that are consistent with what has already been computed) nor an over- 

ly modest procedure (which adds only one consequent in each step) would be 

complete. Example 4.7 demonstrates this for the greedy procedure, even in the 

absence of priority information. Examples that illustrate why the overly modest 

procedure is not appropriate for computing P-extensions can be found in the next 

section. 
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In the following (nondeterministic) algorithm, Ei will always be a subset of 

WUCon(79),  and Ji will be a subset of ~Jus(79) (where, for a set 5 r of formulae, 

ALGORITHM 5.1. Let (M), 79, <) be a closed default theory with priorities. 

I f  M? is inconsistent, then Th(W) is the only P-extension. Otherwise we define 

Eo := I/Y and Jo := ~. 

Now assume that Ei (i >1 O) is already defined. Consider 

79i+1 : -  {d E 79 I d is active in Ei and no d' < d is active in Ei},  

and choose a nonempty subset 7)i+1 of  79i+1 that satisfies 

-~/3 ¢ Th(E~ U Con(7~+1) U Ji U -~Jus(79i+l \ 7~i+1)) (*) 

for  all f l e  Jus(7~i+l). 

I f  there is no such set, then Ei+ 1 :~ Ei~ Ji+l := Ji, and the iteration process 

becomes stable. 7 Otherwise each choice yields new sets Ei+l :-= Ei UCon(7~i+l) 

and Ji+l := Ji U --~Jus(79i+l \ 7~i+1). 

The set C :-- Ui>>0 Th(Ei) is a P-extension iff 

(l) for  all d = o~ " 13/')' E Ui>~l ~i  we have ~fl ~ ~, and 

(2) for  all - ~  E Ui>>l Ji we have -~fl C E. 

A proof of soundness and completeness of this algorithm is given in Appendix A.4. 

The idea behind the sets Ji is as follows. If the consequent of a minimal active 

default is not included in El+l, then the reason must be that its justification is not 

consistent with the final extension. Thus, if we exclude such a default from 7~i+1, 

we know that the negation of its justification must belong to the extension. The 

condition ( .)  on 79i+1 corresponds to the fact that defaults whose consequents 

are added to a P-extension must have justifications that are consistent with the 

extension. This condition can ensure only local correctness of our choices. For 

this reason we must check the two conditions on C to ensure global correctness. 

Because of this global test, the algorithm would also be correct without testing 

the local condition (.).  Thus, testing this local condition is already an optimiza- 

tion of the brute force method, since it reduces the number of subsets of 79i+1 

that must be considered. 

For terminological default theories with specificity, all the steps of the algo- 

rithm are effective, provided that the consistency and instantiation problem for 

the underlying terminological language is decidable (an assumption which is usu- 

ally satisfied). In addition, since one has only finitely many closed defaults, the 

iteration will become stable after finitely many steps. 

A possible optimization of the algorithm for computing extensions is to par- 

tition the set of defaults into subsets that do not 'influence' each other. Then 

extensions can be computed separately for each subset, and only afterwards be 

put together to extensions of the whole set of defaults. We make this idea more 
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precise for the case of terminological default theories with specificity (W, 79, <). 

Recall that 79 is obtained by instantiating open terminological default rules by all 

individual names (i.e., constants) occurring in the ABox W. For two instantiat- 

ed terminological default rules all, d2 with prerequisites C1 (al), C2 (a2) we have 

d l <  d2 iff they are concerned with the same object (i.e., al = a2) and C1 is 

more specific than C2 (i.e., C1 is subsumed by C2 but not vice versa). 

The set N of individual names in W can be partitioned into connectivity 

classes as follows: we say that a E N is connected with b E N iff a = b or there 

exist n /> 1, role n a m e s  R 1 , . . .  , R n ,  and individual names a 0 , . . . ,  an E N such 

that a = a0, b = an, and for all 1 <~ i ~ n, Ri(ai- l ,ai)  C ]A2. Let N 1 , . . . , N k  
be the equivalence classes of the relation 'is-connected'. This partition of N 

induces a partition 791,.-. ,  79k of 79: the set 79i consists of all instances of the 

original open terminological default rules with individuals from Ni. Obviously, 

if dl and d2 belong to different such subsets, then there cannot be a priority 

relation between dl and d2. In addition, adding the consequent of dl to a partially 

constructed extension has no influence on the applicability of the default d2. In 

fact, assume that a and b are not connected in an ABox .4, and that A U  {C(a)} 

is consistent. Then D(b) is a consequence of .A U {C(a)} iff it is already a 

consequence of .A. 8 

For i = 1 , . . . ,  k, let Gi be the set of all extensions of (W, 79/, <i),  where <i 

is the restriction of < to 79i. The set G of all extensions of (l/V, 79, <) is obtained 

by considering all possible unions of extensions from G 1 , . . . ,  Gk, i.e., 

G = {Th(gl U - . .  U g.k) I c~ c G1, . . . ,  gk E Gk}. 

If n l , . . . ,  nk are the cardinalities of the sets G 1 , . . . ,  Gk, then G has cardinality 

nl x . . .  x nk. However, our optimized algorithm must only compute nl + ' "  + n k  

extensions of smaller default theories. 

We have the feeling that, compared with the case of default theories without 

priorities, it is rather hard to come up with additional conceptual optimizations. 

Since the definition of an extension strongly depends on the iteration process, it 

is hard to conceive of an algorithm for computing extensions that is not based 

on this process. 9 

6. Related Work 

During the preparation of this report we learned that Brewka [6] has proposed 

a generalization of his ordered default theories (as described in Section 3.3) to 

the case of normal defaults with prerequisites. In this section we shall briefly 

introduce Brewka's approach and point out the differences in our approach. 

Brewka considers default theories with priorities (79, W, <) where 79 is afinite 

set of closed normal defaults. Any total extension << of < defines an extension 
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Ui>~0Th(Fi) (called B*-extension in the following) as follows. Let F0 := W, 

and for i/> 0 

f?i+l := { 
Fi if there exists no default that is active in Fi, 
Fi U {/3} otherwise, where/3 is the consequent of the 

<<-minimal default that is active in F/. 

From the results in [6] it follows that every B*-extension is an R-extension. 

This means that, as in our approach, Brewka takes a subset of the set of all 

R-extensions as admissible extensions of a default theory with priorities. The fol- 

lowing two examples show, however, that in general he takes another subset than 

we do. The first example demonstrates that one may obtain more P-extensions 

than B*-extensions. 

EXAMPLE 6.1. Assume that W is empty and that 79 consists of the normal 

defaults 

/3: :/3 -,/3 -y dl - - - - , c~  d 2 - - - , ~ c ~  d3 = , and d 4 -  7/3 ' 

where d2 < dl, d4 < d3, and these are the only <-relationships between defaults 

in 73. First, we show that g := Th({c~,/3}) is a P-extension. In fact, using g in 

the definition of P-extensions yields Eo = ~, E1 = {c~,/3}, and E2 = El. Since 

d2 and d4 are not active in Eo (their prerequisites are not deducible), dl and d 3 

are the minimal defaults that are active in Eo. In addition, we have -~o~, -7/3 ~ g, 

which shows that El = {a,/3}. But then d2 and d4 are not active in E1 (their 

negated justifications are deducible), which shows that E1 = E2. 

With Brewka's definition of an extension, either o~ or/3 is added in the first 

step of the iteration, depending on whether dl << d3 or d3 << dl. This is so 

because again d2 and de are not active in Fo = (~. We restrict our attention to the 

case F1 = {c~}. (The case Fl = {/3} is symmetric.) Now d3 and d4 are active in 

FI; but since << is an extension of <, we know that de is the minimal default 

that is active. For this reason, we get F2 = {oz, -7/3}, which shows that we cannot 

get g = Th({c~,/3}) this way. 

It is easy to see that in this example the two B*-extensions Th({o~,-7/3}) and 

Th({--o~,/3}) are also P-extensions. But in general, B*-extensions need not be 

P-extensions. This is demonstrated by the next example. 

EXAMPLE 6.2. Assume that W is empty and that 73 consists of the normal 

defaults 

./3 /32/  
dl = -  d2 d 3 -  , and d e =  

c~ ' = -fl--' 2/ 97  

The only <-relationship that exists is d3 < de. Now g := Th({c~, /3, --1-,/}) is a 

B*-extension, but not a P-extension. 
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To show that £ is a B*-extension, we consider the total extension dl << d3 << 

d4 << d2 of <. With this ordering, we obviously get Fo = ~, and F1 = {c~}. Now 

d4 is active in F1, and the only smaller default, d3, is not active. Thus we get 

F2 = {oz,-'7}. In the next step, the only active default is d2, which means that 

F 3 = {ct, ~,y,/3}. In F3, no defaults are active, and thus F4 = F3. This shows 

that g = Th(F3) is a B*-extension. 

Let us now show that g is not a P-extension. Using g in the iterative definition 

of P-extensions, we obviously get Eo = W, and E1 = {0~,/3}. Now observe that 

d3 < d4, and d3 is active in El.  But this means that neither the consequent 

of d3 can be added (since the negation of d3's justification is in g) nor the 

consequent of d4 (since d4 is delayed by d3). Thus E1 = E2, which shows that 

Ui~>0 Th(Ei) = Th({c~,/3)) ¢ g. 

Brewka's and our approach use different (but equivalent) characterizations of 

R-extensions as starting point. In fact, for characterizing all R-extensions one 

can use either the iteration process described in Section 2 above (which adds 

as many consequents of defaults as possible in each step), or a similar iteration 

process that adds only one consequent in each step. Our approach for handling 

priorities generalizes the first characterization, whereas Brewka's approach gen- 

eralizes the second characterization. From the abstract examples, it is not clear 

which generalization is more appropriate, and we do not believe that the question 

of which approach is better can be resolved in general. 

In [6], Brewka also considers an alternative approach for handling priori- 

ties. In Example 6.2, this approach yields the same extensions as ours, namely, 

Th({c~,/3, ",/}). However, it is based on an intuition on when to delay a default, 

which is very different from our approach and Brewka's B*-extension approach: 

A smaller default dl can delay an active default d2 in Ei even if the prerequisite 

of dl is not in Th(Ei).  It must only be the case that the prerequisite of dl will 

be contained in the final extension. Thus, in Example 6.2, d4 is delayed by d3 in 

F1, even though the prerequisite/3 of d3 is not yet present in F1. This is the rea- 

son why the B*-extension g = Th(F3) is not admissible in Brewka's alternative 

approach. 

It is easy to see, however, that this alternative approach is also orthogonal to 

ours. For example, the P-extension g = Th({o~,/3}) in Example 6.1 is not an 

extension with respect this approach. In fact, since c~ and fl are in g, the defaults 

dl and d3 are delayed by d2 and d4. 

7. Conclusion 

We have addressed the question of how to prefer more specific defaults over 

more general ones. This problem is of general interest for default reasoning but 

is even more important in the terminological case where the emphasis lies on the 

hierarchical organization of concepts. Of the previously existing approaches for 

handling priorities among defaults, Brewka's ordered default theories turned out 
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to come nearest to what is needed for solving the specificity problem in termi- 

nological default theories. But its restriction to prerequisite-free normal defaults 

seems to be t bo  severe to make it an adequate solution in the terminological 

case. 

Therefore we have proposed a new approach, called default theories with 

priorities, for handling priorities among defaults with prerequisites. The proper- 

ties we could prove for this formalism demonstrate that it is a quite reasonable 

generalization of Reiter's default logic and of Brewka's ordered default theories. 

In addition, it correctly handles examples for which the other approaches give 

unintuitive results. 

Brewka's independently developed generalization of ordered default theories 

to the case of normal defaults with prerequisites turned out to be orthogonal to 

our approach, in the sense that there are extensions obtained with his approach 

that are not obtained with ours and vice versa. 

We have also described a method for generating the extensions of a default 

theory with priorities. This method is effective provided that the base logic is 

decidable and one has only finitely many closed defaults. These restrictions are 

satisfied in the terminological case, which means that terminological default logic 

with specificity is decidable. Consequently, it is possibly to equip a terminological 

representation system with appropriate automated default reasoning services. 

The priority ordering we have proposed for terminological default theories 

takes into account only the strict subsumption links between prerequisites of ter- 

minological defaults. If one wishes to consider specificity induced by defaults 

as well, one can for example adapt the method proposed by Brewka ([6], Def- 

inition 3) to our approach. Another interesting point for further research is to 

consider priorities on terminological defaults that not only take into account 

subsumption between prerequisites of defaults, but also consider the role rela- 

tionships in ABoxes. 

Appendix. Proofs of Theorems 

A.1. PROOF OF THEOREM 4.2 

THEOREM 4.4. Let g be a P-extension of the default theory with priorities 

(l/V, 79, <). Then g is an R-extension of (}4;, 79). 

Assume that £ = [.Ji>0Th(Ei) is a P-extension of (W, 79, <),  obtained by iter- 

atively generating sets E0, El ,  • •. as described in Definition 4.3. Before we can 

prove that g is also an R-extension, we need a technical definition and two 

lemmas. 

For all d E 79 and i /> 0 we define 

7'  [d '  < d and (a '  ~ Th(Ei)  or d' is active in Ei) • 



5 8  FRANZ BAADER AND BERNHARD HOLLUNDER 

The set D/d contains all defaults that either delay d in step i of the iteration or 

may delay d in a later step when their prerequisite becomes deducible. By our 

assumption on the strict partial ordering <, there exist only finitely many d' < d, 

which means that the sets D~ are always finite. The first lemma shows that D~ 

stays the same or gets smaller when the index is increased. 

LEMMA A.1. For all d E D and all i >1 0 we have D(  D_ D~+ 1. 

Proof. Let d' = o<' • 13'/',/ be a default contained in D~+ 1. First assume 

that o? ~ Th(Ei+l). Now Ei C_ Ei+l yields c~' ~ Th(Ei), and therefore d' is 

contained in D/d. 

On the other hand, assume that d' is active in El+l, i.e., c~' E Th(Ei+I), 

--,13' ~ Th(Ei+I), and 7' ~ Th(Ei+l). If o~' ~ Th(E d, then d' is in D~, and we 

are done. For a '  E Th(Ei), the default d' is active in Ei, since --,13' ~ Th(Ei+I) 

and 3" ~ Th(Ei+I) together with Ei C_ E/+I imply -~fl' ~ Th(Ei) and 7' 

Th(Ei). [] 

Our next lemma states that a default whose prerequisite is believed in some state 

of the iteration and whose justification is consistent with g will eventually fire 

during the iteration. 

LEMMA A.2. Let d = o< : /3/3" E 7? and i >1 0 be such that ~ E Th(Ei) and 

7/3 ~ g. Then there exists an index j > i such that 3' E Th(Ej). 

Proof. The lemma is proved by induction on the cardinality of D~. Let A/d 

be the set of all defaults smaller than d that are active in Ei, namely, 

A~ := {d' < d i d '  is active in Ei}. 

Obviously, A~ is contained in D/d for all i/> 0. First assume that A~ is empty, in 

other words, all defaults smaller than d are not active in Ei. This, together with 

our assumption than o~ E Th(Ei) and -~13 ~ £, implies 3/E Ei+I. Thus we can 

take j = i + 1. 

Now assume that A~ is not empty. Let d' = o/ "/3'/3,' be a minimal default 

with respect to < in A~. We distinguish two cases. 

Case 1: -,t3' ~ g. Since d' is active, we also know that o<' E Th(Ei), and 

minimality of d' implies that it cannot be delayed by a smaller default that is 

active in E i. This shows that 7' E Ei+I, and thus d' ~ D~+ 1 . Together with 

Lemma A.1 this yields D~ D D~+ 1. 

Case 2: 7t3' E g. Since g = Uj~>0Th(Ej), there exists j >/0 such that -~13' E 

Th(Ej). In addition, the fact that d' is active in E~ implies that --13' ~ Th(Ei), 

which yields j > i. From -~13' E Th(Ej) and a '  E Th(Ei) C_ Th(Ej) we can 

deduce d' ~ D~. This yields D~ D D~. 
d We have seen that in both cases there exists an index j > i such that D~ D Dj. 

Obviously, j > i implies that o< E Th(Ei) C_ Th(Ej), which shows that j also 
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satisfies the assumption of the lemma. By induction we get an index f > j > i 

with "y E Th(Ej ,) .  [] 

To prove Theorem 4.4, we take the P-extension £, which has been obtained 

from the sequence E0, E l , . . . ,  and use it to construct a sequence F0, F1 , . . .  as 

described in the characterization of R-extensions, in other words, F0 := 14;, and 

for all i/> 0 

Fi+l := F /U  {7 i c~ : f l /7  E 79, oz E Th(Fi), and -~fl ¢ g) .  

To show that g is an R-extension, we have to prove that g = Ui~>o Th(Fi). 

LEMMA A.3. For all i >1 0 we have Ei C__ Fi. 

Proof. This can easily be proved by induction on i. [] 

In genera!, the other direction does not hold: Fi is not necessarily a subset of Ei. 

But for all i /> 0 we get Fi C g = Uj~>0 Th(Ej)  as an immediate consequence 

of the next lemma. 

LEMMA A.4. For every i >1 0 and every "y E Fi there exists an index j such 

e Th(Ej).  

Proof. The lemma is proved by induction on i. For i = 0 there is nothing to 

show because F0 = ld2 = Eo. Now assume that i > 0. 

Let 3' be an element of Fi. If ~/E Fi -  1, we know by induction that 7 E Th(Ej)  

for some j .  Thus assume that 3' ~ Fi- l .  Consequently, 7 is the consequent of a 

default o~ : /3/7 whose prerequisite o~ is in Th(Fi-1) and whose justification is 

consistent with f .  

Let "Yl,..., % be formulae in Fi-1 such that a E Th({T1, . . . ,  "/n}). By induc- 

tion we know that for each of these formulae 7k E Th(Fi_t ) there exists an index 

Jk such that 7k E Th(Ejk ). For j = max{j1, . . .  ,j,~} we have {71,.-.  ,7~} _C 

Th(Ej) ,  which implies ct E Th(Ej) .  

Since we also know that -7/3 ~ g, the assumptions of Lemma A.2 are satisfied 

for d and j.  Thus we can conclude that there exists an index j~ > j such that 

"7 e rh(Ej , ) .  [] 

A.2. PROOF OF THEOREM 4.4 

THEOREM 4.6. Every closed normal default theory with priorities has a P-  

extension. 

Let (142, 79, <) be a closed normal default theory with priorities. If )4; is incon- 

sistent, then Th042 ) is a P-extension. Thus assume that 14; is consistent. 
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A P-extension of (W, 79, <)  is inductively constructed as follows. We define 

E0 := W, and for all i /> 0 

79i+1 := {d E 79 I d is active in Ei, and no d ~ < d is active in Ei}. 

Let Ei+l :-~ Ei OCon(7~i+l), where ~i+1 is a maximal subset of Di+l such that 

Ei U Con(79i+1) is consistent. 

By compactness, we know that g := Ui>~0 Th(Ei) is also consistent. To show 

that g is a P-extension, we have to prove g = Ui~>0 Th(Fi),  where Fo := 14), 

and 

Fi+ 1 := F i U (/3 I 3d  E 79 : d = a :/3//3, a E Th(Fi), 9/3 ~ g, 

and all d ~ < d are not active in Fi}. 

This is an immediate consequence of the following lemma. Note that we need 

not have Ei = Fi. In fact, Fi \ F i - i  may contain elements 3' of Th(Fi-1)  \ Fi-1, 

whereas elements of Th(Ei_I)  \ Ei-1 are not in Ei, by definition of active. 

LEMMA A.5. For all i >>, 0 we have Th(Ei) -= Th(Fi). 

Proof. The lemma is proved by induction on i. For i = 0 there is nothing to 

show, since E0 = W = Fo. Thus assume that i /> 0 and that we already know 

that Th(Ei)  = Th(Fi).  

First, we show that Ei+l C_ Th(Fi+I).  Let /3 be an element of Ei+l.  If 

/3 E Th(Ei) ,  we know by induction that/3 E Th(Fi) C_ Th(Fi+l) .  

Now assume that/3 C Ei+l \ Th(Ei).  Thus/3 E Con(~i+l) ,  and hence there 

exists a default d = a : /3//3 in 79 such that d is active in Ei and no default 

d ~ < d is active in Ei. 

To prove that/3 E Fi+I, and thus /3 E Th(Fi+I),  we have to show that no 

default d' < d is active in Fi, a E Th(Fi), and --,/3 ~ g. The first two properties 

follow immediately from what we know about d, since Th(Fi) = Th(Ei)  (by 

induction). The third property follows from/3 E Ei+l C_ g and the fact that g is 

consistent. This concludes the proof of Ei+l C Th(Fi+l) .  

Now let us show that Fi+l C_ Th(Ei+I).  Let/3 be an element of Fi+I. Again, 

the case/3 E Th(Fi) is trivial. Thus assume that/3 E Fi+l \ Th(Fi). This means 

that there exists a default d = a :/3//3 in 79 such that no default d ~ < d is active 

in Fi, a E Th(F/),  and -~/3 ~ 8. Now Th(Fi) = Th(Ei)  yields d E 79i+1. Note 

that we really need to know that/3 ~ Th(Fi) = Th(Ei) to conclude that d is 

active in Ei. 

It remains to be shown that d is in fact an element of 7)i+1. Assume to the 

contrary that d ~ 79i+1. By maximality of 7)i+1 this means that Ei+l U {/3} 

is inconsistent, which in turn means that -7/3 E Th(Ei+I).  Since /3 E g and 

Th(Ei+I)  C_ g, this contradicts the fact that g is consistent. [] 
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A.3.  PROOF OF THEOREM 4.6 

THEOREM 4.8. Let 79 be a set of closed prerequisite-free normal defaults. Then 

g is a P-extension of the default theory with priorities (l/V, 79, <) iff g is a 

B-extension of the ordered default theory (l/V, 79, <). 

If I/V is inconsistent, then Th(W) is the only P-extension and the only B- 

extension. In the following we assume that kV is consistent. Note that this means 

that all P-extensions and B-extensions are consistent. 

To prove the theorem for consistent W, we first show that any B-extension 

of the normal, prerequisite-free theory (l/V, 79, <) is also a P-extension. Let 

dl = "/31 d2 = "/32 d3 = "/33 

/31' /3a '  /33 ' " "  

be an enumeration of 79 that is compatible with <, and let g be the B-extension 

defined by this enumeration. This means that g = Ui>~o Th(Fi), where F0 := kV, 

and for i/> 0 

f Fi if -n/3i+ 1 E Th(Fi), 
Fi+l 

Fi U {/3i+l} otherwise. 

We use g to define the sets Ei as described in the definition of a P-extension (see 

Definition 4.3). What remains to be shown is that this iteration really yields g, 

i.e., that g = Ui~>0 Th(Ei).  This is an immediate consequence of the following 

two lemmas. 

LEMMA A.6. For all i >1 0 we have Ei c g. 

Proof. The proof is by induction on i. For i = 0 we have E0 = kV C_ g. 

Now assume that i /> 0 and consider/3 E E i + I .  For/3 E E i  w e  know/3 C g 

by induction. For/3 E Ei+l \ Ei we know (beside other things) that •/3//3 E 79 

and =fl ~ g. Since the default • ill~3 occurs in the enumeration dl, d2 , . . . ,  there 

exists j ~> 1 such that/3 = /3j. In addition, -7/3 ~ g implies -~/3 ¢ Th(Fj_I) ,  

which yields/3 = flj E Fj C g. [] 

LEMMA A.7. For all i >1 0 we have Fi C_ Ei. 

Proof. Again, the proof is by induction on i. For i = 0 we have Fo = V9 = 

Eo. Now assume that i/> 0, and consider/3 ~ Fi+l. For/3 E Fi, induction yields 

/3 E Fi C Ei C Ei+I. 

On the other hand,/3 E Fi+l \ Fi means that/3 =/3i+1. Since/3 = Fi+l, we 

know that/3 E g, and thus --,/3 ~ g. In order to get/3 E Ei+~, it remains to be 

shown that all d' < di+l are not active in Ei. Recall that a default d t = :/3~//3' 

is active in E.i iff/3' ~ Th(Ei) and -~fl' ~ Th(Ei). 

From d' < di+l we can deduce that d' = dj for some j < i + 1. If flj E Fj 

then Fj C_ Ej (by induction) and Ej C_/?i (because j ~< i) yield/3j EEi ,  which 

implies that d' = : /3 j / /3 j  is not active in Ei. Finally, assume that/3j ~ Fj. This 
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means that -~flj E Th(Fj_I) ,  and thus f j _  1 C Ej_ 1 C E i (by induction and 

j - 1 < i) yields -~/3j E Th(Ei). Again, this implies that d t = : /3j/fij is not 

active in Ei. [] 

This concludes the proof that any B-extension is a P-extension. For the oth- 

er direction, assume that g = Ui>~0Th(Ei) is a P-extension of the normal, 

prerequisite-free theory 04), 7?, <),  obtained by iteratively generating the sets 

Ei as described in Definition 4.3. The first lemma says that g satisfies a property 

that is obviously true for B-extensions but is not so trivial for P-extensions. 

LEMMA A.8. For d = :/3//3 we have either/3 E g or ~fi E g, 

Proof. The proof is by induction on <. Assume that --,/3 is not in g. Thus 

the only reason for d not to fire in the ith step of the iteration can be that there 

exists a default d' = : fit~fit < d that is active in Ei-1. By induction, we know 

that/3t E g or ~/3t E g, and hence there exists an index j such that/3t E Th(Ej)  

or --,/3~ E Th(Ej) .  Thus we have seen that for all d t < d there exists an index 

j such that d t is no longer active after step j of the iteration. Since there exist 

only finitely many defaults smaller than d, this means that d will eventually fire, 

which shows that/3 E g. [] 

To show that g is a B-extension, we shall define a strict partial ordering << 

that extends <, and show that any enumeration of 7? that is compatible with 

<< yields g as B-extension. The main idea behind the definition of << is that 

we must prevent the consequents /3 of defaults d = : /3//3 with /3 ~ g from 

being added to the B-extension. For this reason, we will make sure that there 

are defaults dl = : f i l / f i l  << d , . . .  ,dn = : fin~fin << d such that f i l , - . .  ,fin E g 

and -~fi 6 Th(W U { i l l , . . . ,  fin}). 
The main technical problem will be to show that << has the finiteness property, 

in other words, that for all d E 7? the set {dt E 7? [ d t << d} is finite. This property 

is necessary because otherwise there would not exist an enumeration of 7? that 

is compatible with <<. 

For i /> 1, we define 7)/ as the set of all defaults that fire at step i of the 

iteration: 

77i := {d = : fi/fi ~ Th(Ei_l),--nil ¢ g, 

and all d t < d are not active in Ei-1}. 

Note that d = :/3//3 E 77i implies/3 E gi, and thus/3 E g. Let 7?~red := Ui~>l 77i 

and 7?out := {d = : /3//3 ] fl ~ g}. Obviously, 7?~red and 7?out are disjoint, but 

note that their union can be a strict subset of 7?. 

LEMMA A.9. For all d = : fi/fi E ~)out there exist a nonnegative integer i(d) 

and a finite set of defaults M(d)  C Dared such that one of the following two 

properties holds: 
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(1) i(d) = 0, M(d) = ~, and -.[3 E Th(W). 

(2) i(d) /> 1, M(d) c_ 79 , -.[3 and-   c Th(W U 

Con(M(d))) .  

Pro@ Since d E 79out, we know (by Lemma A.8) that -.[3 E g = Ui~>o Th(Ei).  

We define i(d) to be the smallest i such that -./3 E Th(E~). If i(d) = 0, we define 

M(d) := O. Now ~[3 E Th(IA;) is satisfied because Eo = W. 

Assume that i(d) > 0. Minimality of i(d) yields --,/3 ~ Th(Ei(d)_l). From 

-./3 E Th(Ei(d)) we can deduce that there exist defaults d l , . . . ,  dn E Ui<i(d) 79i 

such that -,[3 E Th(I/V U Con({d l , . . . ,  d~})). Thus we define M(d) := { d l , . . . ,  

dn}. [] 

Now we are ready to define the extension of < we are looking for. Let << be the 

transitive closure of the relation < U -<, where -~ is defined by 

d' -~ d iff d' E 79fired, d E 79out, and d' E M(d). 

Obviously, << is an extension of <, i.e., d < d' implies d << d'. It remains to be 

shown that << is appropriate for our purposes. 

LEMMA A.10. The relation << satisfies the following properties: 
(l) << Noetherian; that is, there does not exist an infinitely descending chain 

d l > > d 2 > > " - .  

(2) << is a partial ordering. 
(3) << satisfies the finiteness property; that is, for all d E 79 the set {d' E 79 I 

d ' << d} is finite. 
Proof (1) First note that < and --< are strict partial orderings satisfying the 

finiteness property. For <, this is just the condition that a partial ordering has to 

satisfy to be admissible in a theory (W, 79, <). For -<, transitivity and irreflexivity 

follow from disjointness of 79fired and 79out- In fact, 79fired ("l 79out = 0 implies that 

neither the situation d ~ d nor the situation d -< d' -~ d" can occur. The finiteness 

property for -< is now an immediate consequence of the fact that M(d) is finite 

for all d E 79out. 

Since < and -~ are irreflexive and satisfy the finiteness property, they are 

Noetherian as well. For this reason, an infinitely descending chain for << must 

be (without loss of generality) of the form 

d 1 ~ d~ > d 2 ~- d~ > . . - d j  ~ a~ > dj+ 1 N- . . .  

For j /> 1 we have dj E 79out and d~ E 79fired- To prove that such a chain cannot 

be infinite, we show that i(dj) is larger than i(dj+l). 
Let io = i(dj). Since dj >- d}, we know that d~j C M(dj), and thus d} E 

Ui~<i0 79i. Let il ~< io be such that d} E 79i,. Because dj+l < d}, we thus know 

that dj+l cannot be active in E i l - l .  But this means that the justification of dj+l, 
say [3j+1, is already inconsistent with Eil_l,  in other word, ."[33+I E Th(Ei~-l).  

This shows that i(dj+l) is smaller than il, and thus smaller than io = i(dj). 
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(2) The relation << is transitive by definition. Irreflexivity follows from the 

fact that << is Noetherian. 

(3) The finiteness property of << is shown by Noetherian induction on <<. For 

d E 7) we consider the sets {d ~ E D I d' < d} and {d" E 7) I d" -< d}. Both sets 

are finite, since < and -< satisfy the finiteness property. The <<-successors of d 

are the elements of these sets, together with their <<-successors. By induction, 

we know that the elements of these sets have only finitely many <<-successors, 

which completes the proof of the lemma. [] 

Now let d l =  :/31//31, d2 = :/32//32,... be an enumeration of D that is compat- 

ible with <<. The finiteness property for << guarantees that such an enumeration 

exists. Let 5 r = U/>/0Th(F~) be the B-extension of (14), 7), <<) defined by this 

enumeration. Since << extends < ,9  r is an extension of (l/V, 7), <) as well. It 

remains to be shown that 5 r = g. 

LEMMA A. 11. For all i ) 0 we have F~ C_ g. 

Proof. The proof is by induction on i. For i = 0, F0 = 14; C_ g. Now let 

i > 0. If F / =  F/_ 1, we have F / =  Fi-1 C_ g by induction. 

Now assume that F/ = F/-a U {/3/}, but/3i ~ g. Thus d~ E :/Pout, and there 

exists a finite set of defaults M(di)  such that 7/3/E Th(1/V U Con(M(d/))) .  For 

d = •/3//3 E M(di )  we have d << di and/3 E g. Since the enumeration dl, d2,. •. 

is compatible with <<, this means that/3 E F/-1 or 7/3 E Fi-1. The second case 

cannot occur because this would mean that 7/3 E g, by induction. 

To sum up, we have seen that the consequents of all defaults in M(d)  are 

in F/-1. But this shows that 7/3/E Th(F/_~), which contradicts our assumption 

that F / =  F/-1 [2 {/3/}. [] 

The next lemma completes the proof of Theorem 4.8. 

LEMMA A. 12. g = 5 r. 

Proof  Because of the previous lemma, we know that 5 r C_ g. If 3 r ¢ g, 

then there exists a default d = • /3//3 E D such that/3 E g \ 5 r.  But /3 ~ 5 r 

implies -1/3 E 5 r,  which together with 5 r C_ g contradicts the fact that g is 

consistent. [] 

A.4. SOUNDNESS AND COMPLETENESS OF ALGORITHM 5.1 

ALGORITHM 5.1. Let (~/V,7), <)  be a closed default theory with priorities. 

I f  14; is inconsistent, then Th(I/V) is the only P-extension. Otherwise we define 

Eo := VP and Jo := (~. 

Now assume that E~ (i >1 O) is already defined. Consider 

7)/+i := {d E 7) I d is active in E~ and no d ~ < d is active in Ei}, 
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and choose a nonempty subset ~i+l of 59i+l that satisfies 

~/3 ~ Th(Ei  U Con(7)i+l) O J,i U ~Jus(59i+l \ 7)i+l)) 

for all/3 E Jus(7~i+l). 

If there is no such set, then Ei+j := t?,i, Ji+l := Ji. Otherwise each choice 

yields new sets Ei+l := Ei U Con(59i+l ) and Ji+l := Ji U ~Jus(59i+l \ 77i+1 ). 

The set g := [..Ji>~0 Th(Ei)  is a P-extension iff 

(1) for all d = ~ :/3/3` E Ui>>.l ~i we have ~/3 ~ g, and 

(2) for all -~/3 E Ui>~l Ji we have -,/3 E g. 

If 14; is inconsistent, Th(I/V) is the only P-extension, and this is what the algo- 

rithm yields in this case. Thus we may assume without loss of generality that 14; 

is consistent. 

To prove soundness, assume that £ = Ui~>0 Th(Ei)  where the Ei are obtained 

as described in the algorithm, and that g is accepted as admissible output because 

it satisfies the two conditions that are checked at the end of the algorithm. 

To show that g is a P-extension, we use it to generate sets Fi as described in 

the definition of P-extensions. This means that we define F0 := 14;, and for all 

i~>0 

Fi+l := FiU{3`13dET?: d = a : / 3 / %  a E T h ( F i ) , - ` / 3 ¢ g ,  

and all d < d are not active in Fi}. 

Now g is a P-extension if g = Ui~>0 Th(F/). This is shown by proving, for all 

i >t 0, that Th(Fi) = Th(Ei).  We proceed by induction on i. For i = 0, we have 

F0 = 14; --- E0. Now assume that Th(Fi) = Th(Ei) is already known. 

LEMMA A.13. Ei+l C_ Th(Fi+~). 

Proof. Let 7 be an element of Ei+l. If 3  ̀E Th(Ei),  we have 7 E Th(Fi) C_ 

Th(Fi+l)  by induction. Thus assume that -y E Ei+l \ Th(Ei).  This means that 

there exists a default d = o~ : /3/7 E 7~i+1 that is the reason for 7 being 

in Ei+l .  

By definition of 59i+1 we know that c~ ~ Th(E~) = Th(Fi), and that no default 

d' < d is active in Ei. Since Th(Fi) = Th(Ei),  this means that d I < d is not 

active in Fi as well. To get 3' E Fi+I, and thus 7 E Th(Fi+I),  it remains to be 

shown that -~/3 ~ g. But this is the case because d E Uj~>I 7~j, and g satisfies 

the first condition checked at the end of the algorithm. [] 

LEMMA A.14. Fi+l C Th(Ei+I).  

Proof. Assume that 7 E Fi+l. By induction, the case where 3' E Th(/~)) 

is again trivial. For 7 E Fi+I \ Th(Fi) we know that there exists a default 

d = c~ : 3 / 7  such that c~ E Th(Fi) --- rh(Ei) , - , /3  ~ g, and all d' < d are not 

active in Fi. Obviously, -~/3 ~ g implies -`/3 ~ Th(Ei),  and thus Th(Fi) = Th(Ei)  

yields d E 59i+1. 
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In order to get 3' E Ei+l it remains to be shown that d E ~/~i+l. Assume that 

d E 79i+1 \ 7)i+1. Then -7/3 E Ji+l, and thus the second condition checked at the 

end of the algorithm yields -`/3 E g. But we already know that 9_,/3 ~ g. [] 

This completes the proof of soundness. To show completeness, we assume that 

g = Ui~>0Th(Fi) is a P-extension obtained from the sequence F0, F1 , . . .  as 

described in the definition of P-extensions. We use g and the Fi to choose the 

right sets 7)i in the algorithm. 

Assume that 7)i and the corresponding sets Ei, Ji are already defined and 

that these sets satisfy Th(Ei) = Th(Fi) and Ji C_ g. Note that for i = 0 this is 

trivially satisfied, since E0 = 1/V and J0 = 0. We define 

~i+1 :=  {d = a : /3/7 I d E ~)i+l and --,/3 ~ g}, 

where Di+~ = {d I d is active in E/ and no d ~ < d is active in Ei}. Obviously, 

~i+1 is a subset of 7)i+1. 

If 7)i+1 is empty, then it is easy to see (using the induction hypothesis 

Th(Ei) = Th(Fi)) that Th(Fi) = Th(Fi+l),  and thus g = Th(Fi). To get 

Ei+l = Ei, and thus Th(Ei+I) = Th(Ei) = Th(Fi) = Th(Fi+I), we have to 

show that there cannot be a nonempty subset 79~+ 1 of 73i+1 satisfying 

7/3 @ Th(Ei  kJ Con(~)~+l) L.J J~ tO -nJusCDi+ 1 \ ~D~+I) ) 

for all/3 E Jus(7)~+l). But if the justification/3 of a default d E 7)i+1 satisfies 

this condition, Th(Ei) = Th(Fi) = g shows that -,/3 ~ g. This contradicts our 

assumption that 7) i+l is  empty. 

Now assume that ~Di+l is not empty. We have to show that all/3 E Jus(7)i+l) 

satisfy the condition 

7/3 ~ Th(E/U Con(7)i+l) tO Ji U ~Jus(/)/+l \ 7)i+l)). 

This is an immediate consequence of the next lemma, since /3 E Jus(7)i+l) 

satisfies -`/3 ~ g (by definition of 7)i+1). 

LEMMA 1.15. Th(Ei U Con(7)i+l) U Ji U -`Jus(Di+l \ 7)i+1)) C_ g. 

Proof. Since the P-extension g is deductively closed, it is sufficient to prove 

Ei to Con(7)i+l) U Ji L0 -~Jus(Z)i+l \ ~)i+l) C g. 
By induction, we know Ji c g and Th(E/) = Th(Fi) C_ g. For 7 E 

Con(7)i+1) we have 7 E Fi+l C_ g by definition of 7)i+1. Finally, assume that 

d = a :/3/'), E 7)i+1 \ 7)i+1, that is, -,/3 E -~Jus(Di+l \ 7)i+1). We have -,/3 E g 

because otherwise d would be in ~iq-1. [] 

Thus we have seen that 7)i+1 is an admissible subset of Di+l. The lemma shows 

that Ji+l : :  Ji kA -`Jus(~Di+I kA~i+l ) (as defined in the algorithm) is a subset of g. 

In addition, by definition of 79i+1, Ei+l := Ei U Con(7)i+l) satisfies Th(E/+I) = 
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T h ( F i + I ) .  In fact,  the on ly  d i f ference  poss ib le  be tween  Fi+l \ Fi and E i + l  \ Ei 

is that  F~+I \ Fi m a y  conta in  some  addit ional  e lements ,  which  are, however ,  

e lements  o f  T h ( F i )  = T h ( E i ) .  

To sum up, we  have  s h o w n  by  induct ion  that in each  step o f  the a lgor i thm 

one can c h o o s e  an admiss ib le  set Di  C 7;) i such that the set T h ( E i )  obta ined  by  

this cho ice  co inc ides  with T h (F i ) .  Thus  we  have  g = [.-Ji~>0 T h ( E i ) .  It remains  

to be s h o w n  that  the two condi t ions  at the end o f  the a lgor i thm are satisfied. 

For  d = c~ • /7 /7  C [,Ji>~l 77i we  have  --,/7 ~ g by  definit ion o f  the sets 73i. 

Finally,  L e m m a  A.15  implies I, Ji~>l J i  C_ g.  
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Notes 

1 There are some attempts to generalize this approach to structured classes, but they work in a 
very restricted setting, and it is not clear how to obtain more general results in this direction (see, 
e.g., [17]). 

2 The reader who is surprised that this is only taken as a default property of penguins should 
have a look at the cover of [15]. 

3 For the sake of simplicity we consider only defaults with one justification. However, our results 
can easily be extended to the general case of defaults with finitely many justifications. 

4 The formulae occurring in one rule are assumed to have identical free variables. 

5 Note that the finiteness condition "{d ~ E 731 d' < d} is finite for every d E 73" is necessary 
and sufficient for the existence of an enumeration compatible with <. 

6 Note that the 'default subsumption' between bird and winged is assumed to have no influence 
on the priority ordering. 

7 If Ei+1 = Ei and Ji+l = Ji, then for all j / >  i, E# = Ei and Jj = Ji. 

8 Note that this is a consequence of the restriction to a particular type of first-order formulae 
C(x), D(x) in terminological languages. 

9 For default theories without priorities, extensions can be characterized without reference to the 
iteration process, which allows for alternative ways of computing extensions (see, e.g., [1]). 
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