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Abstract

Background: The identification of disease-related microRNAs is vital for understanding the pathogenesis of

diseases at the molecular level, and is critical for designing specific molecular tools for diagnosis, treatment and

prevention. Experimental identification of disease-related microRNAs poses considerable difficulties. Computational

analysis of microRNA-disease associations is an important complementary means for prioritizing microRNAs for

further experimental examination.

Results: Herein, we devised a computational model to infer potential microRNA-disease associations by prioritizing

the entire human microRNAome for diseases of interest. We tested the model on 270 known experimentally

verified microRNA-disease associations and achieved an area under the ROC curve of 75.80%. Moreover, we

demonstrated that the model is applicable to diseases with which no known microRNAs are associated. The

microRNAome-wide prioritization of microRNAs for 1,599 disease phenotypes is publicly released to facilitate future

identification of disease-related microRNAs.

Conclusions: We presented a network-based approach that can infer potential microRNA-disease associations and

drive testable hypotheses for the experimental efforts to identify the roles of microRNAs in human diseases.

Background

The identification of genes associated with human dis-

eases is an important goal of biomedical research.

Recently, a number of computational methods have

been developed to predict or prioritize disease-related

protein-coding genes [1-23]. Most approaches are based

on the idea that dysfunctions of functionally related pro-

tein-coding genes tend to be associated with phenotypi-

cally similar diseases [1,2,6,12,13,15,16,18-22]. These

protein-coding genes linked to similar diseases usually

interact with each other or participate in the common

biological modules. Network-based approaches have also

been employed to predict or prioritize new candidate

disease genes based upon network linkages with known

disease genes [1-3,12,23]. These approaches typically

start with constructing a gene-gene association network

based on one or more types of genomic and proteomic

information, and then prioritize candidate protein-cod-

ing genes based on network proximity to known dis-

ease-related genes. For example, Franke et al. and

Linghu et al. separately constructed a functional linkage

network (FLN) by integrating multiple types of data,

such as protein-protein interaction, microarray and

Gene Ontology annotation data, and utilized the FLN

for disease gene prioritization [7,23]. Lage et al. con-

structed a human phenome-interactome network and

scored each candidate protein based on the involvement

of its direct network neighbors in similar diseases [1].

The biological interpretation of a high-scoring candidate

was that the candidate was likely to be involved in the

molecular mechanism of the disorder of interest.
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Growing evidence indicates that microRNAs play

important roles in the development and progression of

human diseases, and are critical for the prognosis, diag-

nosis and the evaluation of treatment responses for

these diseases [24-37]. Jiang et al. and Lu et al. indepen-

dently developed two manually curated database–miR2-

Disease [38] and Human MicroRNA Disease Database

(HMDD) [39], which aim at providing a comprehensive

resource of experimentally verified microRNA-disease

associations. However, one major issue in microRNA

studies is the lack of bioinformatics methods to infer

potential microRNA-disease associations that can guide

further biological experiments.

MicroRNAs exert their biological functions through

suppression of their target genes [40]. Accumulating

studies indicate that microRNAs usually perform related

functions by targeting either the same genes or func-

tionally related genes in a coordinated manner

[34,35,41-48]. It has become an increasingly important

and informative approach to analyze biological systems

and disease mechanisms in networks of genes and dis-

eases [6,12,21,49,50]. Establishing a functional relation-

ship between two microRNAs by their target genes and

further constructing a functionally related microRNA

network will be useful for understanding the roles of

microRNAs in diseased states.

Herein, we propose a computational approach to infer

potential microRNA-disease associations by prioritizing

the entire human microRNAome for diseases of interest.

It was a logical extension of previous network-based

method for predicting or prioritizing disease-related pro-

tein-coding genes. We first constructed a functionally

related microRNA network (Figure 1A ) and a human

phenome-microRNAome network (Figure 1B). We sub-

sequently examined whether functionally related micro-

RNAs tend to be associated with phenotypically similar

diseases and prioritized microRNAs for human diseases.

Results

Construction of human phenome-microRNAome network

In order to prioritize the entire microRNAome for dis-

eases, we constructed a functionally related microRNA

network by assuming that two microRNAs are functionally

related if the overlap between their target genes was statis-

tically significant (Figure 1A). A p-value from Fisher’s

Exact Test was used to evaluate the overlap, and was

adjusted by the Benjamini-Hochberg correction [51,52].

Two microRNAs were considered to be functionally

Figure 1 Construction and application of a human phenome-microRNAome network. (A) Construction of a functionally related microRNA

network. An edge is placed between two microRNAs if they share significant number of target genes. (B) Application of the phenome-

microRNAome network to infer new microRNA-disease associations. A gray edge connects known disease-related microRNA to the

corresponding disease. Disease 2 has a related microRNA (miR-6), and disease 4 doesn’t have any related microRNAs. The red dash lines

represent the potential microRNA-disease associations that might be predicted by this network model.
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related if the adjusted p-value was less than 0.001. Follow-

ing this strategy, and using microRNA-target dataset pre-

dicted by Probability of Interaction by Target Accessibility

(PITA) [53], we obtained a functionally related microRNA

network that included 9,249 relationships (edges) between

514 microRNAs (nodes). We subsequently constructed a

hypothetical human phenome-microRNAome network by

integrating the microRNA network with a phenome net-

work [1,12,20] using 270 experimentally verified micro-

RNA-disease associations (Figure 1B).

Functionally related microRNAs tend to be associated

with phenotypically similar diseases

Our model was based on the notion that functionally

related microRNAs tend to be associated with phenoty-

pically similar diseases. We examined it by addressing

two questions: (1) whether disease pairs associated with

common microRNAs are phenotypically more similar,

as opposed to randomly selected phenotype pairs; and

(2) whether the microRNA pairs associated with com-

mon diseases are functionally more related. Because we

have constructed a functionally related microRNA net-

work, the functional relatedness between two micro-

RNAs can be measured through the number of shared

network neighbors and the length of the shortest path

in the microRNA network. We chose to use these two

measures mainly based on the standpoint that, in a

functional network, if two nodes are less distant from

each other or share more neighbors, they are function-

ally more related. Herein, we used the function e-x to

convert the length of the shortest path to the degree of

functional relatedness between two microRNAs.

A total of 349 disease pairs were identified to be asso-

ciated with common microRNAs, and 1,252 microRNA

pairs were found to be associated with common diseases.

To evaluate the statistical significance of the phenotypic

similarity between diseases associated with common

microRNAs, we generated 10,000 negative control sets and

calculated an average phenotypic similarity score for each

set containing 349 disease pairs that were randomly

sampled from the human phenome. The average phenoty-

pic similarity score between diseases associated with com-

mon microRNAs was significantly higher than the

similarity of randomly selected phenotype pairs from the

human phenome (p < 10-4, Figure 2A). In a similar man-

ner, we generated another 10,000 negative control sets and

calculated the average functional relatedness for each set

containing 1,252 microRNA pairs randomly sampled from

the microRNA network. The microRNA pairs associated

with common diseases shared more common network

neighbors (p < 10-4, Figure 2B), and were less distant from

each other in the microRNA network (p < 10-4, Figure 2C).

Performance evaluation

In order to assess the power of our model to infer

microRNA-disease associations by prioritizing the entire

Figure 2 Functionally related microRNAs tend to be associated with Phenotypically similar diseases. (A) The observed average

phenotypic similarity score (arrow) of 349 phenotype pairs associated with common microRNAs and the distribution of expected average

phenotypic similarity scores (curve) of 10,000 random control sets containing the same number of randomly sampled phenotype pairs (p<10-4).

(B, C) The observed average functional relatedness (arrow) of 1,252 microRNA pairs associated with common diseases and the distribution of the

expected average functional relatedness (curve) of 10,000 random control sets containing the same number of randomly sampled microRNA

pairs (p<10-4). The measures for functional relatedness between microRNAs are the average number of shared network neighbors and a function

value that is derived from the shortest path length.
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microRNAome, we performed the leave-one-out cross-

validation on 270 known experimentally verified micro-

RNA-disease associations. Each association was left out

once as the testing case, being referred to as <m, d>.

For the disease d, the microRNA m was termed ‘defec-

tor’ microRNA. We prioritized the entire microRNAome

according to the scores derived from the scoring system.

Note that the score can be computed only for all micro-

RNAs in the microRNA network, which was termed the

ranked microRNAome. If the ranking of the ‘defector’

microRNA exceeds a given threshold, the model suc-

cessfully predicts the experimentally verified association

<m, d>.

We calculated the sensitivity and specificity for each

threshold. Sensitivity refers to the percentage of the

‘defector’ microRNAs whose ranking is higher than a

given threshold, namely the ratio of the successfully

predicted experimentally verified microRNA-disease asso-

ciations to the total experimentally verified microRNA-

disease associations. Specificity refers to the percentage

of microRNAs that are below the threshold. The same

computational strategies were applied by Endeavour [13]

and GeneWanderer [2]. A receiver-operating characteris-

tics (ROC) curve was plotted by varying the threshold,

and the standard area under curve (AUC) was calculated.

When our model was tested on 270 experimentally veri-

fied microRNA-disease associations, an AUC of 75.80%

was achieved (red curve in Figure 3), suggesting that our

model can recover the known experimentally verified

microRNA-disease associations, and therefore has the

Figure 3 Leave-one-out cross-validation results. The red curve was derived from 270 experimentally verified microRNA-disease associations.

The blue curve represents the performance of the model to prioritize microRNAs for diseases with which no microRNAs have been

experimentally verified to be associated. The green curve was obtained from 270 randomly generated microRNA-disease associations.
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potential to infer new microRNA-disease associations by

prioritizing the microRNAome.

In order to ensure that the prioritization represents

biological significance, the model was tested on the 270

randomly generated microRNA-disease associations,

which resulted in an AUC of 49.81% (green curve in

Figure 3), approximate to the uninformative AUC of

50% (dash line in Figure 3). This result showed indir-

ectly that our model can obtain a biologically meaning-

ful prioritization.

Applicability of the model to diseases without any

known related microRNAs

To demonstrate that our model is applicable to the dis-

eases without any known related microRNAs, we

removed all other experimentally verified microRNA-

disease associations that are involved in the disease d,

for each of the 270 known experimentally verified

microRNA-disease associations, denoted as <m, d>.

This step ensured that prioritizing microRNAs for the

disease d only took advantage of the information of

other diseases having similar phenotypes with the dis-

ease d. When our model was tested on this dataset, an

AUC of 69.51% was obtained (blue curve in Figure 3),

suggesting that the model had the potential to achieve

the goal of predicting potential microRNA-disease asso-

ciations for the diseases without any known related

microRNAs.

Effect of microRNA families and robustness

MicroRNAs belonging to the same family have similar

target profiles because they share the “seed” region close

to the 5’ end of the microRNAs, which is the main

determinant of microRNA targeting. One possible con-

cern is the potential confounding effect of microRNA

families in the performance evaluation procedure. If sev-

eral microRNAs (mi, i=1, 2…) belonging to the same

family are associated with a certain disease d, it might

be relatively easy for the leave-one-out cross-validation

procedure to recover the experimentally verified micro-

RNA-disease association <mi, d> being examined. To

assess the possible effect of this confounding factor, we

removed all other experimentally verified associations

between the disease d and microRNAs which belong to

the same family as the microRNA m. Following this pro-

cedure, a slightly reduced AUC of 71.39% was achieved

(black curve in Figure 3), suggesting that microRNA

families are not a main factor leading to the good per-

formance of our model.

There is great difference among the microRNA-target

lists predicted by different algorithms. Herein, we exam-

ined the robustness of our model to another micro-

RNA-target list predicted by TargetScan [54], one of the

leading target prediction tools. We constructed another

functionally related microRNA network by retrieving the

15,000 most significant microRNA-microRNA relation-

ships (edges) between 541 microRNAs (nodes). Based

on this microRNA network, we created another phe-

nome-microRNAome network and obtained a compar-

able performance by testing the model on the 270

known microRNA-disease associations, indicating that

our model isn’t limited to a specific target prediction

algorithm.

Prioritizing the entire microRNAome for 1,599 disease

phenotypes

Many disease microRNAs have been identified over the

past decade. However, the majority of diseases in the

OMIM database aren’t associated with any microRNA.

One reason is that no sufficient efforts have been made

to decipher potential roles of microRNAs in those dis-

eases. To provide testable hypotheses to guide future

experiments, it is important to computationally infer

possible microRNA-disease associations for diseases of

interest.

Two disease phenotypes were defined to be similar if

they have a phenotypic similarity score no less than 0.3

[19]. We thus obtained 1,599 disease phenotypes, which

are similar to at least one of the disease phenotypes in

the benchmark dataset (see Additional file 1). We priori-

tized the entire microRNAome for 1,599 disease pheno-

types according to score derived from the scoring system.

In addition, the top 100 microRNAs for each of the 1,599

phenotypes are publicly released to facilitate the discov-

ery of disease microRNAs (see Additional file 2).

Case study: breast cancer

We presented a case study for breast cancer, which is

one of the most commonly occurring cancers among

women and accounts for 22% of all female cancers. We

prioritized all microRNAs for breast cancer. Among the

top 100 microRNAs, 17 have been confirmed to contri-

bute to the development of breast cancer, and 13 were

verified to be deregulated in breast cancer cells. By lit-

erature retrieval, we provided more supporting evidence

in Additional file 3. For example, Reddy et al. found

that miR-7 inhibits p21-activated kinase 1 (Pak1) expres-

sion, a widely up-regulated signaling kinase in multiple

human cancers, and the miR-7 introduction inhibits the

motility, invasiveness, anchorage-independent growth

and tumorigenic potential of highly invasive breast can-

cer cells [55]. Foekens et al. also linked miR-7 to breast

cancer aggressiveness [56]. In addition, Scott et al.

found that miR-125b is down-regulated in breast cancer

and miR-125a or miR-125b-overexpressing SKBR3 cells

displayed diminished plating and anchorage-dependent

growth in addition to markedly reduced cell migration

and invasion capacities.
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Discussion

We demonstrated that the method we proposed achieved

good performance in recovering known, experimentally

verified microRNA-disease associations. Using the model,

we prioritized the entire microRNAome for 1,599 dis-

eases, most of which have not been linked to any micro-

RNAs. The power of our model can be attributed to

several factors. First, we constructed a functionally

related microRNA network, which can capture the biolo-

gical characteristics of some microRNAs that tend to

exert the same or similar functions by the inhibition of

common target genes in a coordinated manner. Second,

we took full advantage of large-scale phenotype similarity

score information, whose significance has been con-

firmed in several previous studies aiming at the identifi-

cation of disease-related protein-coding genes [1,12].

Third, we used experimentally verified microRNA-dis-

ease associations, which allow connecting the human dis-

ease network with the microRNA network, and therefore

provide underlying knowledge for the role of microRNA

in disease pathogenesis.

There are several potential limitations. First, the

known experimentally verified microRNA-disease asso-

ciations were insufficient. Second, the functionally

related microRNA network was constructed based on

the standpoint that two microRNAs are functionally

related if the number of shared target genes is statisti-

cally significant. In reality, two microRNAs may be

functionally related when their target genes reside in

the same cellular pathways or functional modules

[43,57], rather than overlap significantly. Therefore,

integrating other bioinformatics sources such as Gene

Ontology annotation and protein-protein interaction

network data might improve model performance. In

addition, modeling rules connecting phenotype with

microRNA network may represent an important step on

the path of the emerging field of “network medicine”

[21,58].

Conclusions

Evidence continually reinforces the notion that function-

ally related protein-coding genes are usually associated

Figure 4 Steps in prioritizing the entire microRNAome for a disease of interest. First, a virtual pull-down of each candidate generates a

hypothetical microRNA module, defined as a given microRNA (the center of the module) plus its direct network neighbors in the functionally

related microRNA network. Second, in each microRNA module, the microRNAs linked to diseases that have similar phenotypes with the disease

being investigated are identified. Finally, all candidates are scored and prioritized.
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with phenotypically similar diseases. Based on this

notion, many innovative methodologies have been pro-

posed to predict or prioritize protein-coding genes for

complex diseases [1-3,7,11,12]. In this study, we studied

the functional correlation of microRNAs and found that

disease pairs associated with common microRNAs were

phenotypically more similar, and the microRNA pairs

linked to common diseases were functionally more

related. We further constructed an integrated phenome-

microRNAome network, through which we devised a

method that can recover the known experimentally veri-

fied microRNA-disease associations and prioritize the

entire microRNAome for 1,599 diseases. The top 100

microRNAs for each of the 1,599 diseases are released

publicly, which will provide testable hypotheses to guide

further experiments and contribute to the identification

of true disease-related microRNAs.

Methods

Data sources

We downloaded the disease phenotype similarity scores

from the MimMiner [19], developed by Driel et al. who

computed a phenotype similarity score for each pheno-

type pair by the text mining analysis of their phenotype

descriptions in the Online Mendelian Inheritance in

Man (OMIM) database [59]. The disease phenotype net-

work was constructed based on the similarity score.

Two phenotypes were considered to be similar and were

linked by an edge if their similarity score was no less

than 0.3. The similarity score is equal to 1 if two pheno-

types are identical. The phenotypic similarity score has

been successfully used to predict or prioritize disease-

related protein-coding genes [3,12].

PITA [53] is a leading microRNA target prediction

approach that considers multiple factors, such as seed

pairing, site number, overall predicted pairing stability

and predicted site accessibility. We downloaded the

PITA target catalog version 6 (3/15 flank ALL 31-Aug-

08) and retrieved 145,872 predicted associations between

670 microRNAs and 14,826 target genes with a score

less than -10.0, a threshold suggested by PITA, In addi-

tion, we downloaded 205,587 associations between 675

microRNAs and 11,758 target genes predicted by Tar-

getScan (version5.1, conserved sites) [54], another lead-

ing target prediction algorithm.

miR2Disease [38] and HMDD [39] databases provide

comprehensive resources for microRNA deregulation in

human disease. From these databases, we selected 270

high-quality experimentally verified microRNA-disease

associations that microRNA deregulation has been

experimentally verified to contribute to the disease

development. For instance, Ma et al. reported that

highly expressed miR-10b initiates tumor invasion and

metastasis in breast cancer through translational

inhibition of HOXD10, and eventually increases expres-

sion of RHOC, a pro-metastatic gene [60]. The 270

associations (see Additional file 1) were used as the

benchmark dataset for the performance evaluation of

our model.

microRNA family dataset was retrieved from miRBase

database [61].

Computational model

Based on the idea that functionally related microRNAs

tend to be associated with phenotypically similar dis-

eases, we developed a scoring system to assess how

likely a microRNA may be involved in a specific disease

phenotype. For a given disease d, a microRNA may be

related if it and its direct network neighbors in the

microRNA network contain microRNAs having been

linked to the phenotypically similar diseases. All micro-

RNAs were prioritized according to score. The top-

ranked microRNAs can be expected to have a high

probability of representing bona fide disease micro-

RNAs, which will generate testable hypotheses to guide

the future experiments and may significantly reduce the

cost and effort to identify the bona fide disease micro-

RNAs. The key steps are illustrated in Figure 4.

Scoring system

The hypergeometric distribution is a discrete probability

distribution that describes the number of successes in a

sequence of n draws from a finite population without

replacement. For example, there is a shipment of N

objects in which M are defective. The hypergeometric

distribution describes the probability that exactly m

objects are defective in a sample of n distinct objects

drawn from the shipment.

Herein, for a disease d of interest, each microRNA in

the microRNA network is scored through the cumula-

tive hypergeometric distribution:

score
i

M

n i

N M

n
N

i m

M

= − −
−

=

∑1
( )( )

( )
(1)

The biological interpretation of a high-scoring micro-

RNA is that it is likely to be involved in the disease d.

Here, N is the total number of microRNAs in the whole

functionally related microRNA network. M is the num-

ber of microRNAs in the whole microRNA network

associated with diseases that are similar to the disease d.

n denotes the number of microRNAs in the correspond-

ing microRNA module. A module is defined as a given

microRNA (the center of the module) plus its direct

network neighbors. m is the number of microRNAs that

are associated with similar diseases and are found in the

corresponding module.
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Additional file 1: 270 experimentally verified microRNA-disease

associations.Each line represents an association between a microRNA

and a disease.

Additional file 2: 100 top-ranked microRNAs for each of 1,599

diseases.Each line represents a potential association between microRNA

and disease, including MIM ID, microRNA ID and score.

Additional file 3: Literature evidence to support the top 100

microRNAs for breast cancer.
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