
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

489 | P a g e
www.ijacsa.thesai.org

Prioritization of Software Functional Requirements:
Spanning Tree based Approach

Muhammad Yaseen1, Aida Mustapha2, Noraini Ibrahim3

Faculty of Computer Science and Information Technology
Universiti Tun Hussein Onn Malaysia, Parit Raja

86400 Batu Pahat, Johor, Malaysia

Abstract—Requirements prioritization shows significant role

during effective implementation of requirements. Prioritization

of requirements is not easy process particularly when

requirements are large in size. The current methods of

prioritization face limitations as the current prioritization

techniques for functional requirements rely on the responses of

stakeholders instead of prioritizing requirements on the basis of

internal dependencies of one requirement on other requirements.

Moreover, there is need to classify requirements on the basis of

their importance i.e. how much they are needed for other

requirements or dependent on other requirements. Requirements

are first represented with spanning trees and then prioritized.

Suggested spanning tree based approach is evaluated on

requirements of ODOO ERP. Requirements are assigned to four

developers. Time estimation with and without prioritization are

calculated. The difference in time estimation with prioritization

and without prioritization shows the significance of prioritization

of functional requirements.

Keywords—Requirements prioritization; functional

requirements; spanning tree

I. INTRODUCTION

Requirement engineering is important and critical phase of
software engineering which deals with how requirements
should be collected from users in more discipline and
systematic way [1][2][3]. The collected requirements should
be properly managed before implementation and in this regard
prioritization of requirements becomes more essential [4][5].
Requirements prioritization deals with assigning priority to
requirements [6]. As software development becoming more
complex in the recent years, prioritization have carried high
significance in managing requirements successfully [7].
Elicitation and prioritization are two core activities of RE
[8][9][10]. In a large software development projects such as
an Enterprise Resource Planning (ERP), requirements are
huge and prioritization process becomes much difficult [11].
When the stakeholder wishes to implement each and every
requirement within a limited time and a limited budget,
prioritization of the requirements become necessary
[12][13][14]. As all types of requirements are inter-dependent
with each other, there is critical need of collaboration among
software developers and stakeholders during requirements
prioritization especially when requirements [13]. Many
techniques are suggested by authors to prioritize requirements,
some techniques are suitable for prioritizing business
requirements [15][16], some techniques are suitable for

functional requirements and some techniques are suitable for
nonfunctional requirements (NFRs) [17]. No such technique is
either applied or suggested for functional requirements that
can solve dependency issues of requirements in parallel
developing large software systems for timely delivery. The
objective of current research study is to propose an efficient
approach of prioritizing software functional requirements from
development perspective.

The remaining of this paper proceeds as follows. Section 2
presents background study conducted. Section 3 presents
design of the research methodology. Section 4 discusses
requirements prioritization. Section 5 presents case study
conducted and finally Section 6 concludes with some
indication for future work.

II. BACKGROUND STUDY

AHP is the most common and applied technique identified
from literature. AHP is scalable for small size requirements
and face time complexity problems when size of requirements
is large. As AHP pairwise compare each requirement against
all other requirements so time complexity increases with
increase size of requirements. Total number of comparisons
with AHP is equal to n * (n-1)/2 e.g. if requirements are 10,
then total comparisons will be 45. If total requirements are 20,
total comparisons will become 190 and thus number of
comparisons increases with increase size of the requirements
[18][19].

Cumulative voting (CV) or 100 dollar is a technique
[20][21] in which 100 dollars or points are given to the
stakeholders and they have to assign these dollars or points to
specific requirement. Requirements that are assigned more
dollars will acquire high priority while those requirements that
are assigned with less dollars will acquire low priority. Even
though this technique is very simple in use, but it works better
for small size requirements where determining the priorities of
requirements is not tough and when size of requirements is too
large, it becomes difficult to prioritize with voting method.
This technique is user based technique because it is subjective
to the inputs of users. Another big issue that can arise with this
method is that stakeholders may assign dollars to some
requirements that are not so important and may ignore some
high priority requirements. Stakeholder can assign zero to
some requirements. When the number of stakeholders are
more than one, then distributing dollars on requirements may
cause conflicts.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

490 | P a g e
www.ijacsa.thesai.org

Using numerical assignment (NA) technique, requirements
are categorized into high, medium and low priority groups and
numerically assigned requirements to these groups. Inside
each group, all requirements are considered to be same in
priority [22].

Group discussions and decision are also helpful to
prioritize requirements. After getting remarks from
stakeholders or experts, group of experts will analyze the
requirements in which each group member will score for that.
At the end on the basis of group decision and score, all the
requirements will be prioritized accordingly [23].

In another research study, requirement ranking function
with graph is applied using binary search algorithm for
comparing the customer feedback and thus priority and with
original order of requirements in priority list is calculated. The
main goal is to reduce the difference between true and
estimated value of priority [24].

Assigning priority to NFRs is that much important as
much of assigning priority to functional requirements. Using
method similar to AHP, author has defined three steps for
assigning priority to NFRs. 1) Based on pairwise comparison,
assign values to different NFRs. 2) Based on functional
requirements, assign priority values to NFRs. 3) Calculate
priority by matrix multiplication. Well-organized prioritization
of NFRs is presented [25].

Machine learning approach is presented during
requirements elicitation phase in order to reduce the efforts
during prioritization. Case-Based Ranking (CBR) is discussed
which combines stakeholder preferences with requirements
ordering approximations computed through machine learning
approaches [6].

Using fuzzy logic and decision tree, the idea and detail
evaluation of framework is presented which can examine
various prioritization techniques. It is an intelligent approach
for prioritizing newly upcoming requirements by getting
inputs as parameters. On the basis of different parameters
under different scenarios, this technique will decide that which
technique is best under specified conditions. The condition
can be type or size of requirements [26].

Although a lot of work is done to prioritize different types
of requirements but still no work is done to prioritize
requirements from developers perspective especially in
parallel development where multiple team members work in
parallel and assigning low priority to important requirements
can delay whole project.

III. DESIGN OF RESEARCH METHODOLOGY

Fig. 1 shows the step by step approach of resign design.

Requirement elicitation process

Elicitation is the first phase for collecting user
requirements for any software system. Various elicitation
techniques such as background study, interview are applied to
collect requirements from users. The quality of software
product and its timely delivery depends on how well
requirements are collected.

Fig. 1. Research Design Process.

A. Representation of Requirements

The collected requirements from users are represented
with symbols e.g. R1, R2, R3, Rn. with surrounded round
shape as shown in Fig. 2.

B. Using Directed Graph for Structuring Requirements

A graph is a pictorial diagram of a set of objects that are
inter-related. The interrelated entities are characterized by
points named as vertices, and the links that inter-relate the
vertices are called edges.

 Nodes are typically represented by circles or ovals
(though technically they can be any shape of your
choosing). In this study requirements represents nodes
i.e. R1, R2, R3 represent nodes of the graph.

 Edges are the connections or links between the nodes.
An edge links two nodes. They are generally
represented by lines, or lines with arrows.

Directed acyclic graph is a graph without having any
cycles (a cycle is a complete circuit). When succeeding the
graph from node to node, you will certainly not visit the same
node twice. A directed acyclic graph is an acyclic graph that
has a direction as well as an absence of cycles [27][28] [29].

 Vertices set = {R1, R2, R3, R4, R5, R6, R7}.

 Edge set = {(R1, R2), (R1, R3), (R2, R4), (R2, R5),
(R3, R6), (R4, R7), (R5, R7), (R6, R7)}.

Fig. 2. Representation of Requirements using Specific Notations.

Functional Requirements

Representation of requirements

Apply Spanning Tree Algorithm

Using Graphs for structuring requirements

Requirements Priority

R1 R4 R3

R5 R6 R2

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

491 | P a g e
www.ijacsa.thesai.org

Fig. 3. Requirements Linked through Directed Acyclic Graphs.

Requirements inside directed graph can be either depended
on other requirements or either needed for other requirements
or can be both. Dependent requirements are those
requirements that rely on other requirements for
implementation and needed requirements are those on which
other requirements are dependent. The requirement that points
to some requirement is needed requirement while requirement
on the arrow side is dependent. In Fig. 3, R1 is required for
completion of R2 and R3, while R2 is required for the
completion of R4, R5 and R3 is required for completion of
R6. Similarly for the implementation of R5, R2 and R6 are
needed. R4, R5 and R6 are needed for R7.

The reason for considering directed graphs instead of
undirected is because undirected graphs points in both
direction and it is not possible that a requirement is consider
both depended as well as needed at the same time. During
requirements implementation, cycles are not possible e.g. if
there are three requirements such as R1, R2 and R3 as shown
in Fig. 3. Consider if R2 is required for R1, R6 is required for
R4 and R4 is again required for R2, R3 and R5 then cycle will
create which means for R1 implementation, R2 should be
implemented first but for R2, R4 should be implemented first.

C. Spanning Tree Formation

Spanning trees are special sub graphs of a graph that have
several important properties. First, if T is a spanning tree of

graph G, then T must span G, meaning T must contain every
vertex in G. Second, T must be a sub graph of G. In other
words, every edge that is in T must also appear in G. Third, if
every edge in T also exists in G, then G is identical to T.

Spanning trees can be found in linear time by simply
performing breadth-first search or depth-first search. These
graph search algorithms are only dependent on the number of
vertices in the graph, so they are quite fast.

There are a few general properties of spanning trees. Find
all possible trees from graph. Starting point will be the
requirement which is needed for other requirements such that
the pre requisite requirements will come to the top (parent).
The pre-requisite requirements will be the parent of all those
requirements for which they are needed.

In below graph of Fig. 4, R2 is required for R1 but R1 is
not required for other requirements so first tree will include
only R1 and R2. Similarly R3 is also required for R1 and R4,
R5 and R6 all are needed for R3, so from this point onwards
three trees are possible. First will contain R4, R3, R1, second
R5, R3, R1 and the third one with R6, R3, R1. As R6 is also
needed for other requirements, so the child’s of R6 will
increase which will include R7 and R8. R8 is now needed for
R9, so R9 will become child of R8 and further R9 is required
for R10, R11 and R12 so all these will be the child’s of R9.
R11 is required for R13 and R14. R10 and R11 are child
requirements of R9.

Thus by following either depth first searching (DFS) or
breadth first searching (BFS) algorithm, the resulted spanning
trees are shown in Fig. 5. With DFS, after the visit of R6, it
can visit either of R3, R7 and R8, suppose it visit R3, and then
it can’t visit any of R7 and R8 before the child node of R3.
After that it will visit R7, as it has no further child’s, so it will
go and visit R8 and then R9. Now using DFS, it can visit any
of R10, R11 and R12. After visit of R10, it will visit R11
which is the child of R10. From R11, it will visit R13 and then
R14. In last it will visit R12.

The same problem can be solved through BFS. Let’s take
example of tree 3. By applying BFS, it visits R6, then R3, R7
and R8 and then R1 and R9. After R9 visit, it visit R10, R12
and R11 and at the end it will visit R13 and R14.

Fig. 4. Graph Connecting Requirements for Making Spanning Tree from Graphs.

R2

R3

R1

R4

R5

R

7

R6

R1

R2

R3

R4 R5

R7
R8

R10

R13

R9
R11

R6
R14

R12

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

492 | P a g e
www.ijacsa.thesai.org

Fig. 5. Tree 1, Tree 2, Tree 3, Tree 4 Respectively.

IV. REQUIREMENTS PRIORITIZATION

In Fig. 5, priority of pre-requisite requirements will be
greater than priority of requirements for which they are
needed e.g. R4 priority will be greater than R3 while R3
priority will be greater than R1. In R4 and R6, priority of R6
should be greater because it is needed for greater number of
requirements. In this case, R6 is although needed for three
requirements R3, R7 and R8 but these requirements are further
needed for other requirements. So requirement priority will be
calculated from its overall need either directly or not.
Similarly dependency of requirement in spanning tree will
reduce its priority, e.g. priority of R13 and R14 will be lower
than priority of R10 and R12 because R10 and R12 are
dependent on three while R13 and R14 are dependent on four
requirements.

Requirements prioritization has a significant role in
successful implementation of software projects. Quality and
success of any software projects is not only associated with
how much software meets its functional requirements but it is
also associated with timely delivery of software projects.
Timely delivery of any project can be assured when time
estimation of whole project is correct and along with it
requirements waiting time for other requirements is minimum.

Requirements of parallel team developers can be inter-
related and this can increase the waiting time of requirements
if pre-requisite requirements are not available in time.

Requirements need for other requirements can easily be
calculated by counting number of child nodes and similarly
requirements dependency on other requirements can be
calculated by counting number of parent nodes of requirement
in tree. E.g. in tree 04 of Fig. 5, the parent nodes of R9 are two
and child nodes are total five. In this case, although child
nodes of R9 are three but R11 further has two more child
nodes, so in this way total child become five for R9. In similar
way, parent node of R9 is R8 and parent of R8 is R6, so in this

way, total requirements on which R9 is dependent are two.
Now question arise what will be the net priority of R9 in this
case because only from child nodes, the priority of
requirements can’t be determined because if we ignore
dependent requirements than results can be biased e.g. if there
are two requirements and both are needed for same number of
other requirements but dependency of these requirements on
other requirements is different, then requirement that is less
dependent on other requirements will get higher priority. From
the difference of child nodes and parent nodes values, net
priority of requirement can be calculated. The net priority of
R9 will be equal to 3 in this way. Similarly priority of R3 will
be equal to 2 because parent nodes of R3 are three and child
nodes are one, the difference will equal to 2.

Now if child nodes of requirements such as R1 are zero
and parent nodes are more than zero. In such case priority will
be in negative. E.g. here the priority of R7 will be equal to -1.
Priority of independent requirements will be 0 and thus
requirements with negative priority will be given low priority
as compare to requirements with 0 priority. Priority of R1 will
equal to -5. For R1, parent R3 is repeated in three trees, but it
will be counted as 1.

Negative or zero priority of requirements can be adjusted
by adding positive same number with all requirements. E.g.
To adjusted priority of R1 from -5 to 1, value 6 can be added
to this. Thus value 6 will be added with all requirements in
similar way. Net priority of R3 will be equal to 8.
Requirements order with adjusted and without adjustment of
priorities will be same.

V. CASE STUDY

The suggested approach is evaluated on requirements
ODOO open source ERP system. It consist of ninety six (96)
high level functional requirements. The prioritization
algorithm is applied to these high level functional
requirements only. The detail is given below in Table I.

R2

R1

R4

R3

R1

R5

R3

R1

R

6

R

7

R

8

R

9

R10 R1

1

R1

R1

2

R1

4

R

3

R

1

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

493 | P a g e
www.ijacsa.thesai.org

TABLE. I. REQUIREMENTS DETAIL OF ODOO ERP

Requirements Required for Requirements
Required

for
Requirements

Required

for

R1 (Employee)

R2,R4,R10,
R11,R12,
R17,R18,
R20, R21, R22,
R23, R25, R67,
R81,

R33 (customer detail)

R24, R35, R36,
R39,R55, R61,
R64, R73, R90,
R55

R65 (supplier ledgers)

R2 (Public information’s of
employee)

 R34 (products detail)
R35, R42, R60,
R66,R70,R71,
R91, R61

R66 (stock ledgers)

R3 (Employee personal info) R35 (sale)
R32, R51, R61,
R62,

R67 (HR expense
management)

R4 (Contact info) R36 (customer refund) R68 (purchase return view)

R5 (Job position) R37 (Sales persons)
R35, R36, R58,
R63,

R69 (sale return view)

R6 (Department) R5, R81, R67 R38 (customer receipts) R70 (Transfer In)

R7 (Job information’s) R39 (customer payment) R38, R55 R71 (Transfer out)

R8 (Manager) R5, R24, R67 R40 (supplier receipts) R72 (order to suppliers)

R9 (Coach) R41 (supplier detail)
R42, R44, R52,
R60, R65, R72

R73 (order from customer)

R10 (Contract information’s) R42 (purchase) R51, R59 R74 ()

R11 (Contract reference
information’s) R43 (Sales man) R42, R44 R75 (Balance sheet)

R12 (Salary generation) R21, R44 (supplier refund) R76 (compose message) R79

R13 (Salary rules) R45 (supplier payment) R40, R77 (message inbox) R80

R14 (Salary structure) R12 R46 (bank statement) R47 R78 (message Draft)

R15 (Salary categories) R12 R47 (bank detail) R49, R50, R53 R79 (sent messages)

R16 (Registers) R12, R13, R48 (cash registers) R80 (message Searching)

R17 (Apply for leave) R19,R20, R49 (put money in)
R81 (Job position in
recruitment)

R18 (Allocation request) R50 (put money out) R82 (Job)

R19 (Approval) R51 (Profit and lost) R83 (appraisal form)

R20 (Leave summary) R52 (supplier payment) R84 (create a job position)

R21 (HR payroll) R53 (Journals accounts) R54 R85 (Recruitment form)

R22 (HR Expenses) R54 (Chart of accounts) R86 (Job selection process)

R23 (HR expenses) R55 (Analytic accounts) R54 R87 (Link tracker)

R24 (Project management)
R26, R27, R28,
R29

R56 (company) R88 (Mass mailing)

R25 (Add team members) R57 (region) R58 R89 (contacts)

R26 (Extra information’s) R58 (Area) R90 (business pipeline)

R27 (Project stages) R59 (purchase view) R91 (manufacturing orders)

R28 (View current task) R60 (purchase return) R68, R92 (fleet management) R93,

R29 (create a task) R31, R61 (sale return) R69 R93 (Vehicle repairing)

R30 (Extra information’s) R62 (sale view)
R94 (Directories for
documents)

R96

R31 (Tasks stages) R63 (salesman ledgers) R95 (Documents history) R96

R32 (customer invoice) R36 R64 (customer ledgers)
R96 (Documents
attachments)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

494 | P a g e
www.ijacsa.thesai.org

From the information’s of Table I, directed graph can be
easily drawn and can identify all possible number of spanning
trees. Table II shows the resulted 18 spanning trees from
requirements of ODOO ERP. Requirements are further
categorized into groups on the basis of common requirements.

By applying prioritization algorithm as explained above,
requirements of ODOO ERP are prioritized accordingly as
shown in Table III.

Calculated priorities of requirements as a result of apply
prioritization technique using spanning tree are shown in
Table III. Priorities are then adjusted such that minimum
priority is 1. An experiment was conducted on parallel
developing software requirements of ODOO using priority
values from Table III. Requirements of software are
distributed in four developers i.e. A, B, C and D as shown in
Table V in such that there exists dependency between
requirements of developers. Before applying prioritization
algorithm, efforts in hours needed to implement all these
individual requirements are calculated using USE CASE
POINT estimation technique as shown in Table IV. Difference
of total estimation time of these developers and overall project
before and after prioritization will show significance of
spanning tree based prioritization approach.

Requirements are distributed in such way that
requirements of C and D are dependent on A while
requirements of B are totally independent as shown in
Table V.

Case 1: In this case, all requirements of A, B, C and D are
arranged in ascending order of priorities i.e. requirements are
not prioritized (except pre-requisite requirements that should
be implemented first) as shown in Table V.

Case 2: In this case, all requirements of A, B, C and D of
Table V are prioritized in descending order of priorities such
that requirements of every team member are fully prioritized.

Time estimation based on sum of time estimation of all
requirements for each developer in both cases is shown in
Table VI.

Total estimation time of the project depends on the
maximum time completion of any developers. From Fig. 6, for
case 01, maximum time taken by developer D is 1750 hours
and for case 02, maximum time taken by developer C is 940
hours. The delay or exceed in time estimation is case 01 is due
to waiting time of requirements for their pre-requisites while
after prioritization, delway is reduced due to reduction in
waiting time for requirements.

TABLE. II. RESULTED SPANNING TREES

Tree Root Requirements

T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18

R1
R6
R8
R14
R15
R16
R46
R57
R37
R33
R34
R43
R41
R92
R45
R76
R95
R94

R81, R23, R25, R2, R4, R10, R11, R12, R17, R18, R19, R20, R22, R21, R67
R5, R67, R81,
R5, R67, R24, R26, R27, R28, R29, R31
R21
R21
R12, R13, R21
R47, R49, R50, R53, R54
R58
R58, R63, R35, R61, R62, R32, R36, R69
R73, R55, R54, R35, R61, R62, R32, R36, R69, R64, R38, R39,
R42, R51, R59, R60, R66, R68, R70, R71, R80, R90, R35, R61, R62, R32, R36, R69
R42, R51, R59, R44
R42, R51, R59, R44, R52, R60, R68
R93
R40
R79
R96
R96

Fig. 6. Total Estimation Time of Requirements for Case 01 and Case 02.

0

500

1000

1500

2000

Case 01 Case 02

Total estimation

Total estimation

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

495 | P a g e
www.ijacsa.thesai.org

TABLE. III. PRIORITY AND IMPORTANCE VALUES ASSIGNED ON THE BASIS OF CHILD NODES

Requirement Total child’s/priority Adjusted priority Requirement Total child’s/priority
Adjusted
priority

R1 24 30 R49 -2 4

R2 -1 5 R50 -2 4

R3 0 6 R51 -2 4

R4 -1 5 R52 -1 5

R5 -1 5 R53 -1 5

R6 3 9 R54 -3 3

R7 0 6 R55 -1 5

R8 8 14 R56 0 6

R9 0 6 R57 1 7

R10 -1 5 R58 -1 5

R11 -1 5 R59 -5 1

R12 0 6 R60 0 6

R13 0 6 R61 -3 3

R14 0 6 R62 -4 2

R15 0 6 R63 -1 5

R16 0 6 R64 -1 5

R17 1 7 R65 -1 5

R18 -1 5 R66 -1 5

R19 0 6 R67 -1 5

R20 -2 4 R68 -2 4

R21 -3 3 R69 -5 1

R22 -1 5 R70 0 6

R23 -1 5 R71 -1 5

R24 4 10 R72 -1 5

R25 -1 5 R73 -1 5

R26 -2 4 R74 0 6

R27 -2 4 R75 0 6

R28 -2 4 R76 1 7

R29 -1 5 R77 0 6

R30 0 6 R78 0 6

R31 0 6 R79 -1 5

R32 -3 3 R80 -2 4

R33 13 19 R81 -1 5

R34 16 22 R82 0 6

R35 3 9 R83 0 6

R36 -5 1 R84 0 6

R37 8 14 R85 0 6

R38 -2 4 R86 0 6

R39 2 8 R87 0 6

R40 -1 5 R88 0 6

R41 9 15 R89 0 6

R42 1 7 R90 -1 5

R43 4 10 R91 0 6

R44 -1 5 R92 1 7

R45 1 7 R93 -1 5

R46 5 11 R94 1 7

R47 4 10 R95 0 6

R48 0 6 R96 -1 5

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

496 | P a g e
www.ijacsa.thesai.org

TABLE. IV. TIME ESTIMATION FOR EACH REQUIREMENT

Requirement Efforts/hours Requirement Efforts/hours Requirement Efforts/hours Requirement Efforts/hours

R1 20 R25 20 R49 30 R73 30

R2 20 R26 20 R50 30 R74 30

R3 20 R27 20 R51 30 R75 30

R4 20 R28 20 R52 30 R76 30

R5 20 R29 20 R53 30 R77 20

R6 20 R30 20 R54 30 R78 20

R7 20 R31 20 R55 30 R79 30

R8 20 R32 30 R56 20 R80 30

R9 20 R33 20 R57 20 R81 30

R10 20 R34 20 R58 20 R82 20

R11 20 R35 60 R59 30 R83 30

R12 20 R36 60 R60 60 R84 30

R13 20 R37 20 R61 60 R85 20

R14 20 R38 30 R62 30 R86 30

R15 20 R39 30 R63 30 R87 20

R16 20 R40 30 R64 30 R88 20

R17 30 R41 20 R65 30 R89 20

R18 30 R42 60 R66 30 R90 30

R19 30 R43 20 R67 30 R91 30

R20 20 R44 30 R68 30 R92 30

R21 60 R45 30 R69 30 R93 20

R22 30 R46 20 R70 30 R94 30

R23 30 R47 20 R71 30 R95 20

R24 20 R48 20 R72 30 R96 20

TABLE. V. REQUIREMENTS DISTRIBUTION IN FOUR DEVELOPERS (CASE 01)

A B C D
Requirement Requirement Requirement Requirement

R79 R1 R63 R51

R31 R21 R64 R71

R27 R19 R73 R90

R26 R25 R66 R70

R28 R11 R45 R80

R58 R10 R40 R55

R29 R4 R75 R74

R5 R2 R39 R91

R67 R23 R38 R48

R81 R22 R43 R82

R30 R20 R44 R83

R77 R18 R41 R88

R78 R13 R65 R89

R56 R12 R72 R86

R6 R17 R60 R87

R24 R15 R68 R84

R57 R14 R52 R85

R76 R3 R42 R95

R37 R7 R59 R94

R8 R9 R35 R96

R33 R16 R61 R92

R34 R32 R93

 R69 R46

 R36 R47

 R62 R49

 R50

 R53

 R54

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

497 | P a g e
www.ijacsa.thesai.org

TABLE. VI. TIME ESTIMATION OF EACH DEVELOPERS RESPECTIVELY

A B C D

Case 01 Case 02 Case 01 Case 02 Case 01 Case 02 Case 01 Case 02

470 hours 470 hours 520 hours 520 hours 1320 hours 940 hours 1750 hours 730 hours

VI. CONCLUSION

In this research work, functional requirements of software
are prioritized from developer’s perspective using spanning
trees. Functional requirements are inter-related with directed
graph and were converted to spanning trees. Based on
prioritization technique using spanning trees, requirements of
ODOO ERP are prioritized accordingly. Prioritized
requirements reduce inter-dependency issues and delays and
thus assure timely delivery of projects. An experiment was
conducted with four developers and requirements were
distributed such that there exist dependency in requirements of
different developers. Time estimation of each requirement was
calculated using use case point estimation technique. Total
estimation time of each developer was calculated for both
prioritized and un-prioritized requirements. There found a
significant difference in total estimation time in both cases
which shows the importance of prioritization and its effect on
overall estimation time. In future work, spanning concept will
be used to distribute functional requirements in more efficient
way on parallel distributing team members.

REFERENCES

[1] M. Yaseen, S. Baseer, S. Ali, S. U. Khan, and Abdullahb, ‘Requirement
implementation model (RIM) in the context of global software
development’, 2015 Int. Conf. Inf. Commun. Technol. ICICT 2015,
2015.

[2] M. Yaseen, R. Naseem, Z. Ali, and G. Ullah, ‘IDENTIFICATION OF
CHALLENGES DURING REQUIREMENTS IMPLEMENTATION IN
GLOBAL SOFTWARE DEVELOPMENT : A SYSTEMATIC’, vol. 4,
no. 1, pp. 23–40, 2019.

[3] M. Yaseen and U. Farooq, ‘Requirement Elicitation Model (REM) in the
Context of Global Software Development’, Glob. J. Comput. Sci.
Technol., vol. 1, no. 2, pp. 1–6, 2018.

[4] M. Yaseen, A. Mustapha, and N. Ibrahim, ‘An Approach for Managing
Large-Sized Software Requirements During Prioritization’, 2018 IEEE
Conf. Open Syst., pp. 98–103, 2019.

[5] Z. Ali and M. Yaseen, ‘Critical Challenges for Requirement
Implementation in Global Software Development : A Systematic
Literature Review Protocol with Preliminary Results’, vol. 182, no. 48,
pp. 17–23, 2019.

[6] A. Perini, F. Ricca, and A. Susi, ‘Tool-supported requirements
prioritization : Comparing the AHP and CBRank methods’, Inf. Softw.
Technol., vol. 51, no. 6, pp. 1021–1032, 2009.

[7] M. Yaseen, S. Baseer, and S. Sherin, ‘Critical Challenges for
Requirement Implementation in Context of Global Software
Development : A Systematic Literature Review’, pp. 120–125, 2015.

[8] M. Yaseen and Z. Ali, ‘Success Factors during Requirements
Implementation in Global Software Development : A Systematic
Literature Review’, vol. 8, no. 3, pp. 56–68, 2019.

[9] M. Yaseen, N. Ibrahim, and A. Mustapha, ‘Requirements Prioritization
and using Iteration Model for Successful Implementation of
Requirements’, Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 1, pp. 121–
127, 2019.

[10] M. Yaseen, Z. Ali, and M. Humayoun, ‘Requirements Management
Model (RMM): A Proposed Model for Successful Delivery of Software
Projects’, Int. J. Comput. Appl., vol. 178, no. 17, pp. 32–36, 2019.

[11] N. Garg, ‘Recent Advancements in Requirement Elicitation and
Prioritization Techniques’, pp. 237–240, 2015.

[12] N. Setiani and T. Dirgahayu, ‘Clustering Technique for Information
Requirement Prioritization in Specific CMSs’, 2016.

[13] J. Erazo, H. Arboleda, and F. J. Pino, ‘Analysis of the Software
Implementation Process for ERP Systems’, vol. 1, pp. 297–312, 2017.

[14] S. Parthasarathy and M. Daneva, ‘The Journal of Systems and Software
An approach to estimation of degree of customization for ERP projects
using prioritized requirements’, vol. 117, pp. 471–487, 2016.

[15] N. Garg, M. Sadiq, and P. Agarwal, ‘GOASREP : Goal Oriented
Approach for Software Requirements Elicitation and Prioritization
Using Analytic Hierarchy Process’, pp. 281–287, 2017.

[16] M. A. A. Elsood and H. A. Hefny, ‘A Goal-Based Technique for
Requirements Prioritization’, 2014.

[17] F. Dalpiaz, ‘Contextual Requirements Prioritization and Its Application
to Smart Homes’, vol. 1, pp. 94–109, 2017.

[18] R. Prioritization and U. Hierarchical, ‘Requirements Prioritization Using
Hierarchical Dependencies’, pp. 459–464, 2018.

[19] M. A. Iqbal, A. M. Zaidi, and S. Murtaza, ‘A new requirement
prioritization model for market driven products using analytical
hierarchical process’, DSDE 2010 - Int. Conf. Data Storage Data Eng.,
pp. 142–149, 2010.

[20] P. Chatzipetrou, L. Angelis, P. Roveg??rd, and C. Wohlin,
‘Prioritization of issues and requirements by cumulative voting: A
compositional data analysis framework’, Proc. - 36th EUROMICRO
Conf. Softw. Eng. Adv. Appl. SEAA 2010, pp. 361–370, 2010.

[21] R. M. Liaqat, ‘A Majority Voting Goal Based Technique for
Requirement Prioritization’.

[22] A. K. Massey, P. N. Otto, and A. I. Antón, ‘Prioritizing Legal
Requirements’, vol. 1936, no. 111, 2010.

[23] A. Felfernig and G. Ninaus, ‘Group Recommendation Algorithms for
Requirements Prioritization’, pp. 59–62, 2012.

[24] T. Bebensee, I. Van De Weerd, and S. Brinkkemper, ‘Binary Priority
List for Prioritizing Software Requirements’, pp. 67–78, 2010.

[25] X. J. Frp, F. Edujdlqlqj, W. Uhtxluhphqwv, and I. R. U. Vrphrqh, ‘)
XQFWLRQDO 5HTXLUHPHQWV’, vol. 6, pp. 793–797, 2017.

[26] S. Dhingra and M. Madan, ‘Selection of Prioritization Technique for
Software Requirement using Fuzzy Logic and Decision Tree’, 2016.

[27] L. Arge and N. Zeh, ‘I / O-Efficient Strong Connectivity and Depth-First
Search for Directed Planar Graphs’, 2003.

[28] M. Rainey, ‘A Work-Efficient Algorithm for Parallel Unordered Depth-
First Search’, 2015.

[29] M. Weigel, ‘Connectivity algorithm with depth first search (DFS) on
simple graphs Connectivity algorithm with depth first search (DFS) on
simple graphs’, pp. 4–8, 2018.

