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With Randomized Network Coding
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Abstract—We address the problem of prioritized video
streaming over lossy overlay networks. We propose to exploit
network path diversity via a novel randomized network coding
(RNC) approach that provides unequal error protection (UEP) to
the packets conveying the video content. We design a distributed
receiver-driven streaming solution, where a client requests packets
from the different priority classes from its neighbors in the overlay.
Based on the received requests, a node in turn forwards combi-
nations of the selected packets to the requesting peers. Choosing
a network coding strategy at every node can be cast as an opti-
mization problem that determines the rate allocation between the
different packet classes such that the average distortion at the
requesting peer is minimized. As the optimization problem has
log-concavity properties, it can be solved with low complexity by
an iterative algorithm. Our simulation results demonstrate that
the proposed scheme respects the relative priorities of the dif-
ferent packet classes and achieves a graceful quality adaptation to
network resource constraints. Therefore, our scheme substantially
outperforms reference schemes such as baseline network coding
techniques as well as solutions that employ rateless codes with
built-in UEP properties. The performance evaluation provides
additional evidence of the substantial robustness of the proposed
scheme in a variety of transmission scenarios.

Index Terms—Network coding, overlay networks, peer-to-peer
(P2P) systems, rate allocation, scalable video delivery, unequal
error protection, video streaming.

I. INTRODUCTION

S
PURRED by the advances in broadband technologies and
video compression, an ever-increasing amount of multi-

media content is flowing over our computer networks [1], [2].
This has accelerated the development of new delivery archi-
tectures. Among them, peer-to-peer systems have experienced
a fast development and emerged as one of the most popular
paradigms for online media delivery [3]–[5]. In such media
streaming systems, networks are often organized in overlay
structures that provide better control of the delivery process.

Overlay networks offer the possibility of employing basic
processing operations at intermediate network nodes, in addi-
tion to providing increased path or source diversity. These im-
portant properties can contribute to improved delivery perfor-
mance. For example, the nodes can perform simple coding op-
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Fig. 1. Illustration of scalable video streaming in overlay networks with net-
work coding (NC) nodes.

erations on packets before transmission in order to increase the
goodput. This concept is known as network coding, and it has
gone a long way from a purely analytical technique, as intro-
duced originally in [6], to an approach applicable to data dissem-
ination in the Internet [7] at present. Network coding has also
attracted a lot of attention for multimedia communication as it
enables efficient distributed delivery in lossy overlay networks.
This technique also effectively deals with bandwidth variations
and packet duplication that typically arise in such networking
environments. While computational complexity still represents
an issue in network coding, a few algorithms have been pro-
posed recently that successfully employ network coding princi-
ples as part of multimedia streaming applications [8]. However,
the growing heterogeneity of Internet access links’ characteris-
tics in terms of packet loss and bandwidth has created an impor-
tant need for scalable delivery mechanisms. In particular, mul-
timedia data is typically characterized by a variable importance
of the data units in terms of their contribution to the overall re-
constructed quality. Therefore, its delivery should be organized
such that the peers are served the data efficiently according to
their capacity, while a graceful quality degradation is experi-
enced when resources become scarcer.

In the present paper, we address the problem of prioritized
media streaming in overlay networks, where network coding op-
erations are specifically designed to cope with media packets of
different importance. Since common networks are usually char-
acterized by a large diversity in terms of client capabilities and
access speeds, we propose an efficient streaming scheme that al-
lows for multiple levels of quality-of-service in order to accom-
modate for the network heterogeneity, as illustrated in Fig. 1.
We build on the results of randomized network coding (RNC)
[9] for the construction of a distributed streaming solution that
improves the robustness to erasures without the need for central-
ized control, as described in [10]. However, we propose a new
distributed delivery algorithm where the coding decisions are
adapted to prioritized video delivery for receivers with different
capabilities that extends our early work [11]. We propose a re-
ceiver-driven network coding strategy where the receiving peers
request packets from classes with varying importance. Packet
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classes can be constructed by considering the unequal contribu-
tion of the various video packets to the overall quality of the pre-
sentation [12] or simply from the arrangement of data in scalable
video streams [13]. Prioritized transmission is then achieved by
varying the number of packets from each class that are used in
embedded network coding operations that are performed in the
overlay nodes.

We formulate a novel optimization problem that charac-
terizes the optimal network coding strategy undertaken at the
nodes that forward data to receiving peers as a function of
the available bandwidth. The optimal strategy is computed
by the receiving peer, which determines the rate allocation
between the packet classes that leads to the minimum expected
distortion. The receiving peer subsequently requests packets
from the parent nodes according to the resulting rate allocation.
As the optimization problem is shown to be log-concave, we
propose a new low-complexity algorithm that computes the
best coding strategy in only a few iterations. It is shown that
the proposed scheme has clear advantages over network coding
methods that do not consider the importance of packets and
leads to more graceful quality degradation when the effective
bandwidth decreases. Our technique outperforms baseline
network coding algorithms and other unequal error protection
(UEP) approaches based on rateless codes that are specifically
designed for the delivery of layered media streams.

The rest of the paper is organized as follows. In Section II,
we briefly review the general characteristics of network coding
as they pertain to networked media, and we describe our novel
network coding algorithm. Then, we analyze in Section III the
expected distortion at a decoding peer as a function of its net-
work coding strategy. Next, we formulate in Section IV the opti-
mization of the network coding choices that can be achieved via
a low-complexity iterative solution. Subsequently, we examine,
through simulation experiments, various performance aspects of
the proposed scheme in Section V. Finally, we discuss related
work in Section VI and conclude the paper with summarizing
remarks in Section VII.

II. NETWORK CODING FOR UEP VIDEO STREAMING

A. Practical Network Coding

In this section, we first review briefly the basics of network
coding (NC) and its application to practical streaming solutions
before presenting our distributed prioritized NC algorithm. Net-
work coding has been originally proposed with the goal of in-
creasing network throughput in push-based data delivery [6]. In-
stead of simply forwarding packets or symbols on the outgoing
network links, the nodes in the network perform linear combina-
tions of the received packets and transmit the coded packets to
the destination nodes. The receivers can then recover the orig-
inal data by receiving and subsequently decoding a sufficient
number of linearly combined packets.

The specific coding strategy employed at each node could be
globally optimized with a comprehensive knowledge of the net-
work topology. However, such an assumption is not realistic in
practical streaming systems. Instead, distributed algorithms are
considered where each node independently chooses its coding
strategy based on a local network view. RNC [9] is an efficient
solution for network coding in distributed settings, since coding
coefficients are selected randomly by each network coding node
without any need for a central coordination. It can be adapted
to practical streaming applications, as proposed in [10], where

Fig. 2. Overlay node combines incoming packets � and generates network
coding packets � . A header � is appended to each coded packet that carries
the coding coefficients.

network nodes independently perform linear combinations of
packets and forward them to their neighbors. As the coding co-
efficients are chosen randomly, a header of constant length is
appended to each packet with the coefficient information so that
the decoder can decode the stream and recover the original data
packets.

The network coding operations can be written as follows. If
a node generates packets by RNC, then the th network
coded packet is of the form

where is the index of the th packet at node , corre-
sponds to the set of packets available at the node, denotes
either a network coded packet or a native (uncoded) packet,
and is a random coefficient over the Galois field of size ,
GF(q). The basis of the Galois field is typically set to ,
as it has been shown in [10] that this guarantees high symbol
diversity and low probability of building duplicate packets. As
the packets combined at a node are actually combinations of the
original data packets, the encoded packets can be expressed as
a function of the native packets

where denotes the index of the th native packets and is
the total number of native packets, e.g., the number of video
packets. The parameters and represent, respectively, the
native packets and their corresponding coding coefficients after
random network coding operations. It is worth noting that some
of the coefficients can be zero, which means that does
not contain information about the native packet . A network
coded packet is finally augmented with -bit header
containing the vector of coding coefficients .
Note that the header does not grow with the number of hop trans-
missions, but it depends on the number of native packets. The
encoding procedure at a peer node is illustrated in Fig. 2.

An important aspect of streaming applications is the delay
constraints that are imposed by the requirements of continuous
playback at the receiver. In particular, the network nodes
cannot buffer packets for long periods of time. At the same
time, they should only combine packets with similar decoding
time-stamps so that the decoding is not excessively delayed. In
order to deal with the timing constraints, the concept of gener-
ations has been introduced in [10]. The packet stream is split
into multiple generations and coding operations are restricted
to packets within the same generation. Furthermore, since gen-
erations are characterized with playback deadline information,
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the network nodes only transmit useful packets that correspond
to generations whose decoding deadlines have not passed.
All the other packets can be deleted from the nodes’ buffers.
The latency incurred by the streaming application waiting for
the media packets to be decoded at the destination obviously
becomes dependent on the length of the generation. Typically,
a generation can correspond to a group of pictures (GOP) that
are the images between two reference frames in encoded video
sequences. In the next section, we extend practical network
coding into a novel distributed solution with adaptive coding of
packets of different importance.

B. Proposed Prioritized RNC

Our objective is to design a novel network coding algorithm
in overlay networks that is able to deal with packets of dif-
ferent importance and that increases the likelihood of delivery
for higher priority packets. Overlay mesh networks typically ex-
hibit links with heterogeneous bandwidth values and dramatic
variations in channel conditions due to random node departures.
The traditional streaming systems utilize variations of channel
coding algorithms for robust media delivery in this framework.
It could be achieved with prioritized coding and UEP [14]–[16],
or with variants of multiple description coding (MDC) algo-
rithms [17]. However, most of these methods are hard to im-
plement in distributed settings and require a full knowledge of
the overall topology and channel conditions in order to deter-
mine the optimal coding strategy. Whenever this information is
not available, they often overprotect the streams or conversely
fail to provide the required protection.

Network coding in turn is very appealing because it can
work with limited knowledge of network resources and con-
ditions, and it can be implemented in a distributed manner.
In particular, intermediate network nodes forward on their
outgoing link(s) packets that represent linear combinations of
the packets received on their incoming links. The destination
nodes can then recover the original data by receiving and
subsequently decoding a sufficient number of these linearly
combined packets. Since packets have different importance, the
amount of protection or equivalently the number of network
coded packets in each class of importance has to be determined
by taking into account the priorities of the packets. Ideally, the
mixing operations should not be uniform across all packets
arriving at a node, but instead packets with higher importance
should be involved in more coding operations.

In order to adapt locally the network coding operations, we
propose a scheme where the children peers send requests to their
parents, where they specify the relative number of packets from
each importance class that they would like to receive. This re-
ceiver-driven policy provides a simple way to adapt to the ca-
pabilities of the peers without large communication cost in the
system. It also provides a finer control of the packet delivery
compared to sender-driven error resilient coding or push-based
strategies [10]. This becomes particularly important when most
of the network nodes subscribe to the video content and not only
forward the information, as in P2P networks. In our system, the
coding operations are, therefore, driven by the children nodes
that determine the optimal amount of coding allocated to each
importance class of the data to which they subscribe.

In particular, the packets are organized into classes de-
pending on their importance, where the layers are organized
along decreasing levels of priority. The class is defined as the
set of packets that are linear random combinations of packets

from the most important classes. In practice, the class of a
packet is identified by a small header which is appended to
the packet. Then, the packet delivery protocol proceeds in two
phases. First, as shown in Fig. 3(a), children nodes com-
pute the optimal coding strategy that should be implemented at
their parent nodes , based on the available network bandwidth,
the expected loss probability, and the importance of packets
in each class. They subsequently send a request message to
their parents, which specifies the distribution of the relative
number of packets in each class that they would like to receive.
The parent nodes in turn randomly combine their packets ac-
cording to the computed coding strategies and forward the cor-
responding coded packets to their children. This procedure is
depicted in Fig. 3(b). A child node finally inspects the incoming
packets to determine whether they are innovative, i.e., whether
they provide any new information relative to the packets already
received. Non-innovative packets are removed from the node’s
buffer. Based on the state of its buffer and the local network
status, the child node then computes again the optimal coding
strategy and sends it to its parent nodes. This procedure is re-
peated periodically. Finally, note that the request-based coding
decisions contrasts with the work in [18] proposed for wireless
transmission, where a parent node sends the same distribution of
network coded packets to all of its children. Our algorithm per-
mits to adapt to each child node on an individual basis, thereby
ensuring that the resulting video quality at each of them is max-
imized for their given specific network conditions.

We show in the next section how a child node can compute the
expected quality for each coding strategy. Then, we propose an
optimization algorithm that has a simple solution for the child
node to decide on the best rate allocation to be requested from
its parents.

III. DISTORTION ANALYSIS

In this section, we analyze the expected distortion in a de-
coding peer, as a function of the coding decision and the local
network state. The distortion is dependent on the number of
classes that can be decoded, where the probability of decoding a
class depends on the number of network coded packets that have
been received. We assume that the available bandwidth between
nodes is fully used by the network coding system. Its value may
depend on background traffic or concurrent applications, and we
assume it can be estimated locally.

A child node requests packets of different classes from its
parent nodes. It sends the same request to all its direct parents.
The request typically takes the form of a rate distribution vector

, whose th component denotes the proportion of packets
from class among the requested packets. By definition, we

have and , where is the number of
packet classes in the network. If we denote the total
number of packets requested by the node , the expected number
of packets of class sent by the node is given as

(1)

These packets are lost with probability which is the av-
erage packet erasure rate on the incoming links of node . As the
parent nodes fully use the available upload bandwidth be-
tween nodes and , the number of transmitted packets
is determined based on the overall incoming bandwidth at node

as , where denotes the set of
parental nodes of node . For the sake of clarity, we assume
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Fig. 3. Communication protocol. (a) Children nodes � and � calculate their optimal coding policies� and� . These policies are forwarded to the parent node
� . (b) Parent generates packets according to � and � and feeds them back to � and � . The packets at node � are categorized into two importance groups
based on their information content.

that the bandwidth is given in packets per second. The packet
loss probability is equal to

(2)

where is the packet loss probability between nodes and
.
The video distortion at the client peer is dependent on the

number of classes that can be decoded. We denote the quality
improvement or distortion reduction after successful decoding
of the th class as . The values of depend on the encoding
parameters, e.g., the quantization values, employed by the scal-
able video codec. The number of native video packets in the
first classes is written as , where stands for
the number of source video packets in class . The total number
of source or native packets is . A client is able to de-
code the th class as soon as it receives innovative network
coded packets. In our network coding algorithm, these packets
represent linear combinations of packets from the first classes.
Recall that a packet is called innovative when it increases the
rank of the equation system constructed by the set of packets
received at a peer node. It should be noted that in our frame-
work, the first class comprises the data from the base layer, the
second class comprises the data from both the base and the first
enhancement layer, and analogously for the subsequent coding
classes.

The distortion experienced at node is simply written as
, where represents a constant maximal dis-

tortion when no video class can be decoded. The expected re-
duction in video distortion is a function of the number of
classes that the node can decode. It can be written as

(3)

where denotes the probability that the node is able to de-
code video classes. We denote the probability that an innova-
tive packet arrives at node as . This probability depends
on the local packet loss probability, and the probability that
an encoded packet at a parent node is innovative. We can pro-
vide a lower bound on this later probability that only depends

on the size of the Galois Field, , i.e., [19]. The
equality stands for the case when a node needs one packet to
form a full rank equation system. Since we use the same GF
size in each packet class, and since the number of packets in
each class is small comparatively to the possible number of dif-
ferent packets, we consider that is identical in each class.
We further assume that the probability of two parent nodes gen-
erating the same network coded packet is negligible. Thus, the
(lower bound) value of the probability for receiving an innova-
tive packet is simply given as , since a
packet should not be erased and it should be innovative.

We can now rewrite the expected reduction in distortion
from (3) as

(4)

where the product term of the third line of (4) denotes simply
the likelihood (probability) of decoding the first classes exclu-
sively. The sequence of summation terms in the first line of (4)
counts the events of receiving enough packets to decode packets
up to class , but not the subsequent classes . This
latter condition is described with the second sequence of sums
in the second line of (4).

Instead of the overall incoming bandwidth at a node, we ac-
tually consider the maximum value between the incoming and
outgoing bandwidths at a peer node as the capacity constraint in
our network coding algorithm. This represents a crucial factor
in maintaining a high packet diversity in the network. In partic-
ular, the factor in (1) is replaced by the rate limit
that is defined as
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where and are, respectively, the average packet
erasure rate on the outgoing links at node , and the overall
number of packets sent by this node. The packet loss probability

is defined similarly to (2). The number of packets from
class received at node thus becomes

(5)

Specifically, the number of received packets in (1) is replaced
by

if

if .
(6)

Finally, we observe that the expected distortion depends on
the local network statistics (i.e., the packet loss ratio and the in-
coming bandwidth at each node), but also on the number of re-
quested packets in each class via . As the local network sta-
tistics are given, a peer node can still maximize the expected re-
duction in distortion by optimizing the packet class distribution
that represents the relative number of network coded packets re-
quested in each class. We study the optimization of the network
coding strategy in the next section.

IV. OPTIMIZED NETWORK CODING STRATEGY

A. Optimal Rate Allocation

We can now formulate the optimization problem solved by
each client node . The node is interested in determining the
number of packets it should request from its parents for each
packet class. The optimal class distribution is computed such
that it minimizes the expected distortion, or alternatively it max-
imizes the expected reduction in distortion, as contributed by the
received packets. Formally, the optimal rate allocation problem
can be written as follows:

(7)

The peer is interested in selecting the vector of coefficients
such that the network coding strategy em-

ployed by its parent nodes maximizes the received video quality.
This distribution is then sent as a request to all the parent nodes
of peer , which then perform network coding operations in
order to match the requested distribution.

B. Optimization Algorithm

Every client peer has to solve the problem indepen-
dently based on local network information. Since the search
space is huge, exhaustive algorithms are too complex and cannot
be implemented even for a small number of packets. Fortu-
nately, the objective function in (4) is a log-concave function,
which leads to a simple iterative solution of the problem
in each peer node. We prove below that the objective function
is log-concave, and we later present the optimal rate allocation
algorithm.

Proposition 1: The expected distortion function in (4)
is log-concave.

Proof: We show that (4) is log-concave by proving that all
terms in the product are log-concave, where

We notice that the terms in actually represent the con-

volution of functions of the form
. The factor is simply a constant inde-

pendent of , as it represents the importance of class . The
functions are log-concave as they represent a product of
log-concave binomial coefficients and exponential terms and
log-concavity is maintained under multiplication. Therefore,
the function is also log-concave, as convolution pre-
serves log-concavity. Finally, the objective function in (4) is
log-concave, as it is a cumulative distribution function [20].

The log-concavity property of the objective function permits
to devise a low cost iterative optimization algorithm that is able
to determine the optimum of the class rate allocation vector in a
finite number of steps. We now propose a greedy algorithm that
searches for the optimal distribution independently at each
node .

The optimization algorithm starts from a pivotal packet distri-
bution over the priority classes that is then refined iteratively.
The initial distribution depends on the number of classes that a
node can optimally decode given the overall number of received
packets. Specifically, when the bandwidth is adequate to decode
the first classes in an error-free case, the pivotal distribution
respects the percentage fractions of the packets comprising the
first classes. No packets are requested from the other classes,
i.e., the corresponding entries in are zero. In every step of the
algorithm, we examine the neighbors of the distribution vector

obtained from the previous iterations. In particular, a neighbor
distribution is obtained by changing the rate allocation with the
transfer of a unit rate from one class to an adjacent one, while the
overall rate stays constant in order to fully utilize the available
bandwidth. For example, if the video is encoded with packets
in three classes arranged in order of importance, we can write
the th candidate distribution vector of the iterative search al-
gorithm at step as ( is the index of
the candidate distribution vector). It corresponds to a rate allo-

cation . The following rate
allocations are considered as neighbor vectors of , by the
transfer of one rate unit between the neighbor classes:

(8)

The algorithm checks the expected reduction in distortion for
each of the neighbor rate allocations. If one of them results into
a larger reduction in distortion than the starting rate allocation

, then the neighbor allocation is included in the list of
candidate solutions. This procedure is repeated for all new can-
didate solutions: the neighbor allocations are tested, as long as
the unit rate transfer between the priority classes decreases the
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overall distortion. When there are no further beneficial packet
exchanges, the algorithm stops and the best candidate solution
is retained. Note that the proposed algorithm implicitly uses the
log-concavity property of the objective function, which guar-
antees the convergence to the optimum solution by a descent
strategy, as described above. The algorithmic computation that
this process embodies is summarized in Algorithm 1.

Algorithm 1: Optimal Rate Allocation Search

1: Initialization

• Set and .
• Select a pivotal and include it in the list .
• Compute the expected reduction in distortion

corresponding to .
• Set .

2: while do

3: Pick in

4: Compute , the neighbor distributions of

5: for all do

6: Compute , the distortion reduction corresponding
to

7: if then

8: Insert in

9: Set

10: Set

11: end if

12: if then

13: Set

14: Set

15: end if

16: Remove from .

17: end for

18: end while

19:

20: if then

21: Go to step 2

22: end if

23: Output

Each client peer runs the above optimization problem period-
ically and requests the optimal distribution from its parent
nodes. The parents then implements network coding operations
in order to match the requested distribution. Note that it might
happen in practice that parents are not able to transmit the re-
quested packets. In the case where allocates nonzero weights
to classes for which a parent node does not have any packets,

the parent node distributes these weight values uniformly to the
classes it can transmit. This modification normally does not alter
significantly the performance of the peer-to-peer system as the
network can compensate for this by exploiting the existing net-
work diversity and the fact that the nodes consider the maximum
of their incoming and outgoing link capacities.

We illustrate the performance of the proposed search al-
gorithm by comparing its solution to a full search strategy.
We consider a simple scenario with three quality layers of 20
packets each and RNC in and one hop transmission.
The loss probability between each pair of nodes is set to 5%.
Fig. 4(a) and (b) illustrates, respectively, the rate allocation
computed by full search and the one found by the algorithm
proposed above. We can see that the proposed algorithm is
always able to find the optimal coding strategy except for the
rounding effects of the numerical computation of the binomial
coefficients. We can also see that, whenever the bandwidth is
sufficient to transmit two classes, the weights in the first two
classes are identical. When the available bandwidth further
increases, then the weight of the first class decreases. Though
this may appear counter-intuitive, it is explained by the opera-
tion of the embedded network coding algorithm where coded
packets in the second class contain information from the first
two classes. Since we target a distributed solution, we consider
only local statistics (singe hop). However, if the end-to-end loss
rates and the min-cut values are available, we can use the same
algorithm to determine the optimal rate allocation for multi-hop
transmission.

V. UEP-NC PERFORMANCE EVALUATION

A. Simulation Setup

We consider the streaming of actual video content on overlay
networks. We encode the Foreman sequence in CIF image
size encoded with the scalable extension (SVC) of the latest
video compression standard H.264 [13] into three quality
layers, where the number of packets per layer and per GOP
is, respectively, (38, 15, 20). The video quality achieved after
the decoding of each of the three layers is, respectively, 36.48,
37.82, and 39.09 dB. The size of the GOP is set to 30 frames
and the frame rate is 30 fps. We use packets of 1500 bytes that
are augmented by the TCP/IP and the network coding headers.
All network coding operations are performed in , where
it is expected that the size of the Galois Field does not have a
large influence on the performance, as long as it is large enough
[10].

Each evaluation point in our analysis is the average perfor-
mance computed over 100 network topologies with similar
statistical properties. These topologies represent irregular
mesh networks that are generated by randomly modifying an
initial regular network. Specifically, we start with a regular
topology where the nodes are organized into stages depending
on their hop-distance from the servers. In the original topology,
each peer at every stage is connected to all the peers in the
neighboring stages, and the nodes at the first coding stage are
server nodes. We then build irregular topologies by randomly
removing links from the regular topology; we denote this
operation as pruning hereafter. We further change some links
by rewiring them to different destination nodes (peers) in the
network, in an operation that we denote as shifting [21]. The
new destination nodes for these links are selected at random
from the nodes at the same stage as the original destinations or
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Fig. 4. Evolution of the optimal class distribution given by the coefficients� with respect to the available bandwidth for (a) exhaustive search and (b) the proposed
search algorithm.

from nodes at subsequent stages, both in reference to the orig-
inal regular topology. The pruning and shifting probabilities
permit to control the “irregularity” of the resulting network.
We validate the resulting topology by ensuring that it does not
contain any cycles with the help of the DFS algorithm [22].
Furthermore, we make sure that every peer has at least two
incoming and two outgoing links, since path diversity is critical
in network coding. The capacities in each topology are finally
controlled by varying the bandwidth and packet loss ratio on
the network links. For the evaluation of video quality, we only
consider the last stage nodes as system clients that consume the
data.

We compare the performance of our UEP network coding
system, denoted henceforth UEP-NC, against those of four
competing schemes. The first scheme only considers packets
from the first class. The peers perform network coding on
these packets and use fully the available bandwidth. This first
baseline scheme is called Class-1. Two other schemes, denoted
Class-2 and Class-3, employ only packets from the first two and
three layers, respectively. The nodes perform network coding
on the set of packet under consideration up to the network
capacity. These three baseline schemes use the same number of
source packets per class as the UEP-NC scheme.

The fourth competing scheme denoted as SV-EWF is a
method based on [23] and [24] which employs expanding
window fountain codes (EWF) [25] for scalable video mul-
ticasting. EWF codes consist of several LT codes [26] that
are applied separately to expanding windows of data. Packet
combinations are generated only with packets from the same
window, which actually coincide with the importance classes of
the source data. We select the robust soliton degree distribution
(RSD) [26] in SV-EWF due to the relatively small reception
overhead that it incurs. We further select the reception overhead
in each window by estimating the expected error decoding
probability in each window based on the local network sta-
tistics. The exact encoding procedure can be found in [23].
Finally, we apply EWF codes in a receiver-driven mode, similar
to the UEP-NC method. The children peers compute the op-
timal rate allocation [23] and send requests to the parent peers,

which implement the corresponding coding strategy. In order
to provide higher adaptivity to network dynamics and increase
the information throughput relative to end-to-end solutions,
each peer in the system decodes and then adaptively re-encodes
the received information content, before forwarding it. We
consider SV-EWF to be an excellent scheme for comparison
since it shares many concepts with our UEP scheme.

B. Decoding Performance

We first analyze the performances of the competing schemes
as a function of the link bandwidth in the network. We consider
irregular network topologies, generated by randomly pruning
and shifting links from a regular topology with seven coding
stages and three peers per stage. The shifting and pruning prob-
abilities are set to 5%, i.e., a link is either shifted or removed
from the network, each, respectively, with a probability of 5%.
Furthermore, the packet loss ratio on each link is set to 5%.
We show in Fig. 5(a) the average performance of each scheme
given as the average video quality as a function of the link band-
width in the network, which varies from 160 to 360 kbps. The
proposed scheme performs better than the other schemes over
the whole range of bandwidth values. The Class-1 solution ex-
hibits a comparable performance. However, it tends to overpro-
tect the data as it only considers packets from the first layer to
guarantee the decoding of a minimum video quality. The per-
formance gap increases as the link capacity increases since our
UEP-NC scheme is able to take advantage of the increased band-
width in order to transmit data from other layers. The other two
baseline schemes perform poorly for low link capacities as they
do not transmit enough packets for the successful decoding of
layers two and three. These schemes become competitive only
at high bandwidth values. However, even in this case, they still
have an inferior performance as they suffer from the on-off per-
formance characteristic, (i.e., they are either able to decode a
full class or do not decode anything) while on the other hand, our
UEP-NC scheme can provide more adaptivity. The performance
of SV-EWF lies in between the performances of the Class-1 and
Class-2 schemes. As the bandwidth increases SV-EWF perfor-
mance converges to that of Class-2 scheme, while it performs
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Fig. 5. PSNR comparison of the proposed UEP scheme with baseline NC solutions and the SV-EWF scheme: (a) influence of the available bandwidth and (b) in-
fluence of the network regularity (pruning and shifting probabilities).

considerably worse than the UEP-NC scheme. This can be at-
tributed to the rather conservative allocation of symbols to the
three expanding windows (classes) given the available network
bandwidth, which in turn does not allow SV-EWF to produce
symbols from the third class. The conservative allocation is due
to the higher reception overhead of SV-EWF codes for short
codeblocks (they perform close to MDS codes only for large
codeblocks).

Next, we examine the influence of the irregularity of the
network topology. In particular, we fix the packet loss rate to
5% and the link bandwidth to 360 kbps. We then vary the char-
acteristics of the network by changing the pruning and shifting
probabilities in the construction of the irregular topologies.
Both of these probabilities are always selected to be identical.
The corresponding performance results are shown in Fig. 5(b).
It can be seen that when the network is quite regular (i.e., when
the shifting and pruning probabilities are low), the Class-3

scheme performs equally well with UEP-NC as both schemes
are able to exploit efficiently the network resources. However,
when the irregularity of the network increases, the performance
of UEP-NC degrades gracefully while the Class-3 scheme
exhibits a significantly lower performance since its adaptivity
is reduced by the predefined encoding strategy. The other two
baseline schemes also seem to be robust to network variations,
but their performance is limited by the smaller number of
video layers that they consider. The performance of SV-EWF

in topologies with low irregularity is comparable to the perfor-
mance of the Class-2 scheme. However, its performance rapidly
approaches the one of the Class-1 scheme when the network
topology becomes more irregular. Furthermore, it can be seen
in Fig. 5(b) that UEP-NC outperforms SV-EWF at all topology
irregularity levels. This is because bandwidth variations force
SV-EWF to generate symbols from the first class only as the
available bandwidth is insufficient to transmit data from other
classes. Furthermore, the second class cannot often be retrieved
and the source symbols diversity in the network degrades
quickly. This is the case even if next hop nodes have enough
bandwidth for serving transmission of data from higher classes.

We further study the influence of the size of the network on
the performance of the competing algorithms in order to under-

stand how successive bottlenecks affect the robustness of the
algorithms. We consider irregular topologies with three nodes
per stage, but we vary the number of stages. The link pruning
and shifting probability is equal to 5% in the construction of
the network topologies. The packet loss rate on each link is set
to 5%. The bandwidth of all the links is set to 270 kbps and
338 kbps, in Fig. 6(a) and (b), respectively. Fig. 6(a) shows
that the UEP-NC scheme is extremely robust and that its per-
formance remains unaltered by the size of the network. The
SV-EWF scheme is also robust since it generates mainly packets
from the first window (the first video layer) when the link ca-
pacities are limited. The Class-2 solution is, however, affected
more significantly in small size networks due to the on-off per-
formance of the decoding algorithm (i.e., either all packets are
decoded, or none). For larger networks, the penalty is smaller
since the network diversity assists this scheme to cope with the
bandwidth variations. The bandwidth variations are due to the
removal and shifting of some links. When the link bandwidth
is larger, we see in Fig. 6(b) that the UEP-NC still shows a
sustained performance for all network sizes. In the Class-2 so-
lution, the symbol diversity remains high as network size in-
creases and the performance does not vary a lot. At the same
time, the performance of SV-EWF degrades smoothly with the
network size. This performance drop can be explained by the
fact that few initial nodes are unable to retrieve the second video
layer. Subsequently, the next nodes also lose the second layer as
they cannot collect a sufficient number of packets to decode this
layer.

C. Performance Under Timing Constraints

As we target streaming applications, we propose now to an-
alyze the performance of the peer-to-peer streaming solutions
under timing constraints. We build irregular topologies with
seven stages and three nodes per stage, where the topology
generation uses pruning and shifting probabilities of 5%. The
packet loss rate is set to 5% and the link bandwidth varies in
the range [160, 360] kbps. All the network links have the same
bandwidth. We implement the different schemes in the NS-3
network simulator [27], which permits to study the timing
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Fig. 6. Network scalability. Class-2 scheme is compared with the UEP-NC scheme with three video layers and SV-EWF for network of various scales where all
links have capacity: (a) 270 kbps and (b) 338 kbps.

Fig. 7. (a) Decoding time comparison of the proposed UEP-NC scheme with the baseline network coding solutions. (b) PSNR comparison of the UEP-NC scheme
for various link capacities and various playback delays.

information appropriately. As in the previous evaluations, all
presented results represent averages over 100 simulations.

First, we analyze the average decoding time in Fig. 7(a). We
observe that the decoding times for the baseline network coding
schemes decrease with the increasing link bandwidth. When the
links are faster, the peers obviously need less time to gather a
sufficient number of packets for decoding. We only consider re-
sults where all the clients are able to decode all the video in-
formation in the baseline schemes. It can be further observed
that the UEP-NC is very adaptive to the network capacities.
It shows comparable decoding times to each of the baseline
network coding solutions. Specifically, for low link capacities,
the UEP-NC scheme transmits mostly packets from the first
layer and its performance coincides with the Class-1 scheme.
For medium link capacities, the UEP-NC show higher decoding
times, as some of the clients also decode the second video layer.
It reaches performance similar to the Class-2 scheme when all
the clients are able to decode the first two layers. Then, the

decoding time decreases again as the necessary time to gather
enough packets of the first two video layers decreases with in-
creasing link capacities. Note that we do not provide a com-
parison with the SV-EWF scheme here, since the delay for this
scheme rapidly becomes very large, as nodes have to succes-
sively decode and recode the video information. In this case,
the delay grows with the size of the network and a comparison
with the UEP-NC is not meaningful.

We provide another perspective on the performance under
timing constraints in Fig. 7(b). We constrain the playback delay
to values between 250 and 2000 ms, which are reasonable for
real-time streaming applications. Packets that are late are dis-
carded by a decoder. The deadline constraints are given by the
packet time-stamps that depend on the generation and the play-
back delay value. When the timing constraints are very tight, the
UEP-NC scheme does not perform well as the playback delay
is too small to gather enough packets for decoding. When the
playback delay increases, the UEP-NC algorithm is able to de-
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Fig. 8. PSNR evaluation of the UEP-NC scheme for various buffer sizes.

code the video only when the bandwidth is high enough, since
the delivery is faster in this case. For higher playback delays,
which are actually closer to the typical constraints imposed in
practical systems, the UEP-NC scheme is able to provide high
video quality for medium to high bandwidth networks.

Next, we analyze the influence of the buffer size at the peer
nodes. We consider four different buffer sizes, i.e., 10, 30, 50,
and 110 packets. Note that the last value basically corresponds
to an infinite buffer in our setup, as it is much larger than a GOP
(generation) size in packets. The performance of the proposed
scheme with constrained buffers is illustrated in Fig. 8, where
the playback delay constraint is set to 250 ms. We can observe
that buffer size is not in fact a critical parameter in our network
coding scheme. This can be explained by the high symbol di-
versity provided by the servers and the peer nodes. In addition,
the UEP-NC scheme is further able to generate a high symbol
diversity even if only a small number of packets is available in a
intermediate node due to the limited buffer size. The proposed
scheme is able to achieve a sustained performance even with
small peer buffers.

VI. RELATED WORK

While initially network coding research has mainly focused
on throughput benefits, nowadays, many researchers investigate
the application of network coding to error resilient video com-
munication. This research is driven by similarities between net-
work coding and traditional channel coding techniques.

A testbed called “Lava” that applies network coding concepts
to streaming systems was developed in [28]. Lava is based on
a standard pull-based peer-to-peer streaming protocol. The ran-
domized network coding is implemented as a plugin component.
Prior to transmission, the streams are divided in segments of pre-
defined duration. These are further divided into blocks. In Lava,
the peers periodically exchange messages to announce the avail-
ability of certain segments. The peers possessing a certain seg-
ment are used as seeds for the other peers requiring this segment.
Progressive decoding is achieved by a Gauss-Jordan elimina-
tion. The evaluation is encouraging and shows that the scheme is
resilient to network dynamics, maintains stable buffering levels,
and limits playback skips. Motivated by the success of [28],
Wang et al. proposed a novel architecture known by the acronym

[29]. In this work, RNC is combined with a randomized
push algorithm to take full advantage of coding operations at
peer nodes. Whenever detects a transmission opportunity,
it chooses at random a segment [30] that the downstream peer
has not downloaded yet and it generates a corresponding net-
work coded block. Frequent buffer map exchanges are required
to identify segments that have not been downloaded. The buffer
maps are sent together with previously requested segment. To
avoid an explosion of overheads sent between the peers, larger
size segments are employed.

Using network coding techniques in conjunction with Raptor
codes [31] has shown in [21] and [32] that they resolve problems
related to strict timing constraints and reduce significantly the
computational cost. The optimal rate allocation is determined by
the least reliable user which can be a limiting factor when we
have to cope with heterogeneous networks and users. In such
networks, network coding with built-in UEP can be beneficial
as it can offer a variety of quality-of-service levels without em-
ploying expensive control protocols in the network for achieving
the same goal.

To date, only a few works have addressed the prioritization
of packets in network coding algorithms. Furthermore, the
proposed solutions are usually computationally complex and
difficult to extend to distributed settings. For example, priority
random linear codes [33] are proposed for data dissemination
in peer-to-peer and sensor networks, where improved data
persistence is achieved due to the fact that the most important
video data represents a combination of fewer source packets.
The global encoding kernel (GEK) approach is proposed in
[34] for defining unequal amount of protection to scalable
data. GEK permits a decomposition of the network graph into
connected line graphs where different coding operations are
applied like in [35]. The optimization is defined as minmax

and solved exhaustively. In [36], the problem is considered as
an inter-session network coding problem [37]. In inter-session
network coding, various sources access the network and mixing
of packets from different sources is allowed when the clients
receiving the mixed packets are interested in the content of all
mixed sources.

Practical distributed network coding algorithms are largely
inspired by the work of Chou et al. [10] that adapts RNC [9] to
streaming applications. For UEP protection, the authors have
employed a modified version of the well-known PET algorithm
[38]. A complete overview of this system can be found in
[7]. The recent work in [39] applies similar concepts, but
replaces the PET algorithm in the UEP strategy by an MD-FEC
scheme [17]. It computes the optimal source and channel rate
allocation so that the average distortion is minimized for given
channel conditions. In [40], another rate allocation algorithm
is employed for scalable video streaming over multicast net-
works. All these works provide limited adaptivity to the system
dynamics, as the coding strategy is generally predefined at the
server based on global knowledge about the network. The work
in [18] provides finer adaptivity in addressing the problem of
streaming of H.264/AVC encoded video content where frame
dependencies are taken into account for determining the op-
timal network coding operations for each video quality layer.
This scheme bases its decisions on estimating the number of
innovative packets received by each client. The optimization
is performed at the intermediate network nodes. However, the
related coding decisions are complex to compute due to the
high number of dependencies between the video packets. The
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coding decisions are much simpler when the peers implement
embedded network coding strategies as proposed in our novel
UEP-NC algorithm.

A scheme called SV-EWF has also been proposed for scalable
video multicasting [23], [24]. It employs EWF codes [25] that
consist of several LT codes [26] applied separately to expanding
windows of data. This corresponds to some form of embedding
coding as packet combinations are generated only with packets
from the same window, which actually coincide with the impor-
tance classes of the source data. Even if this scheme shares a few
concepts with our algorithm, it is less efficient in terms of adap-
tivity and end-to-end delay as shown in the previous section.
Finally, other UEP rateless codes have been proposed recently
[41], [42]. They, respectively, deal with the problem of mini-
mizing the overhead of point-to-point communication [41] and
with the scenario where different source packet sets are available
at network nodes that employ in turn different degree distribu-
tion functions [42]. However, both schemes cannot be applied to
content delivery in peer-to-peer networks as they suffer from the
same disadvantages as SV-EWF in terms of end-to-end delay.

VII. CONCLUSIONS

We have proposed a novel receiver-driven RNC technique
with built-in UEP properties. The technique considers the un-
equal importance of the various packet classes and implements
different random network coding protection levels. The random-
ized coding strategy permits to keep a simple code design and
avoids the use of expensive policies at the intermediate network
nodes. The UEP properties are achieved simply by choosing the
proper rate allocation among the different classes. Each client
node periodically requests different shares of network coded
packets from each importance class. The requests are computed
independently at each node such that the expected distortion is
minimized. We exploit the properties of the objective function to
propose a simple iterative search algorithm that finds the optimal
rate allocation at each node. We then demonstrate through sim-
ulation results that the proposed solution outperforms baseline
network coding strategies for peer-to-peer delivery of scalable
video content. By properly handling the different video classes
and providing adaptivity to local network statistics, our frame-
work achieves efficient distributed video delivery over hetero-
geneous and unreliable overlay networks.
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