
Prioritized Motion Planning for Multiple Robots
Jur P. van den Berg Mark H. Overmars

Institute of Information and Computing Sciences
Utrecht University, The Netherlands

{berg, markov}@cs.uu.nl

Abstract— In this paper we address the problem of motion
planning for multiple robots. We introduce a prioritized
method, based on a powerful method for motion planning
in dynamic environments, recently developed by the authors.
Our approach is generically applicable: there is no limitation
on the number of degrees of freedom of each of the robots,
and robots of various types –for instance free-flying robots
and articulated robots– can be used simultaneously. Results
show that high-quality paths can be produced in less than a
second of computation time, even in confined environments
involving many robots. We examine three issues in particular
in this paper: the assignment of priorities to the robots,
the performance of prioritized planning versus coordinated
planning, and the influence of the extent by which the robot
motions are constrained on the performance of the method.
Results are reported in terms of both running time and the
quality of the paths produced.

Index Terms— motion planning, multiple robots, prioritized

I. INTRODUCTION

This paper addresses the problem of motion planning for
multiple robots, which is an important topic in the field.
The task is to plan trajectories for the robots that bring
each robot from some start configuration to some goal
configuration without mutual collisions and collisions with
static obstacles. This problem has been studied extensively.

Most research has focused on coordinated approaches.
They are often categorized along the spectrum between
centralized and decoupled planning [12]. A centralized
planner computes a path in the composite configuration
space, which is formed by the Cartesian product of the
configuration spaces of the individual robots [15], [16]. In
a decoupled approach a path is computed for each robot
independently, and a coordination diagram is used to plan
a collision-free trajectory for each robot along its path
[12], [14], [17]. Approaches that only weakly constrain
the motions of the robots before considering interactions
between the robots can be categorized in the middle of
the spectrum. They typically use roadmaps for each of the
robots that cover each of their free configuration spaces
well [8], [12], [18].

The various approaches along the spectrum trade off
completeness for speed and applicability. Centralized ap-
proaches are complete, but are in general computationally
demanding, or only applicable to simple robots operating in
simple environments. Decoupled approaches are applicable
to robots of any kind, but the paths they compute may be
far from optimal. Approaches that use a roadmap provide
a compromise between the two extremes.

Fig. 1. An environment with four articulated robots manipulating a car.

A less studied approach to motion planning for multiple
robots, which is nevertheless often used in practice, is
prioritized planning [2], [5], [6]. In a prioritized approach
each of the robots is assigned a priority. Then in order of
decreasing priority, the robots are picked. For each picked
robot a trajectory is planned, avoiding collisions with the
static obstacles as well as the previously picked robots,
which are considered as dynamic obstacles.

This reduces the multi-robot motion planning problem
to the problem of motion planning for a single robot in a
known dynamic environment, which is a difficult problem
in itself. Also in this case a spectrum can be defined along
which the extent is varied by which the motion of the robot
is constrained. In [9], the robot motion is not constrained,
and in [7] the motion of the robot is constrained to a path
that is collision-free with respect to the static obstacles.
Recently, the authors introduced a method that constrains
the robot motion to a roadmap [3].

In this paper, we introduce a prioritized method for
motion planning for multiple robots, based on the method
presented in [3]. Each robot is constrained to move over
a preprocessed roadmap that is collision-free with respect
to the static obstacles. Our method is applicable to any
number of robots with any number of degrees of freedom
in both two- and three-dimensional environments (see
e.g. Fig. 1). Also, robots of different type can be used
simultaneously. Experiments were performed in typical
and confined environments involving many robots. Results
show that high-quality paths can be produced in less than
a second of computation time.

Three issues in particular are addressed in this paper:
• How are the priorities assigned to each of the robots,

and how does this influence the performance of pri-
oritized planning?

• How does our prioritized approach compare to coordi-
nated approaches, and how do the approaches perform
when the number of robots increases?

• What is the effect on the performance when we vary
the extent by which the robot motions are constrained?

We report results in terms of both the optimality of the
paths produced and the running time of the methods.

The rest of this paper is organized as follows. In the
next section we formally define the problem to be solved.
In section III we introduce our prioritized method, and in
sections IV to VI we address each of the three issues raised
above. We conclude the paper in section VII.

II. PROBLEM DEFINITION

A. Definition

The problem is formally defined as follows. Given are
n robots A1, . . . , An, and a two- or three dimensional
environment in which the robots can move. For each
robot Ai a roadmap Ri is constructed that covers the
free configuration space of Ai, and for each robot a start
configuration si ∈ Ri and a goal configuration gi ∈ Ri

is defined. We use the notation Ai(x) to refer to robot Ai

configured at x, where x ∈ Ri.
The task is to compute for each robot Ai a trajectory

Xi : [0, Ti] → Ri, such that Xi(0) = si and Xi(Ti) =
gi, without collisions with other robots (note that the
static obstacles are not of concern; the robots move over
roadmaps that are already guaranteed to be collision-free
with respect to the static obstacles). Ti can be considered
as the arrival time of robot Ai at its goal configuration. We
refer to (X1, . . . , Xn) as the composite path of the robot.

For experimental reasons, we assume that none of the
robots can collide with any other robot when it is at its
start or goal configuration [1]. This ensures that a solution
exists to any planning problem, by simply executing the
trajectories of the each of the robots one after the other.

B. Discretization

The problem is discretized by choosing a small time
step ∆t and a maximal velocity vi for each robot Ai. Each
robot may move with a velocity |vi| or 0 over its roadmap
and may only change it at given times k∆t, where k is an
integer. This subdivides each of the edges of the roadmap
in small steps of length vi∆t. At each time step the robot
may move one step in either direction along the edge, or
halt at its current position. If the robot is on a vertex of the
roadmap, it can choose among all of the outgoing edges
of the vertex. Such a discretization is common in motion
planning [3], [7], [12].

Hereafter we refer to Ri as the discretized set of states
that robot Ai may adopt on its roadmap.

C. Quality Measure

An important aspect of motion planning for multiple
robots is to define a quality measure of the composite path,
which should be optimized. This measure is usually defined
on the vector (T1, . . . , Tn) of arrival times of each of the
robots. In some previous work, all pareto-optimal solutions

are generated [8], [12], but in most cases a single scalar-
valued function is optimized, for instance the average
arrival time of the robots. The choice of scalarization is
quite arbitrary and may depend on the specific application.
In this paper we choose to take the maximum of the arrival
times as quality measure, i.e. we optimize the arrival time
of the latest robot.

III. PRIORITIZED PLANNING

Prioritized motion planning for multiple robots is a sim-
ple approach, already introduced by Erdmann and Lozano-
Pérez [6] in 1987. It works as follows: Each of the robots
is assigned a priority. Next, the robots are picked in order
of decreasing priority. For each picked robot a trajectory
is planned, avoiding collisions with the static obstacles as
well as the previously picked robots, which are considered
as dynamic obstacles.

The approach requires two important ingredients: a
method to plan motions for a single robot in known dy-
namic environments, and a scheme to prioritize the robots.
In this section we discuss how we implemented them in
our method.

A. Motion Planning in Dynamic Environments

According to the definition of section II-A, we need a
method that – given a robot, a roadmap, start and goal
configurations s and g in the roadmap, and the scripted
motions of the dynamic obstacles – computes a path for
the robot starting at s at t = 0, and arriving as soon as
possible at g.

A method for motion planning in dynamic environments
that does exactly the above has recently been introduced
by the authors in [3]. We briefly review its properties here:

• It is applicable to any robot type in configuration
spaces of any dimension. The method only requires
a roadmap that covers the free configuration space of
the robot well, and that is collision-free with respect
to the static obstacles.

• The shapes and motions of the dynamic obstacles
are unconstrained: they may move with any speed
following any trajectory, as long as the motions are
known beforehand. That is, given a position of the
robot at a time t we must be able to determine whether
the robot collides with a dynamic obstacle [4].

• The roadmap and the time-axis are discretized as
described in section II-B. Under these constraints,
the method computes a time-optimal trajectory on the
roadmap that arrives as early as possible at the goal
configuration.

• The method achieves interactive performance in com-
plicated dynamic environments.

The method finds a trajectory in the discretized roadmap-
time space by an efficient multi-layer search. We will not
discuss this in detail here, but refer the interested reader to
[3].

The method is used in our prioritized approach as
follows: Let each robot be given a priority (how these

Fig. 2. An example scene in which the prioritization has a significant
influence on the result. If robot A has priority over robot B, robot B can
only start moving after A has reached its goal. If robot B has priority, A
can use the cavity in the passageway to let robot B pass, giving a much
better result.

priorities are assigned is discussed below). Then iteratively
a trajectory is planned for each robot, in order of decreasing
priority. If it is the k’th robot’s turn, the trajectories
of the k − 1 robots that have previously been planned
are considered as dynamic obstacles. This repeats until a
trajectory has been planned for the robot with the least
priority. The maximum of the arrival times measures the
quality of the planned composite path.

B. Prioritization

An important question is how to assign the different
priorities to the robots. There can of course be natural
reasons to assign different priorities, for instance based on
the importance of the tasks or on different starting times
of the robots, but we will not assume that here.

If we have n robots, there are n! different priority
schedules, so in general we cannot try them all and select
the best one. Yet, the order in which the trajectories are
planned can have a significant influence on how optimal
the resulting path is (see Fig. 2). To still find a near-
optimal prioritization in only a few iterations, a randomized
search with hill-climbing is applied in [2]. However, this
still means that the multi-robot motion planning problem
is solved multiple times, which costs valuable CPU-time.

We propose a simple heuristic to assign priorities to
the robots. Let di(si, gi) be the number of steps in the
discretized roadmap Ri of robot Ai on the shortest path
between its start configuration si and its goal configuration
gi. Then, if the other robots do not stand in the way, robot
Ai can reach its goal in di(si, gi)∆t time. We call this
number the query distance.

In our heuristic the priority of a robot equals its query
distance. The rationale behind this heuristic is – keeping in
mind that we aim to minimize the maximum of the arrival
times – that robots that have to traverse long distances
(and hence need much time) should be able to do this
relatively unhindered, while robots that have to traverse
short distances can afford to spend time on avoiding robots
with higher priority.

The query distances are straightforwardly computed by
performing Dijkstra’s shortest path algorithm [11] on each
of the roadmaps.

IV. ANALYZING THE PRIORITIZATION

The scene of Fig. 2 was carefully chosen to thwart the
prioritized method, and one would typically not encounter

(a)

(b)

Fig. 3. Two environments and their roadmaps with 24 query configu-
rations (a to x). (a) The ‘clutter’ scene. 24 robots (cylinders) are shown
in a configuration along a composite path. The roadmap contains 1500
vertices. (b) The ‘office’ scene. Here 12 robots are shown. The roadmap
contains 1218 vertices.

such a scene in practice. In this section we examine the
influence of the choice of prioritization in more typical
environments, and we assess the performance of our prior-
itization heuristic. We report results in terms of the quality
(i.e. the latest of the arrival times) of the produced paths.

We experimented with our method in two environments:
the ‘clutter’ scene and the ‘office’ scene (see Fig. 3). All the
robots are cylinders that can translate in the plane. Since
they are all the same, they can use the same roadmap
(note that this is not a requirement of our method). For
both scenes we constructed a roadmap using a probabilistic
roadmap (PRM) method [10]. To have a choice of alter-
native routes we used a variant that allows the creation of
cycles in the roadmap [13].

In both roadmaps we have defined 24 query configura-
tions (a to x – see Fig. 3). Our experiments involve 12
robots with the queries a → n, c → p, e → r, g → t,
i → v, k → x, m → b, o → d, q → f , s → h, u → j
and w → l. We performed the prioritized method for 500
randomly picked priority schedules. The results are given
in Fig. 4. In the charts we plotted the priority schedules
in order of decreasing quality relative to the optimal path
quality (i.e. the maximum of the query distances, which

(a)

Clutter scene

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

0 100 200 300 400 500

Prioritization rank

Q
u

al
it

y
lo

ss

(b)

Office scene

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 100 200 300 400 500

Prioritization rank

Q
u

al
it

y
lo

ss

Fig. 4. Results for 500 random prioritizations in the clutter scene (a) and
the office scene (b). The prioritizations are shown in order of decreasing
quality relative to the optimal path quality. The dotted line indicates the
average quality and the quality of our heuristic is indicated with a square.

gives a lower bound on the achievable arrival time). This
gives a good indication of how the choice of prioritization
influences the quality of the resulting path. The quality of
our prioritization heuristic is indicated with a square.

From the results we can see that for the clutter scene
the choice of prioritization has a moderate influence on
the quality of the resulting path. The average path (dotted
line) is slightly more than 5% longer than the optimal path.
Some prioritizations actually achieve this optimum. Our
prioritization heuristic performs well; it performs less than
2% worse than the optimal prioritization and far better than
the average.

The office scene is more confined, and here we see that
the theoretical optimum cannot be achieved. The average
prioritization produces paths that are about 30% longer. A
remarkable result for this scene is that the vast majority
of the prioritizations produce paths of more or less equal
quality and better than the average. A considerable minority
however, produces paths of poor quality. Our heuristic
again performs well below average; for both scenes ap-
proximately 20% of the prioritizations perform better than
our heuristic, and 80% worse.

Overall we can say that the choice of prioritization
can have a significant influence on the resulting path
quality. Yet, our heuristic provides an efficient way to
generate high-quality paths, even in confined environments.

Our prioritized method is very fast: In the above exper-
iment, the running time to produce a composite path for
12 robots was – averaged over all 500 prioritizations –

only 0.76 seconds for the clutter scene, and 0.95 seconds
for the office scene. In the environment of Fig. 1 we
computed a path for four articulated robots between their
upright positions and the manipulating configurations as
shown in the figure. Again, it took only 0.89 seconds. The
experiments were performed on a Pentium IV 3.0GHz with
1 GByte of memory.

V. COMPARISON WITH A COORDINATED APPROACH

We assess the performance of our prioritized approach,
in terms of both the quality of the paths produced and the
running time, by comparing it to a roadmap coordination
approach introduced in [12]. The method gives the opti-
mal robot coordination, and therefore paths with optimal
quality.

A. Optimal Roadmap Coordination

Given n robots A1, . . . , An, discretized roadmaps
R1, . . . Rn, and start and goal configurations si and gi for
each of the robots, the method of [12] finds an optimal
composite path in the roadmap coordination space R,
formed by the Cartesian product R1 × · · · × Rn of the
roadmaps of the individual robots. The task is to find a
path in R from (s1, . . . , sn) to (g1, . . . gn).

In each time step, the robots may either move one step
over the roadmap, or halt at the current position, according
to the discretization described in section II-B. This defines
a neighborhood in the roadmap coordination space.

The composite path with the minimal latest arrival time
is searched using the A*-algorithm [11]. Each state that
is encountered during the search is checked for mutual
collisions of the robots.

The complexity of the search space is exponential in the
number of robots, but the algorithm exploits the cylindrical
nature of the obstacles in the roadmap coordination space,
allowing the number of collision-checks to grow only
quadratic with the number of robots.

B. Experimental Results

We implemented the above algorithm and performed
some experiments in the office scene of Fig. 3b. The
coordinated approach turned out to be impractical for more
than 3 robots. This is mainly caused by the exponential
growth of the search space in the number of robots, and
the large configuration space that each of the robots have.
Somewhat surprisingly, the chosen optimization criterion
also plays a major role: in the A*-method, the multi-robot
state in the ‘open’-list with the minimal estimated arrival
time of the latest robot is expanded. If for multiple states
this value is equal, the estimated arrival time of the second
latest robot is considered, etc.

The problem with this optimization criterion is that the
move costs of robots with a small query distance are hardly
counted. This causes the A*-algorithm to first explore the
entire reachable space of the robot with a small query
distance (as long as it does not become the robot with the
latest estimated arrival time) before considering a (waiting)
step of another robot that does affect the latest estimated

TABLE I

PRIORITIZED VS. COORDINATED PLANNING

Coord. Coord. (sum) Prioritized
query set run. run. qual. run. qual.

start goal time time loss time loss
(w, j) (k, v) 1.81s 1.17s 0.0% 0.03s 5.6%
(k, v) (w, j) 1.53s 0.84s 0.0% 0.03s 7.8%
(e, d) (c, f) 0.70s 0.30s 1.3% 0.01s 2.5%

(a, k, v) (n, b, j) 6.44m 31.6m 0.5% 0.06s 2.1%
(s, l, j) (g, v, b) 7.12m 2.27m 0.0% 0.13s 5.1%
(v, c, f) (k, o, r) 0.01s 0.02s 0.0% 0.02s 0.0%
(k, v, o) (w, j, r) >60m 12.53s 0.0% 0.03s 7.8%
(n, g, k) (h, m, j) 1.65m 21.45s 0.0% 0.05s 0.0%

arrival time, even though this step may be crucial for
finding an optimal coordination.

This results in large parts of the roadmap coordination
space being (unnecessarily) explored. Yet, if we want to
find the coordination with the optimal latest arrival time,
there is no other option. Other optimization criteria, for
instance the sum of the arrival times of the robots, do not
have this specific problem, but may perform poorly in other
situations. In general, a drawback of the A*-method is that
it continuously backtracks to states whose rank in the open-
list relies heavily on too optimistic arrival time estimates.

Nevertheless, we performed some experiments with the
coordinated method for two optimization criteria. We op-
timized the maximum and the sum of the arrival times.
The experiments involve two and three robots in the office
scene. We compare the running time and the path quality
to the prioritized approach, for which the prioritization was
chosen according to the heuristic we introduced in the pre-
vious section. To have a fair comparison between the two
methods, both of them use the same roadmaps. The results
are given in Table I. The path quality is reported relative to
the coordinated approach, which computes optimal paths.

From the results it is clear that the prioritized approach
is much faster than the coordinated approach, at the
expense of only a small increase in path length. Due to
the problems described above, the coordinated method
could not solve the seventh experiment, even though it is a
rather simple problem. When we optimize the sum of the
arrival times instead of the latest arrival time, this problem
is solved relatively fast. In the fourth experiment however,
this optimization criterion performs poorly. In general we
can conclude that the running times of the coordinated
methods too heavily depend on the optimization criterion
and on the specific query set to be solved. In practice,
it cannot be applied to problems involving 4 or more robots.

In contrast, the performance of the prioritized method
scales well with the number of robots. In the clutter scene
we performed an experiment involving up to 24 robots.
The results are given in Fig. 5. Even for 24 robots (the
scene gets very crowded then – see Fig. 3a) the prioritized
method returns a path within reasonable running time.

Theoretically, the running time of the prioritized method
grows quadratically with the number of robots: If the
number of robots is n, then n times a trajectory is planned
avoiding O(n) other robots. In the figure we see that the

Prioritized planning

0

2

4

6

8

10

12

14

16

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Number of robots

R
u

n
n

in
g

 t
im

e
(s

)

Fig. 5. Running times of the prioritized method in the clutter scene for
an increasing number of robots. To each experiment one extra query is
added in this order: a → n, m → b, c → p, o → d, e → r, q → f ,
g → t, s → h, i → v, u → j, k → x, w → l, n → a, b → m, p → c,
d → o, r → e, f → q, t → g, h → s, v → i, j → u, x → k and
l → w. In each experiment the queries are prioritized according to our
heuristic.

running time grows quickly for more than 20 robots. This
is explained by the fact that the space gets more confined
when the number of robots is high, giving more difficult
problems to solve.

VI. ANALYZING THE SPECTRUM

As stated in the introduction, most approaches to motion
planning for multiple robots can be categorized along a
spectrum indicating how much the motions of the robots are
constrained. In the one extreme the motions are constrained
to a path, and in the other extreme the motions are not
constrained at all. In this section we examine the effect
of the extent by which the motions are constrained on the
performance of our prioritized method. Again, we report
results in terms of both path quality and running times.

Our method was developed to constrain the robot mo-
tions to a roadmap, and it can as such be categorized in
the middle of the spectrum. It is also applicable when the
robots are constrained to paths, which are special instances
of roadmaps. Our method is not applicable to unconstrained
configuration spaces, but we approximate this situation by
increasing the density of the roadmap. As such, we slide
along the spectrum between the two extremes.

We experimented in the clutter scene and the office scene
with 12 robots having the same queries as in section IV. We
constructed collision-free paths for the robots by taking the
shortest paths from the roadmaps of Fig. 3. The density of
the roadmaps was varied by tuning the number of vertices.
To avoid strong deviations in the results as a consequence
of the randomness involved in creating roadmaps, we
extend roadmaps over the experiments: In each experiment
we add a number of vertices to the roadmap of the previous
experiment. The number of states in the roadmap grows
more or less proportionally. The results are shown in Table
II. The path quality is represented here as the absolute
arrival time of the latest robot.

From the results we can see that constraining the motions
to individual paths indeed gives low running times, but
also yields composite paths of poor quality. This is caused

TABLE II

SLIDING ALONG THE SPECTRUM

Clutter scene Office scene
roadm. roadm. run. path roadm. run. path

#vertices #states time length #states time length
path ∼140 0.18s 20.44 ∼150 0.17s 26.32
200 1980 0.12s 11.06 2187 0.30s 19.11
500 3728 0.35s 10.64 4194 0.59s 19.88

1000 5730 0.35s 10.36 6696 0.56s 14.49
1500 7305 1.09s 10.78 8479 0.70s 14.42
2000 8846 0.97s 10.01 9978 0.86s 14.42
3000 12033 1.33s 10.01 13100 1.76s 14.35
5000 17215 1.82s 10.01 19204 1.80s 14.35
7500 22501 2.38s 10.01 25014 2.15s 14.35

by robots that move in opposite directions and share large
portions of the same path. This means that one robot has
to wait a long time until the other robot has cleared the
path, more or less similar to the situation of Fig. 2.

When we constrain the motions to roadmaps we see
that the path quality improves as the roadmaps more
densely cover the free configuration space of the individual
robots. Moreover, the optimal quality is approached very
quickly. After some rather low threshold value (about 2000
vertices) it seems that adding more states to the roadmap
hardly helps anymore. This leads us to the conclusion that
planning in unconstrained spaces is not useful; constraining
motions to roadmaps is much cheaper [12] and approxi-
mates the continuous situation very well.

As can be deduced from the results, the running time of
our prioritized method only grows linearly with the number
of states in the discretized roadmap.

VII. CONCLUSION

In this paper we introduced a generally applicable pri-
oritized approach to motion planning for multiple robots.
The method is fast; even problems involving as many
as 24 robots in confined environments can be solved
in mere seconds of computation time. Choosing a good
prioritization is a crucial ingredient for a successful planner.
Our heuristic appeared to perform well in practice.

In this paper we assumed that the robots are collision-
free on their query configurations, so that we did not
have to deal with failures in the experiments. Our method,
however, is also applicable without this assumption. In the
experiment of Fig. 5, for instance, the assumption was
violated in the runs involving more than 12 robots. It is
possible though, that without this assumption the prioritized
method will not find a solution, even if one exists. This is,
however, unlikely to happen in most environments.

Coordinated approaches do not have this disadvantage
(they compute optimal paths), but appeared not to be
generally applicable to 4 or more robots. The prioritized ap-
proach, in contrast, scales well with the number of robots,
at the expense of only a small increase in path length in
typical scenes. Prioritized planning has more advantages. It
is easily extended to motion planning for multiple robots
in dynamic environments. Also, it is easily applicable in
situations where multiple robots have different start times
and continuously share a common environment.

Finally, we have shown that constraining the robot mo-
tions to roadmaps hardly affects the quality of the produced
paths: A roadmap of only moderate density already well
approximates the continuous, unconstrained configuration
space. An additional advantage of using roadmaps is that
they are created in a preprocessing phase. This substantially
relieves the query phase (e.g. of narrow-passage problems).

ACKNOWLEDGMENTS

The authors like to thank Marin Hekman for constructing
the scenes used in this paper, and Patrick Min for his
careful proofreading. This research was supported by the
IST Programme of the EU as a Shared-cost RTD (FET
Open) Project under Contract No IST-2001-39250 (MOVIE
- Motion Planning in Virtual Environments).

REFERENCES

[1] S. Akella, J. Peng; Time-Scaled Coordination of Multiple Manipu-
lators. IEEE Int. Conf. on Robotics and Automation, pp. 3337-3344,
2004.

[2] M. Bennewitz, W. Burgard, S. Thrun; Finding and Optimizing Solv-
able Priority Schemes for Decoupled Path Planning Techniques for
Teams of Mobile Robots. Robotics and Autonomous Systems 41(2),
pp. 89-99, 2002.

[3] J. P. van den Berg, M. H. Overmars; Roadmap-based Motion Planning
in Dynamic Environments. Proc. IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, pp. 1598-1605, 2004.

[4] G. van den Bergen; Collision Detection in Interactive 3D Environ-
ments. Morgan Kaufmann Publishers, San Francisco, 2004.

[5] C. M. Clark, T. Bretl, S. Rock; Applying Kinodynamic Randomized
Motion Planning with a Dynamic Priority System to Multi-Robot
Space Systems, Proc. IEEE Aerospace Conference, pp. 3621-3631,
2002.

[6] M. Erdmann, T. Lozano-Pérez; On Multiple Moving Objects. Algo-
rithmica 2(4), pp. 477-521, 1987.

[7] Th. Fraichard; Trajectory Planning in a Dynamic Workspace: a ‘State-
Time’ Approach. Advanced Robotics, 13(1):75-94, 1999.

[8] R. Ghrist, J. M. O’Kane, S. M. LaValle; Pareto optimal coordination
on roadmaps. Proc. Int. Workshop on the Algorithmic Foundations of
Robotics, 2004.

[9] D. Hsu, R. Kindel, J.-C. Latombe, S. Rock; Randomized Kino-
dynamic Motion Planning with Moving Obstacles. Int. J. Robotics
Research, 21(3):233-255, 2002.

[10] L. Kavraki, P. Švestka, J.-C. Latombe, M. H. Overmars; Probabilistic
Roadmaps for Path Planning in High-Dimensional Configuration
Spaces. IEEE Trans. on Robotics and Automation 12(4), pp. 566-
580, 1996.

[11] J.-C. Latombe; Robot motion planning. Kluwer Academic Publish-
ers, Boston, 1991.

[12] S. M. LaValle, S. A. Hutchinson; Optimal Motion Planning for
Multiple Robots Having Independent Goals. IEEE Trans. on Robotics
and Automation 14(6), pp. 912-925, 1998.

[13] D. Nieuwenhuisen, M. H. Overmars; Useful Cycles in Probabilistic
Roadmap Graphs. Proc. IEEE Int. Conf. on Robotics and Automation,
pp. 446-452, 2004.

[14] J. Peng, S. Akella; Coordinating the Motions of Multiple Robots
with Kinodynamic Constraints. IEEE Int. Conf. on Robotics and
Automation, pp. 4066-4073, 2003.

[15] G. Sánchez, J.-C. Latombe; Using a PRM Planner to Compare
Centralized and Decoupled Planning for Multi-Robot Systems. Proc.
IEEE Int. Conf. on Robotics and Automation, pp. 2112-2119, 2002.

[16] J. T. Schwartz, M. Sharir; On the piano movers’ problem III:
Coordinating the motion of several independent bodies: The special
case of circular bodies moving amidst polygonal obstacles. Int.
Journal of Robotics Research 2(3), pp. 46-75, 1983.

[17] T. Siméon, S. Leroy, J.-P. Laumond; Path Coordination for Multiple
Mobile Robots: a resolution complete algorithm. IEEE Trans. on
Robotics and Automation 18(1), pp. 42-49, 2002.

[18] P. Švestka, M. H. Overmars; Coordinated path planning for multiple
robots. Robotics and Autonomous Systems 23(3), pp. 125-152, 1998.

