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Abstract

We study allocation of COVID-19 vaccines to individuals based on the structural proper-
ties of their underlying social contact network. Even optimistic estimates suggest that most
countries will likely take 6 to 24 months to vaccinate their citizens. These time estimates and
the emergence of new viral strains urge us to find quick and effective ways to allocate the vac-
cines and contain the pandemic. While current approaches use combinations of age-based and
occupation-based prioritizations, our strategy marks a departure from such largely aggregate
vaccine allocation strategies. We propose a novel agent-based modeling approach motivated
by recent advances in (i) science of real-world networks that point to efficacy of certain vac-
cination strategies and (ii) digital technologies that improve our ability to estimate some of
these structural properties. Using a realistic representation of a social contact network for the
Commonwealth of Virginia, combined with accurate surveillance data on spatio-temporal cases
and currently accepted models of within- and between-host disease dynamics, we study how a
limited number of vaccine doses can be strategically distributed to individuals to reduce the
overall burden of the pandemic. We show that allocation of vaccines based on individuals’ de-
gree (number of social contacts) and total social proximity time is significantly more effective
than the currently used age-based allocation strategy in terms of number of infections, hospital-
izations and deaths. Our results suggest that in just two months, by March 31, 2021, compared
to age-based allocation, the proposed degree-based strategy can result in reducing an additional
56–110k infections, 3.2–5.4k hospitalizations, and 700–900 deaths just in the Commonwealth of
Virginia. Extrapolating these results for the entire US, this strategy can lead to 3–6 million fewer
infections, 181–306k fewer hospitalizations, and 51–62k fewer deaths compared to age-based allo-
cation. The overall strategy is robust even: (i) if the social contacts are not estimated correctly;
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(ii) if the vaccine efficacy is lower than expected or only a single dose is given; (iii) if there
is a delay in vaccine production and deployment; and (iv) whether or not non-pharmaceutical
interventions continue as vaccines are deployed. For reasons of implementability, we have used
degree, which is a simple structural measure and can be easily estimated using several meth-
ods, including the digital technology available today. These results are significant, especially
for resource-poor countries, where vaccines are less available, have lower efficacy, and are more
slowly distributed.

1 Introduction

New vaccines typically take a decade to develop and distribute, but vaccines for COVID-19, the
disease caused by the novel coronavirus SARS-CoV-2, have been developed in record time to help
mitigate the raging pandemic. As of February 13, 2021, the reported number of confirmed cases
and deaths in the US stand at 27M and 467K; the reported number of confirmed cases and deaths
worldwide stand at 103M and 2.3M respectively.1. These numbers are likely to go up substantially
in the coming months. Vaccines offer a safe and effective way to contain the pandemic quickly.
However, the supply of COVID-19 vaccines is limited, so the challenge now is the distribution of
these vaccines in a timely manner to bring the pandemic under control. If we have a sufficient
number of vaccines to immunize 70-90% of the people in the United States (US), protection can
be offered to both individuals who are immunized and those who are unimmunized through herd
immunity.

In the next 3 months, the US is expected to have a total of only 100 million vaccines, which
is sufficient to immunize only 30% of the population (15% if we account for two doses) and thus
cannot provide herd immunity. Lacking that, the current focus of the vaccination is to protect
individuals who are at a high risk of infection and mortality, as well as critical workers.

Vaccination priority is complex and intertwined with age, race, occupation, health equity, ge-
ography, and politics. Data shows that COVID-19 disproportionately affects older adults, Blacks,
Hispanics, American Indians, gig and wage workers, and individuals with comorbidities. Many of
these attributes are also correlated with low socio-economic status (SES), and high social vulner-
ability. There can be many criteria for prioritization, for example: (i) risk of infection; (ii) risk
of death; (iii) risk of transmission if infected; and (iv) occupation, such as healthcare workers,
teachers, cashiers, etc. Estimating the consequences of different prioritization strategies is fur-
ther complicated by production limitations, requiring a vaccine schedule to be specified for each.
Additionally, vaccine distribution requires complex logistical support, such as cold-chain storage,
transportation, qualified personnel, and scheduling etc. for any prioritization scheme to achieve its
results in an effective and equitable manner. See [4] for a comprehensive discussion on this topic.

The US Centers for Disease Control and Prevention (CDC) has announced a prioritization order
based on the Advisory Committee on Immunization Practices (ACIP). It recommends healthcare
personnel and long-term facility care residents be vaccinated first; followed by frontline essential
workers, and those aged 75 years and older because they are at a higher risk of hospitalization,
illness and death; followed by those aged 65-74 years; followed by those aged 16-64 years with
underlying medical conditions and other essential workers. Although most states in the US follow
a similar phased approach, there are subtle, but important, variations on who gets vaccinated first.

Our contributions. The current rate of vaccination in the US and other countries suggests

1See https://nssac.bii.virginia.edu/covid-19/dashboard/ for latest figures
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that it can take between 6-24 months to complete vaccination campaigns for much of the world.
At the same time, the discovery of multiple variant strains implies a rapid acceleration of the
pandemic in several parts of the world. The number of new strains are likely to increase with
increased prevalence. Thus a natural question to study is the following: can we prioritize vaccine
distribution so as to significantly reduce the overall burden of COVID-19 quickly?

We propose prioritization schemes based on properties of individuals within social contact net-
works with the goal of bending the pandemic curve and improving overall pandemic outcome. We
synthesize a digital twin of Virginia, which is a detailed social contact network model for the Com-
monwealth of Virginia (8 million individuals), and use an agent-based model (ABM) to study the
effectiveness of various prioritization schemes. In contrast to other such networks, our networks
incorporate detailed information about the population, their activities and the built infrastructure.
Further information on how such a digital twin is constructed and its structural properties can be
found in Section A.1. The ABM simulates disease propagation and a complex set of interventions,
including various non-pharmaceutical interventions and vaccine allocation schemes.

Our prioritization schemes based on simple, individual-based yet computable, structural prop-
erties of the underlying social contact network are motivated by: (i) recent advances in network
science that have studied such schemes in more abstract settings; (ii) our ability to construct de-
tailed, realistic social contact networks at scale; (iii) our ability to simulate and assess such strate-
gies even for complex disease transmission models and public health control measures; and (iv)
recent progress in development of digital apps that can be used for measuring structural properties
in large populations relatively accurately, rendering such schemes potentially operationalizable.

Our prioritization schemes can be stated simply as follows: vaccinate individuals who typically
exhibit high social contact (degree or total contact time in the social contact network). Some key
points to note: (i) we focus on simple network structural properties that can be estimated in a
privacy-preserving way, (ii) we do not insist on strict ordering of individuals nor an exact estimation
of their social contacts, and (iii) while our analysis uses a realistic representation of the social
contact networks, implementation of the policy does not require one to synthesize the social network.

There is folklore that degree based heuristics to allocate vaccines often work well. The folklore
is based on mathematical results for highly structured random networks or on computational ex-
periments based on relatively simple class of social contact networks [10,21,46,56]. But the folklore
has never been tested in time-varying realistic social contact networks such as the one constructed
here and intended to capture the network evolution due to adaptive NPIs and vaccine allocation
that is undertaken in a time varying manner. Our results show for the first time that degree based
heuristics are likely to work even for such time-varying social contact networks; see Sections H and
E for further discussions on this topic.

Our results suggest that in just two months (i.e. by the end of March 2021), compared to
age-based allocation, the proposed degree-based strategy can result in averting an additional 56–
110k infections (8–16%), 3.2–5.4k hospitalizations (8–13%), and 700–900 deaths (6–8%) just in the
state of Virginia. Extrapolating these results per capita for the entire US, we estimate this strategy
will lead to 3–6 million fewer infections, 181–306k fewer hospitalizations, and 51–62k fewer deaths
compared to the age-based allocation. The results continue to hold qualitatively and show that we
can avert many more infections, hospitalizations, and deaths even if the current social distancing
measures are relaxed. Furthermore, similar results hold even for vaccines with 50% efficacy; this
is important, as most resource-poor countries do not have access to high efficacy vaccines at this
point in time. The basic intuition behind our results is that vaccinating individuals with high
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degree not only protects them but also confers significant protection to individuals who come in
close proximity in their contact network.

A natural question is: how can such individuals be identified? This might be done by objectively
determining who they are and seeking them out. Alternatively, at a time of interview, a person
could be designated as “high degree” through identifying data or proxy characteristics to necessary
statistical precision that show the individual belongs to such a critical group identified by the model.
We discuss how currently deployed digital contact tracing apps can be modified in a very simple
manner to achieve the goal of identifying high degree individuals (Section E). Such individuals
can also be identified by observing that certain occupations naturally lead to a high level of social
interactions. Our methods are robust to partial mis-estimation of these social contacts and their
implementation does not require access to the social contact network.

2 Experiment Settings and Design

For the experiments, we use an agent-based simulation model, EpiHiper, which is described in
Appendix F and has been used in previous studies [18]. The simulation’s input parameters specify
the population demographics and contact network, COVID-19 disease model, initial configuration
S0, non-pharmaceutical interventions (NPIs), and vaccination schedule. The simulation output is
a dendrogram: a directed graph that tells us who infects whom and on what day. From the output
data, we can compute many epidemiological measures such as daily new infections, cumulative
infections, prevalence in each age group, total hospitalizations, and deaths, as well as many other
measures.

2.1 Simulation parameterization

These studies use a synthetic population and contact network for Virginia, which is described in
Appendix A.1. The initial conditions are calibrated to the conditions in Virginia as of January
1, 2021. Every simulation is run for 90 days, until March 31, 2021. Since the simulations are
stochastic, each simulation is repeated for 30 replicates, and distributions of the measures are
computed. The boxplots and curves in figures presented in Section 3 (Figure 1 through 11) are all
based on data from 30 replicates. The curves show an uncertainty of one standard deviation above
and below the mean.

Disease model. The disease model is the best guess version of “COVID-19 Pandemic Planning
Scenarios” prepared by the US Centers for Disease Control and Prevention (CDC) SARS-CoV-2
Modeling Team [16] and has been used by multiple researchers in their papers. It is an SEIR
model where state transitions follow the parameters as defined in the document. The disease states
and transition paths are shown in Figure 24. Individuals of different age groups have different
infectivity and susceptibility; dwell time distributions and state transition probability distributions
are stratified by the following age groups: preschool (0-4 years), students (5-17), adults (18-49),
older adults (50-64) and seniors (65+). Furthermore, individuals that are vaccinated have differ-
ent disease parameter values than those that are not vaccinated. Detailed parameterization for
unvaccinated individuals is summarized in Appendix G.

Initializations. The simulations are initialized at the county level by age group using the detailed
data of confirmed cases from [60]. The initialization specifies the health state of each individual.
Based on county-level cumulative confirmed cases through December 19, 2020, we derive the number
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of prior infections in each county by scaling the cumulative number by a case ascertainment ratio of
3 (i.e., only one third of all infections are reported), then computing the number of prior infections in
each age group of this county using the age distribution in cases. We randomly choose individuals
in each age group in each county and set their health states to recovered to reflect that they
have already been infected. Based on county-level daily confirmed cases from December 20, 2020
to January 5, 2021, we derive the number of individuals that are infected each day by the same
scaling, and seed the simulation by setting randomly chosen individuals to exposed by day in each
age group of each county.

Non-pharmaceutical interventions. We consider four NPIs: (i) Infectivity reduction (IR). In-
fectivity is universally reduced (by 60%) through preventive behavior, e.g., mask wearing and hand
washing. (ii) Generic social distancing (GSD). A fraction (25%) of the population chooses to re-
duce non-essential (shopping, religion, and other) activities. (iii) Virtual learning (VL). A fraction
(50%) of K-12 students choose virtual learning. (iv) Voluntary home isolation of symptomatic cases
(VHI). With probability 75%, a symptomatic person chooses to stay home for 14 days, reducing
the weights on household contacts by 50%. For this person, all outside contacts are disabled and
at-home contacts are reduced by 50% temporarily during these 14 days.

Scenarios based on relaxing social distancing measures. We assume that these NPIs are
in place when a simulation starts, but adherence may change during the simulation. We consider
three scenarios for adherence to the NPIs:

• As-is. NPI parameters remain the same for the duration of the simulation.

• Slow relaxation. NPI parameters change every 30 days from January 30, 2021, so that in 7
months, infectivity reduction decreases from 60% to 10%, generic social distancing decreases
from 25% to 10%, and virtual learning decreases from 50% to 25%. Note that this is used
to specify the speed of relaxation. Nevertheless the results are only reported for the period
until end of March.

• Fast relaxation. NPI parameters change every 30 days from January 30, 2021, so that in 5
months, they reach the same levels as in the slow relaxation scenario.

2.2 Vaccination: supply, schedule and priority groups

Vaccine schedule. As of this writing, we expect 400 million doses to be delivered by Pfizer-
BioNTech and Moderna to the US by the end of July 2021, enough to vaccinate 200 million people.
By assuming that 25 million people can be vaccinated per month, starting from late December
2020 until late July 2021, and that vaccines are allocated to all states proportional to population
size, we consider a vaccination schedule as shown in Table 1, where 650K people are vaccinated
per month in Virginia, and a schedule where they are vaccinated at half this rate. Therefore
we consider three vaccination schedules: none (no vaccination), fast (vaccinating 650K people
per month), and slow (vaccinating 325K people per month). The later schedule is intended to
capture the current challenges faced in distributing the vaccines to individuals. For simplicity, all
individuals vaccinated during each month are assumed to be vaccinated on the first day of that
month; spreading the vaccines over the month does not change the overall results by much.

Vaccine efficacy. Overall vaccine efficacy is characterized by three numbers: (i) eI , efficacy against
infection; (ii) eD, efficacy against severe illness (requiring hospitalization or leading to death) given
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Table 1: Cumulative number of individuals vaccinated in each month of 2021. Note that in our experiment,
where simulations run until the end of March, we consider vaccinations up to March only.

vaccination up to US (million) Virginia (thousand)

Jan 25 650
Feb 50 1300
Mar 75 1950
Apr 100 2600
May 125 3250
Jun 150 3900
Jul 175 4550
Aug 200 5200

infection; and (iii) eT , efficacy against onward transmission given infection. We assume that
eI = 90% and eD = 50% starting only 21 days after vaccination. In our sensitivity analyses, we
also consider eI = 50%. In all cases, we ignore eT .

Vaccination prioritization. The Pfizer-BioNTech vaccine and the Moderna vaccine are recom-
mended for people aged at least 16 years and at least 18 years, respectively. In the experiments,
we only allocate vaccines to people who are at least 18 years old. Among those people, we consider
the following prioritization strategies.

• No priority. Everyone 18+ years old is vaccinated with the same probability. This is our
baseline strategy.

• Essential workers. This strategy targets those who work for medical, care facilitation, retail,
education, military, and government.

• Older people. This strategy prioritizes those who are at least 50 years old.

• High degree. Degree of an individual is the number of contacts per day. This strategy targets
those in the top quartile among all 18+ years old in terms of degree.

• Long total contact (also denoted as weighted degree). Weighted degree of an individual is the
total contact time this individual has with other people in a day. This strategy targets those
in the top quartile among all 18+ years old in terms of weighted degree.

Most vaccines are allocated to the targeted groups, but we allow some to be given to other
groups. This accounts for potential inaccuracy and precision in identifying and locating the targeted
people. For example, since we do not know people’s daily number of contacts, which may vary, we
can only estimate it using proxy attributes, such as age, household size and occupation, or from
data collected through digital devices. We consider the following rates of enforcement: 100%, 80%,
and 60%.

2.3 Experimental design

The design consists of 4 factors: (i) 3 adherence scenarios (as-is, slow relaxation, fast relaxation);
(ii) 3 vaccination schedules (none, fast, slow); (iii) 5 prioritization targets (no priority, essential
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(a) New infections (b) Cumulative infections

Figure 1: Incidence without vaccination under different NPI relaxation scenarios: (a) daily number of new
infections; (b) cumulative number of infections. The sudden surge in new infections in the beginning of each
month is caused by NPI relaxation. Without NPI relaxation, the incidence reaches peak in early February
then starts decreasing. With slow relaxation, daily incidence increases then fluctuates. With fast relaxation,
the incidence keeps rising.

workers, older people, high degree, high weighted degree); and (iv) 3 levels of priority enforcement
(100%, 80%, 60%). Combining (iii) and (iv) we have the baseline (no-priority) plus 12 prioritized
strategies named according to the target group (essential, old-age, high degree, high weighted
degree) and the fraction of vaccine given to the target group (100%, 80%, 60%), e.g., “essential
100%” or “high degree 60%”. We also consider vaccines with a 50% efficacy against infection
(eI) and compare the effectiveness of degree-based vaccinations under this assumption against that
under 90% efficacy.

3 Results and Analysis

In Figure 1, we show daily new infections under three scenarios (as-is, slow relaxation and fast

relaxation) without vaccination. If NPI adherence can be maintained, then we expect infections to
decrease after January. With slow relaxation, the infections will fluctuate around a level that will
be a little higher than the current level. With fast relaxation, the infections show a steady increase
in the next three months. The sharp increase every 30 days is caused by the implementation of the
relaxation of NPIs and does not have any influence on the results presented.

3.1 Effectiveness of degree- and weighted degree-based strategies

Prioritizing vaccinations based on individual degree and weighted degree are extremely effective in
controlling the pandemic. In particular, depending on the scenario, the reductions in the number
of infections and hospitalizations by these schemes are over 50% more than the reductions from
the age-based prioritization schemes. For example, assuming that the current non-pharmaceutical
interventions remain at the same level over the next few months, our experiment shows that by
the end of March 2021, degree-based schemes can result in 56–110k fewer infections, 3.2–5.4k fewer
hospitalizations, and 700–900 fewer deaths in the state of Virginia, compared to age-based schemes.
Note that the ranges come from different levels of priority enforcement (three levels for both age-
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based and degree-based schemes). Figure 2 shows the estimated reductions by one of the age-based
schemes and the further reductions by one of the degree-based schemes. Extrapolating these results
for the entire US, we estimate that degree-based schemes will lead to 3–6 million fewer infections,
181–306k fewer hospitalizations, and 51–62k fewer deaths by the end of March, compared to age-
based schemes. If the NPIs are relaxed, the reductions in infections, hospitalizations, and mortality
are even more substantial. This implies that when conditions worsen, the marginal gains from a
more effective strategy are even higher.

(a) Infections (b) Hospitalizations (c) Mortality

Figure 2: Vaccination targeting old people can reduce (a) total infections, (b) total hospitalizations, and (c)
total mortality significantly, assuming current non-pharmaceutical interventions remain at the same level.
Vaccination targeting high degree people can further reduce total infections, hospitalizations, and mortality.
Numbers in the plots show total reductions up to the end of March 2021. Note that the “no vaccination”
curves in (a) is the same as the “as-is” curve in Figure 1b.

Figure 3 compares incidence reduction up to March 31, 2021, under different prioritization
strategies for the vaccine distribution schedule given in Table 1, also known as the fast schedule.
We find that all strategies targeting either essential workers or high degree people outperform the
no-priority distribution. The degree-based strategies reduce incidence more than any other strategy.
For example, with no NPI relaxation (as-is), all degree-based strategies can reduce infections by
over 20% while all other strategies can reduce infections by at most 20%. Strategies targeting older
people perform worse than the no-priority distribution in terms of reducing incidence. Similar
results are obtained for the slow vaccine distribution schedule, as shown in Figure 4. One reason
to consider weighted degree-based heuristics is that they are potentially easier to implement in the
current digital apps, we will discuss this further in later sections. All degree-based strategies

outperform the other strategies.

Targeting high degree people is also the most effective strategy for reducing mortality. Prior-
itization of older people is effective in reducing mortality compared to other strategies, but not
when compared to a high degree strategy. This is shown in Figures 5 and 6. Figure 7 shows
that prioritizing people with high weighted degree (total contact durations) is even more effective
than prioritizing those with high degree. For example, Figure 7a shows that, with no relaxation of
NPIs, targeting people of high weighted degree can reduce infections by about 23-30%, compared
to targeting high degree people, which can reduce infections by about 21-26%. In the case where
NPIs are relaxed, the strategy prioritizing high weighted degree can cause over 40% reduction in
infections if it can be implemented with high precision.
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Figure 3: Total reduction in incidence under the
fast vaccine distribution schedule. Degree-based
strategies outperforms all other ones, while age-
based strategies are outperformed by all other
ones.

Figure 4: Total reduction in incidence under the
slow vaccine distribution schedule. Degree-based
strategies still reduce more infections than other
strategies and are more effective if accuracy is
higher.

Figure 5: Total reduction in mortality under
the fast vaccine distribution schedule. While
degree-based strategies continue to perform bet-
ter than other ones in reducing mortality, age-
based strategies seem to be more effective than
the baseline.

Figure 6: Total reduction in mortality under
the slow vaccine distribution schedule. Observa-
tions in the fast vaccine distribution case remain
true, except that the reductions now have smaller
sizes.
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(a) Fast vaccine distribution schedule. (b) Slow vaccine distribution schedule.

Figure 7: Comparison of degree and weighted degree-based strategies under (a) the fast vaccine distribution
schedule; (b) the slow vaccine distribution schedule. Both can reduce infections much more than the baseline
strategy. The weighted degree-based strategy outperforms the degree-based one at any prioritization level.

3.2 The high degree prioritization schemes are effective even when we cannot

accurately estimate the degree of a node

Our results show that prioritization schemes based on degree and weighted degree (total contact
time) work even when they are not accurately estimated. Specifically, even when we can only
estimate the degree for 60% of the nodes (as being in the first quartile or not), we notice significant
improvement in the overall control of the pandemic. This is highlighted in Figure 8, where we com-
pare degree-based schemes of various accuracies with the age-based scheme and show improvement
even at lower levels of accuracy. For example, consider infection reduction in Figure 8a: targeting
high degree people with only 60% accuracy improves the reduction from 10% by the age-based
strategy to 20% (with no relaxation), from 15% to 30% (with slow relaxation), or from 17.5% to
33% (with fast relaxation). Consider mortality reduction in Figure 8b: degree-based strategy with
60% accuracy improves the reduction from 17.5% to 20% (with no relaxation), from 23% to 27.5%
(with slow relaxation), or from 26% to 32% (with fast relaxation). In fact, these strategies require
neither knowledge of the exact degree of each person, nor that of the complete ranking of people
by degree. They only depend on knowing which nodes have high degrees (are in the top quartile);
they are tolerant to a certain amount of inaccuracy.

3.3 Effectiveness when social distancing measures are relaxed

The effectiveness of degree-based strategies holds in three hypothetical scenarios for social distanc-
ing: one in which there is no relaxation, and the other two wherein social distancing is progressively
relaxed 5 or 7 months from now. Our results show that the value of these prioritization schemes is
even higher when social distancing measures are relaxed quickly. Recall in Figure 2 we observe that,
with no relaxation, the degree-based strategy results in another reduction of 85K infections and an
additional reduction of 900 mortality, compared to the age-based strategy. In Figure 9, we find that
with relaxation of NPIs, the degree-based strategy can reduce even more infections (152K with slow
relaxation and 192K with fast relaxation) and more mortality (1.3K with slow relaxation and 1.5K
with fast relaxation). These observations highlight the importance of vaccination prioritization if
the current NPIs are relaxed, which will likely happen as vaccines get distributed.
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(a) (b)

Figure 8: Even with lower (80% or 60%) accuracy in identifying and vaccinating high degree people, this
strategy is still much more effective than the age-based strategy in (a) reducing infections, as well as (b)
reducing mortality.

(a) Reduction in infections with slow relax-
ation of NPIs

(b) Reduction in mortality with slow relax-
ation of NPIs

(c) Reduction in infections with fast relax-
ation of NPIs

(d) Reduction in mortality with fast relax-
ation of NPIs

Figure 9: Reductions in infections and mortality from degree-based allocation strategies are even larger when
NPIs are relaxed when compared to the age-based schemes. This figure shows reductions in (a) infections
and (b) mortality with slow relaxation of NPIs; and reductions in (c) infections and (d) mortality with fast
relaxation of NPIs.
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(a) (b)

Figure 10: Comparison of effectiveness of degree-based strategies when vaccine efficacy is high (90%) and
when it is low (50%), assuming (a) a fast distribution of vaccine schedule, or (b) a slow distribution of vaccine
schedule. In both cases the effectiveness of vaccination becomes smaller with a lower vaccine efficacy, but
the degree-based vaccination can still reduce infections significantly.

3.4 Effectiveness with low efficacy vaccines

We have assumed that vaccines have 90% efficacy regarding protection against infection (eI). Our
results also hold when the vaccine efficacy is lower than that of the current Pfizer and Moderna
vaccines. We study this for two reasons: (i) there is an ongoing discussion about giving just one
dose of these vaccines which may result in lower efficacy (about 50%) or approving a low efficacy
vaccine2, and (ii) most other vaccines under development are traditional vaccines and may also
have a lower efficacy.

To this end we study the degree-based strategies assuming 50% vaccine efficacy. In Figure 10, we
show that while the reduction in infections decreases with low efficacy vaccines, it is still significant.
For example, under no NPI relaxation and with the fast vaccine distribution schedule, a degree-
based strategy with 60% accuracy can reduce infections by about 12.5% with eI = 50%, compared
to 20% with eI = 90%. Under slow relaxation and with the slow vaccine distribution schedule, the
reduction in infections is about 10% with eI = 50%, compared to 18% with eI = 90%. In Figure 11,
we use epidemic curves to show reductions from the no vaccination scenario by vaccinating high
degree people with 80% accuracy (high degree 80% in Figure 10) with both high vaccine efficacy
and low efficacy, assuming slow relaxation of NPIs. We find that even with 50% efficacy, the degree-
based strategy can reduce infections by 202K, hospitalizations by 13.7K, and mortality by 3.4K,
by the end of March 2021, just in Virginia.

4 Discussion

These results are obtained using a realistic, data-driven and highly resolved agent-based model
and individual-based social contact network of the Commonwealth of Virginia. The agent-based
model represents individual-level activities that are spatially explicit. The model represents the
Commonwealth-built infrastructure in great detail and uses this to develop a realistic social contact

2https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-takes-action-help-
facilitate-timely-development-safe-effective-covid
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(a) Infections (b) Hospitalizations (c) Mortality

Figure 11: Even with a lower vaccine efficacy, a degree-based scheme can already significantly reduce (a)
total infections, (b) total hospitalizations, and (c) total mortality. Numbers in the plots show total reductions
up to the end of March 2021.

network. This allows us to: (i) capture details of within-host disease progression, as well as
between-host transmission, including the impact of vaccines, (ii) model the complicated set of
interventions that are currently in play, (iii) represent network-based vaccine prioritization schemes,
(iv) represent the expected vaccine deployment schedule, including the expected mix of vaccine
efficacy against infection, severe illness, and onward transmission estimates, (v) incorporate current
surveillance data, and (vi) study counter-factual and hypothetical scenarios, such as a steady
relaxation of social distancing measures. This is the first study we know of that accounts for all of
these components, not just for COVID-19, but for any infectious disease outbreak.

The efficacy of the proposed policy is based on two important assumptions: (i) the synthetic
contact network is a realistic representative of the real-world social contact world, and (ii) NPI-
induced contact ‘thinning’ is applied homogeneously across the population. While the structural
metrics may vary over time, we show the results are fairly robust to mis-identification of high degree
individuals. We believe both these assumptions hold and discuss this in more detail below. Further
discussion on this topic can be found in the Appendix, where we describe how our networks are
synthesized, their structural properties, and the way the pandemic is simulated.

The potential efficacy of degree-based heuristics has been discussed in several earlier papers—
this includes both provable analyses on different random graph models (under mean field as-
sumptions in some cases), e.g., [3, 10, 51], and empirical analysis in various real world networks,
e.g., [3, 22, 73]; a notion of weighted degree is also considered in [22]. However, it is important to
note that these results are not directly applicable in our context for the following reasons: (i) many
of the theoretical results show the efficacy of these methods for simple power law-type models –
the networks we generate are similar to power law networks, but with a very different exponent;
additionally the network exhibits other features of social networks (local clustering, low diameter,
and relatively high expansion) and (ii) many of the results are shown when vaccines are applied
at the start of the epidemic process, and the results do not say anything of what happens when
the vaccine is applied temporally – this is important, because the temporal epidemic process in-
fects individuals, thereby changing the network structure substantially, including the application
of NPIs.

Nevertheless, the intuition behind the efficacy of such methods is simply stated as follows:
vaccinating high degree nodes not only protects them, but also confers a higher level of indirect
protection on their neighbors as they interact with many individuals who might themselves be
conferred similar protection. Our data-driven approach shows, in fact, that real-world social net-
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works have sufficient nodes of high degree to ensure that such heuristics are effective. Note that,
by virtue of degree bias in social networks, even traditional approaches such as contact tracing will
lead us to high degree individuals. The proposed approach makes identifying these individuals as
a proactive, rather than reactive, step in infection control. It is important to note, however, that
just the presence of high degree nodes does not guarantee that degree-based heuristics would work.
See Section E for further discussion.

As discussed earlier, identification of nodes with high degrees can be done in multiple ways,
including using digital apps that have been deployed for contact tracing, interviewing individuals,
and identifying typical job categories or other demographic attributes that entail higher social
interactions. Further, even when other prioritization schemes are considered, one can use high
social contact to further prioritize the distribution. For example, when distributing vaccines based
on age, one can further subselect individuals with higher social contact in the case of limited supply.

Our results suggest that degree-based prioritization should be considered by larger and resource-
poor countries to quickly bend the epidemic curve and reopen the economy. The benefits of the
proposed degree-based prioritization are so significant that even a partially successful campaign
will likely have a large impact.

5 Conclusions and Limitations

We present an analysis of various vaccine prioritization strategies based on demographic attributes,
occupation, and structural attributes of social contact networks. Our results show that vaccine
prioritization schemes based on network degrees and total contact time can provide significant
reductions in incidence, mortality, and hospitalizations. The results hold even for low efficacy
vaccines and even when degrees and contact networks are estimated only approximately. Network-
based prioritization is often more than twice as effective as other strategies. The results suggest that
such methods should be considered when vaccines are available in limited supply; the benefits are
likely to be greater in resource-poor and highly populated regions of the world. While individualized
policies aimed at minimizing mortality do exist (e.g., comorbidities) and are part of the phased
approach, lack of technology thus far had made it difficult to ‘individualize’ policies targeted on
minimizing transmission. The advantage of our approach is in leveraging the mechanistic and
network-based understanding of disease spread, and creating priority categories that cut across
age, risk, and other demographic characteristics.

The study has a number of limitations, stated below. First, our network has been developed
with a large number of data sources, and a number of assumptions have been made in constructing
the networks, including travel patterns, distance traveled, etc. These modeling assumptions might
affect the efficacy of the network-based strategies. To mitigate this, we have carried out extensive
validation and assessed the impact of the uncertainty in some of the modeling parameters on the
network structure. Our results indicate that the network structure is fairly robust. Second, the
nodes initially infected were based on spatio-temporal and age distributions in publicly available
data, but not on any network properties. If the majority of high degree nodes have already been
infected and recovered, the effectiveness of targeting them for vaccination would be reduced. How-
ever, since the current vaccination policies are not based on serostatus, preferentially vaccinating
higher degree individuals will still be beneficial. Furthermore, even afetr accounting for testing
rates, a number of resource poor countries with large populations have so far had a relatively small
outbreak. This means without vaccinations, these countries are likely to see a surge when normal
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worldwide travel and economic activity is resumed. The strategy is also potentially advantageous in
the presence of novel variants, which may escape natural immunity. See [4,55] for further discussion
on this issue. In particular in [55], the authors point out that high degree nodes could have been
infected early on in the pandemic but can pose challenges if they re-enter the pool due to waning
immunity or lower immunity to new strains. This makes identifying and vaccinating high degree
nodes important, even if they have been infected earlier.

Third, our base scenario has made assumptions regarding the background interventions in place.
These are best estimates. Fourth, assuming that a vaccinated node gets infected, we assume that
they can transmit like any other node (of course, they have a very small chance of being infected).
Fifth, our results depend on estimating the degrees and weighted degrees of nodes. While we have
shown that the results are robust to mis-estimation, the overall efficacy of the scheme does depend
on the ability to infer these degrees.

Increasing compliance among some high degree individuals may be difficult; nevertheless, the
results under such conditions will be more similar to one where the vaccine has lower efficacy
and/or under degree mis-estimation. Further, when such high degree individuals are identified
and vaccinated, they may themselves turn into influencers in their local community, much like
the phenomenon observed on online social networks. This is a topic for immediately subsequent
work. Ultimately, we believe that one can develop more comprehensive prioritization strategies
that combine proposed metrics with serostatus, hesitancy surveys, and other static demographic
variables to optimally reduce disease incidence and mortality.
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[28] M. Génois and A. Barrat. Can co-location be used as a proxy for face-to-face contacts? EPJ
Data Science, 7(1):11, 2018.

17

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 16, 2021. ; https://doi.org/10.1101/2021.02.04.21251012doi: medRxiv preprint 

https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios-h.pdf
https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios-h.pdf
https://doi.org/10.1101/2021.02.04.21251012


[29] T. Germann, K. Kadau, I. Longini Jr, and C. Macken. Mitigation strategies for pandemic
influenza in the united states. Proceedings of the National Academy of Sciences, 103(15):5935–
5940, 2006.

[30] D. Gillespie. A general method for numerically simulating the stochastic time evolution of
coupled chemical reactions. J. Comp. Phys., 22:403–434, 1976.

[31] M. E. Halloran, N. M. Ferguson, S. Eubank, I. M. Longini, D. A. T. Cummings, B. Lewis, S. Xu,
C. Fraser, A. Vullikanti, T. C. Germann, D. Wagener, R. Beckman, K. Kadau, C. Barrett,
C. A. Macken, D. S. Burke, and P. Cooley. Modeling targeted layered containment of an
influenza pandemic in the United States. In Proceedings of the National Academy of Sciences
(PNAS), pages 4639–4644, March 10 2008.

[32] A. Hayrapetyan, D. Kempe, M. Pál, and Z. Svitkina. Unbalanced graph cuts. In ESA, pages
191–202, 2005.

[33] HERE, 2020. http://www.here.com, Accessed April 2020.

[34] A. Hogan, P. Winskill, O. Watson, P. Walker, C. Whittaker, M. Baguelin, D. Haw, A. Lochen,
K. Gaythorpe, K. Ainslie, et al. Report 33: Modelling the allocation and impact of a covid-19
vaccine. 2020.

[35] M. E. Kretzschmar, G. Rozhnova, M. C. J. Bootsma, M. van Boven, J. H. H. M. van de
Wijgert, and M. J. M. Bonten. Impact of delays on effectiveness of contact tracing strategies
for covid-19: a modelling study. The Lancet Public Health, 5(8):e452 – e459, 2020.

[36] V. S. A. Kumar, R. Rajaraman, Z. Sun, and R. Sundaram. Existence theorems and approxi-
mation algorithms for generalized network security games. In Distributed Computing Systems
(ICDCS), 2010 IEEE 30th International Conference on, pages 348–357. IEEE, 2010.

[37] M. Lipsitch and N. E. Dean. Understanding covid-19 vaccine efficacy. Science, 370(6518):763–
765, 2020.

[38] E. Lofgren, M. E. Halloran, C. M. Rivers, J. M. Drake, T. C. Porco, B. Lewis, W. Yang,
A. Vespignani, J. Shaman, J. N. S. Eisenberg, M. C. Eisenberg, M. Marathe, S. V. Scarpino,
K. A. Alexander, R. Meza, M. J. Ferrari, J. M. Hyman, L. A. Meyers, and S. Eubank. Opinion:
Mathematical models: A key tool for outbreak response. PNAS, pages 18095–18096, 2014.

[39] K. Lum, Y. Chungbaek, S. Eubank, and M. Marathe. A two-stage, fitted values approach to
activity matching. International Journal of Transportation, 4:41–56, 2016.

[40] M. Marathe and A. Vullikanti. Computational epidemiology. Communications of the ACM,
56(7):88–96, 2013.

[41] L. Matrajt, J. Eaton, T. Leung, and E. R. Brown. Vaccine optimization for covid-19: who to
vaccinate first? medRxiv, 2020.

[42] R. M. May and R. M. Anderson. Spatial heterogeneity and the design of immunization pro-
grams. Mathematical Biosciences, 72(1):83–111, 1984.

18

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 16, 2021. ; https://doi.org/10.1101/2021.02.04.21251012doi: medRxiv preprint 

http://www.here.com
https://doi.org/10.1101/2021.02.04.21251012


[43] J. Medlock and A. P. Galvani. Optimizing influenza vaccine distribution. Science,
325(5948):1705–1708, 2009.

[44] Microsoft. U.S. building footprints. https://github.com/Microsoft/

USBuildingFootprints, 2020.

[45] P. V. Mieghem, J. S. Omic, and R. E. Kooij. Virus spread in networks. IEEE/ACM Transaction
on Networking, 2009.

[46] P. V. Mieghem, D. Stevanovic, F. F. Kuipers, C. Li, R. van de Bovenkamp, D. Liu, and
H. Wang. Decreasing the spectral radius of a graph by link removals. IEEE Transactions on
Networking, 2011.

[47] H. S. Mortveit, A. Adiga, C. L. Barrett, J. Chen, Y. Chungbaek, S. Eubank, C. J. Kuhlman,
B. Lewis, S. Swarup, S. Venkatramanan, A. Wilson, D. Xie, and M. V. Marathe. Synthetic
populations and interaction networks for the U.S. Technical report, NSSAC, University of
Virginia, 2020. NSSAC Technical Report: #2019-025.

[48] M. National Academies of Sciences, Engineering et al. Framework for equitable allocation of
covid-19 vaccine. 2020.

[49] T. National Center for Education Statistics (NCES). Last accessed: February 2020.

[50] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A. Vespignani. Epidemic processes
in complex networks. Reviews of modern physics, 87(3):925, 2015.

[51] R. Pastor-Satorras and A. Vespignani. Immunization of complex networks. Physical Review
E, 65(036104), 2002.

[52] B. A. Prakash, D. Chakrabarti, N. C. Valler, M. Faloutsos, and C. Faloutsos. Threshold
conditions for arbitrary cascade models on arbitrary networks. Knowledge and information
systems, 33(3):549–575, 2012.

[53] V. M. Preciado, M. Zargham, C. Enyioha, A. Jadbabaie, and G. J. Pappas. Optimal vac-
cine allocation to control epidemic outbreaks in arbitrary networks. In IEEE Conference on
Decision and Control. IEEE, 2013.

[54] V. M. Preciado, M. Zargham, C. Enyioha, A. Jadbabaie, and G. J. Pappas. Optimal resource
allocation for network protection against spreading processes. IEEE Transactions on Control
of Network Systems, 1(1):99–108, 2014.

[55] C. M. Saad-Roy, C. E. Wagner, R. E. Baker, S. E. Morris, J. Farrar, A. L. Graham, S. A.
Levin, M. J. Mina, C. J. E. Metcalf, and B. T. Grenfell. Immune life history, vaccination, and
the dynamics of sars-cov-2 over the next 5 years. Science, 370(6518):811–818, 2020.

[56] S. Saha, A. Adiga, B. A. Prakash, and A. K. S. Vullikanti. Approximation algorithms for
reducing the spectral radius to control epidemic spread. In Siam Data Mining (SDM), 2015.

[57] S. Saha, A. Adiga, B. A. Prakash, and A. K. S. Vullikanti. Approximation algorithms for
reducing the spectral radius to control epidemic spread. In Proceedings of the 2015 SIAM
International Conference on Data Mining, pages 568–576. SIAM, 2015.

19

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 16, 2021. ; https://doi.org/10.1101/2021.02.04.21251012doi: medRxiv preprint 

https://github.com/Microsoft/USBuildingFootprints
https://github.com/Microsoft/USBuildingFootprints
https://doi.org/10.1101/2021.02.04.21251012


[58] P. Sambaturu, B. Adhikari, B. A. Prakash, S. Venkatramanan, and A. Vullikanti. Designing
effective and practical interventions to contain epidemics. In Proceedings of the 19th Interna-
tional Conference on Autonomous Agents and MultiAgent Systems, pages 1187–1195, 2020.

[59] G. Tennenholtz, C. Caramanis, and S. Mannor. Sequential vaccination for containing epi-
demics. medRxiv, 2020.

[60] The New York Times. Coronavirus (covid-19) data in the United States. https://github.

com/nytimes/covid-19-data, last accessed on January 7, 2021, 2020.

[61] The University of Oxford. The Multinational Time Use Study (MTUS). Last accessed: Febru-
ary 2020.

[62] H. Tong, B. A. Prakash, T. Eliassi-Rad, M. Faloutsos, and C. Faloutsos. Gelling, and melting,
large graphs by edge manipulation. In Proc. of CIKM, 2012.

[63] United States Censuc Bureau. 2011-2015 5-year ACS commuting flows. Last accessed: April
2020.

[64] United States Census Bureau. American Community Survey 2013-2017 5-year estimates. Last
accessed: February 2020.

[65] United States Department of Labor, Bureau of Labor Statistics. The American Time Use
Survey (ATUS). Last accessed: February 2020.

[66] U.S. Department of Transportation, Federal Highway Administration. The National Household
Travel Survey (NHTS). Last accessed: February 2020.
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A Models and Methods

We study vaccine allocation strategies using agent-based simulations, which compute COVID-19
disease spread in a population (e.g. Virginia) through a social contact network. In this section, we
describe a synthetic contact network of Virginia and the agent-based simulation model of COVID-
19. Then we describe vaccine allocations based on different prioritizations, especially strategies
targeting high degree people in the population. The overall framework is described in Figure 13.

A.1 Generating synthetic populations and networks

A synthetic population of a region may be regarded as a digital twin of the real population of
that region. Here we provide a compact summary of the model and the methodology behind
constructing synthetic populations and their contact networks in the case of the US; see [47] for
details. Our work builds on earlier techniques for a first principles approach for constructing
synthetic populations [7, 23, 24]. These populations and networks are central to the EpiHiper
simulation model.

To construct a population for a geographic region R (e.g., Virginia), we first choose a collection
of person attributes from a set D (e.g., age, gender, and employment status) and a set TA of activity
types (e.g., Home, Work, Shopping, Other, and School). The precise choices of D and TA are guided
by the particular scenarios or analyses the population will serve. Described at a high level, we (i)
construct people and places, (ii) assign activity sequences to people, (iii) map each activity for
each person to a location (including the time of the visit), and (iv) from this, we derive a contact
network using co-occupancy to infer edges. The construction is broken down in a sequence of steps
outlined as follows.

Using iterative proportional fitting (IPF) [8, 20] the base population model constructs a set
of individuals P where each person has assigned demographic attributes from D. By design,
this ensures that P matches the actual distributions and Public Use Microdata Sample (PUMS)
data from the US Census [64], which is the input data for the model. Additionally, this model
partitions P into a set H of households, where the notion of household encompasses the traditional
notion of “family”, but also any other subset of individuals residing in the same dwelling unit (e.g.,
dormitories, army barracks, or prisons).

After household assignment, each individual p ∈ P is assigned a week-long activity sequence
α(p) = (ai,p)i where each activity ai,p has a start time, a duration, and an activity type from A. Data
sources used for this step include National Household Travel Survey (NHTS) [66], American Time
Use Survey (ATUS) [65] and Multinational Time Use Study (MTUS) [61]; these sources are fused
to form consistent, week-long activity sequences. We write α : P −→ A for the mapping assigned
to each person. For this construction, we use Fitted Values Matching (FVM) for adults [39], and
Classification And Regression Tree (CART) for children (see, e.g., [11]).

The location model constructs a set of spatially embedded locations L consisting of resi-
dence locations where households live, and activity locations where people conduct their non-Home
activities. This construction is highly granular and is rooted in data such as the MS Building
data [44], HERE/NAVTEQ data [33] for points-of-interest (POIs) and land-use classifications, Na-
tional Center for Education Statistics (NCES) [49] data for public schools, as well as LandScan3,

3https://landscan.ornl.gov/.
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OpenStreetMap4, and Gridded Populations of the World (GPW) v45. A point plot of the locations
of Virginia is shown in Figure 12.

Figure 12: The illustration shows the locations for the synthetic population of Virginia used in this
paper. Each location’s centroid (longitude and latitude) is shown as a point.

For each person p ∈ P , the location assignment model assigns a location ℓ = ℓ(ai) to
each of their activities ai. We denote the sequence of locations visited by p as λp = (λi)p. The
location assignment model uses American Community Survey (ACS) commute flow data [63] to
assign the target county c for Work activities, and a particular location randomly within c work
weights assigned to each location in c. School activity locations are assigned based on NCES data,
with remaining activities anchored near home and work locations.

Finally, the contact network model uses the location assignment to derive the bipartite
people location graph GPL with vertex sets V1 = P and V2 = L and a labeled edge (p, ℓ) whenever p
visits ℓ where the label includes activity type, time for start of visit, and duration of visit. From
this, we derive the list of visitors to each location and the co-location graph Gmax with vertex set P
and edges all e = (p, p′) for people p and p′ that are simultaneously present at the same location.
Merely being present at a location at the same time does not imply a contact, and sub-location
contact modeling is applied at each location to determine which of the edges of Gmax should be
retained to form the contact network G which is also referred to as the person-person contact
network and denoted as by GPP (rather than simply G) to make this explicit. In this work, we
use a random graph model referred to as the Min/Max/alpha model at each location to obtain G.
Let ℓ be a location and let N = Nℓ denote the maximal number of simultaneous visits to ℓ. Define
the function pℓ : N \ {0, 1} −→ [0, 1] by

pℓ(N) = min
{

1,
[

Min + (Max−Min)(1− e−N/α)
]

/[N − 1]
}

, (1)

where Min < Max are non-negative numbers and α > 0. Given p = pℓ(N) one samples from
this random graph model in the same manner as for the standard model Gn,p by independently at
random applying to each edge e the probability p corresponding to the location ℓ where e ∈ Gmax

4http://www.openstreetmap.org
5https://sedac.ciesin.columbia.edu/data/collection/gpw-v4
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originate. Thus the parameters Min and Max bound the degree of each vertex locally at ℓ (in
expectation) for each visit; note, however, that the degree of person p in the resulting graph G
is the accumulation of degrees across their trajectory to locations visited while executing their
activity sequence. Thus the choices of Min, Max and α will induce the degree of each vertex in a
bottom-up manner, see [47] for full details. Finally, for the applications and scenarios of this paper,
we project from G, the week-long contact network, to GWednesday, representing the contact network
on a “typical day”.

We will use agent-based network models to study the epidemic process in this paper. Agent-
based networked models (sometimes just called agent-based models) extend metapopulation models
by explicitly capturing the interaction structure of the underlying populations. In this class of
models, epidemic dynamics are modeled as a diffusive process on a specific undirected person-
person contact network G(V,E) = GPP (V,E) on a population V (see Section A.1 for precise
definitions) – the existence of an edge e = (u, v) ∈ E implies that individuals (also referred to as
nodes) u, v ∈ V come into contact6. Let N(v) denote the set of neighbors of v.
Epidemic process over networks. The SIR model on the person-person contact network G is a
dynamical process in which each node is in one of three states: S, I or R. Infection can potentially
spread from u to v along edge e = (u, v) with a probability of β(e, t) at time t after u becomes
infected, conditional on node v remaining uninfected until time t— this is a discrete version of the
rate of infection for the classical compartmental mass action models discussed earlier. We let I(t)
denote the set of nodes that become infected at time t. The (random) subset of edges on which the
infections spread is referred to as a dendrogram. This dynamical system starts with a configuration
in which there are one or more nodes in state I and reaches a fixed point in which all nodes are in
states S or R. In our simulations, the disease models are significantly more complicated than simple
SIR processes; this is described in the Appendix in Section G.

A.2 Interventions and vaccine allocation policies

Interventions are implemented to inhibit disease transmission. Interventions can be thought of
as individual behavioral adaptations or policy mandated changes, such as closing certain facilities
or reducing their capacity. Of course, policies also lead to further behavioral adaptations. Our
agent-based models have a rich set of interventions implemented. The specific ones we use in the
study are detailed in Section F. In our simulations, all policy changes and behavioral adaptations
except vaccine uptake can be seen as processes that continually and adaptively change the social
contact network and disease transmission parameters.

Here we focus on policy concerning vaccine allocation. Given a schedule S that specifies the
amount of each vaccine available at each time, and the characteristics of the vaccines, a prioritization
scheme is a policy that assigns at each time period the individuals (nodes) that are to be vaccinated.
In other words, a vaccine prioritization scheme can be thought of as a Markov Decision process –
at each time step we know the current state of the system and the available vaccines, and we need
to decide who gets the vaccine. In this paper, we only consider non-adaptive policies – i.e. policies
that do not change how vaccines are allocated at each time step. The amount depends, of course,
on the schedule. We focus on four types of policies, each of which partitions the population into
priority groups using different characteristics:

6Note that though edge e is represented as a tuple (u, v), it actually denotes the set {u, v}, as is common in graph
theory.
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Figure 13: The overall data driven framework used to study various prioritization strategies The
figure shows schematically how real world data is used to drive the modeling and analysis process.
This provides a realistic context for the underlying the simulations. For instance, it takes into
account the current disease prevalence, vaccine schedule, efficacy, NPIs into account to evaluate
the strategies.

1. age group,

2. occupation,

3. number of social contacts (degree), and

4. total duration of social contacts (weighted degree).

Within each type, the policies are distinguished by the fraction allocated to each priority group
(further details can be found in Section 2.2).
The criteria for evaluation of policies. A policy’s effectiveness will be measured by com-
paring the total numbers of the following to a baseline case with no vaccines: (i) infections, (ii)
hospitalizations, and (iii) deaths.

Note that the simulation output is a random variable and thus we report the empirical ex-
pectation and variance of this random variable, where the expectation is taken over all possible
initializations of the stochastic process and the probabilistic transmission and intervention process.
We follow the discussion in [59]. Formally, at any time t, the state of the system St = (It,Wt),
where It and Wt denote the set of infected and vaccinated nodes at time t. The stochastic process is
started in some initial condition S0 = (I0,W0). The decision to vaccinate is done over time horizon
T and the vaccine schedule is given by S. Given this for a policy π, its expected utility with respect
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to infection (criterion i above) is given by

Uπ
S = E

[

T
∑

t=0

|It|
∣

∣

∣
S0

]

.

An agent-based simulation model is described in Appendix F. The COVID-19 disease model is
described in Appendix G.
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B Structural Measures for Social Contact Networks

In this section, we define some popular network measures used to characterize real-world networks
and use them to study the structure of the contact networks used in this work. These include
measures of local connectivity such as degree and clustering coefficient, global connectivity such
as diameter, k-core, and graph spectrum. These measures have been used in both structural and
dynamical characterization of real-world networks. In particular, these measures are considered
important with respect to epidemic simulations, and are frequently reported in the literature [14,28].
Our objective is two-fold: (i) compare our networks with existing real-world networks, and (ii) use
these measures to analyze the efficacy of the different control strategies applied in our work. The
latter is discussed in Section E.

The construction of the synthetic contact network of Virginia is described in Appendix A.1
along with definitions of the people-location network GPL and the person-person contact net-
work G = GPP . Note that this network was modeled and constructed with epidemics and disease
transmission as a target. Generally, what constitutes an interaction (and thus edge) factors through
physical proximity, the nature of the interaction, the nature of the dynamics studied (e.g. disease
transmission) and other factors such as, for example, air circulation within a building and infec-
tion through contaminated inanimate objects. Note first that the person-person contact network G
has 7.6×106 nodes and 2.0×108 edges. Moreover, G has a largest component of (relative) size 0.983.
Diameter. The diameter is the length of the longest shortest path between any two vertices of
the network. The diameter of G is diam(G) = 12.
Degree distribution. The degree of a person u in the people-people contact network G is the
number of different persons that u has contact with during a day. The average person degree in G
is d̄ = 43.5. In the people-location network GPL, the degree of a location ℓ is the number of distinct
visitors to ℓ during a day, and the degree of a person u is the number of distinct locations u visits
during a day. Figure 14 shows the degree distributions in G and GPL. The weighted degree of a
node u is the total time of contact with its neighbors per day. The weighted degree distribution of
the network G is shown in Figure 15a.
Clustering coefficient. This is a measure of the degree to which nodes in a graph tend to locally
cluster together. For a node v, its local clustering coefficient is the fraction of pairs of its neighbors
which have a link between them. It quantifies how close the immediate neighbors are to being a
complete graph. If the local clustering coefficient is 1, it means that the node and its neighbors
induce a complete graph, and if it is 0, then they induce a star graph with v at the center. The
average clustering coefficient is the average of all the local clustering coefficients [70]. The average
clustering coefficient of G is c̄ = 0.092; the clustering coefficient distribution is shown in Figure 15b.
k-core. A k-core of a graph G is a maximal connected subgraph of G in which all vertices have
degree of at least k. Equivalently, it is one of the connected components of the subgraph of G
formed by repeatedly deleting all vertices of degree less than k [71]. The core number of a graph
is the maximum core it belongs to. The maximum core (max. core) of the graph is the set of
all nodes with the maximum core number. It is another way of characterizing centrality of nodes.
It is considered that for certain epidemiological models, the k-core number is a good predictor of
the final outbreak size [50]. Also, the k-core decomposition is in many cases a good predictor of
spreading efficiency. The k-core decomposition of G is shown in Figure 15c. The maximum k for
which there is a k-core is 57. While there are only 1,700 nodes in the induced subgraph for the 57-
core, there are approximately 35,000 nodes (around 0.5% of the total population) in the 45-core,
and more than a quarter of the population belongs to the 30-core showing high global connectivity
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(a) People-people network G (b) People-people network G

(c) People-location network GPL (d) People-location network GPL

Figure 14: Degree distributions in people-people network G: (a) as a histogram in normal scale, and (b)
in log-log scale showing a power-law tail with an exponent of about -7; and degree distribution in people-
location network GPL: (c) of locations in log-log scale showing a power-law tail with an exponent of about
-1.7, and (d) of people as a histogram in normal scale.
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(a) Weighted degree (b) Clustering coefficient (c) Normalized core number

Figure 15: Distributions for connectivity properties of G here including (a) the weighted degree distribution,
(b) the clustering coefficient distribution, and (c) the normalized core number distribution for G.

of the people-people network.
Graph spectrum or eigenvalues. The spectrum of a graph is the set of eigenvalues of its
adjacency matrix. Also popular is the Laplacian spectrum, which is the set of eigenvalues of the
Laplacian matrix of the graph. There are several works that relate spectrum, particularly the first
eigenvalue of the adjacency matrix, to disease spread in SEIR-like models [27, 52]. The common
result that highlights the impact of the network structure on the dynamics is that epidemics die
out “quickly” if λ1(G) ≤ T , where λ1(G) is the spectral radius (or the largest absolute value of an
eigenvalue) of graph G, and T is a threshold that depends on the disease model. This relationship
has motivated a number of works on epidemic control where the objective is to find an optimal set
of nodes (or edges) to remove from the network that leads to maximum reduction in its spectral
radius [57, 67,74].
Activity-based structural analysis. We analyzed the constructed social contact network using
the structural measures described above. We considered activity induced sub-networks, where
a contact edge is retained only if both individuals corresponding to that edge have the target
activity assigned to them. For example, in the case of School network, only School–School edges
are retained. For School activity, we observed an average degree of 29.7, which is between the
average degrees of 13.5 and 47.3 reported for the school networks of the SocioPatterns collaboration
networks [14,28]. Our average degree for Work activity is 16.3. In comparison to the SocioPatterns
data, this seems to be on the higher side for a typical office environment (< 7) but comparable
to their hospital network (14.0). This is expected, since our Work activity includes a wide variety
of workspaces that include office environment, factories, restaurants, etc. The max. core for the
School activity network is 32. In SocioPatterns, the two schools have max. cores of 24 and 47
respectively. For the Work network, it is 37, while in SocioPatterns it is 11, 25 and 23 respectively
for the three office networks. Again, in our case the max. core is the maximum among all locations.
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(a) Infections (b) Hospitalizations (c) Mortality

Figure 16: Cumulative counts under different vaccination strategies for (a) total infections, (b) total hospi-
talizations, and (c) total mortality, assuming current non-pharmaceutical interventions remain at the same
level (as-is).

C Additional Results and Analysis

We present additional results as discussed in the paper.

C.1 Epidemic curves with various strategies

Figures 16 to 18 show the cumulative numbers of infections, hospitalizations, and mortality in
the first three months of 2021 under different vaccination schemes, assuming no relaxation of
NPIs (Figure 16), slow relaxation (Figure 17), and fast relaxation (Figure 18). Note that for the
age-based, essential worker-based, and degree-based schemes, we only show the moderate level of
priority enforcement 80%. All curves show the uncertainty of one standard deviation above and
below the mean.

Infections. We find that in all three scenarios of relaxation, while vaccinations can significantly
reduce infections, targeting high degree people clearly outperforms all other schemes; and the no-
priority scheme performs better than the age-based scheme but not as well as the essential worker
targeting scheme.

Hospitalizations. While the no-priority scheme outperforms the age-based scheme on reducing
infections, they seem to have similar reductions on hospitalizations. This is because older people
have fewer contacts on average, so vaccinating them does not decrease the connectivity of the
network as much as the other schemes. But since vaccines can protect the vaccinated against
severe illness (we assume eD = 50%), and the older people have a higher hospitalization ratio, so
targeting them is more effective on reducing hospitalizations than on reducing infections.

Mortality. Due to the same protection to the vaccinated against severe illness, targeting old
people seems more effective on reducing mortality than on reducing infections. Targeting essential
workers is marginally better than the age-based and the no-priority schemes. The degree-based
scheme, however, continue to be the most effective on reducing mortality.

We also observe that when NPIs are relaxed, vaccinations become more important. This is
discussed in Section 3.3.

C.2 Sensitivity analysis

This section shows some of the variability in network measures for a statistical design over the
network construction parameters Min, Max and α. Specifically, we consider the hyperplane given
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(a) Infections (b) Hospitalizations (c) Mortality

Figure 17: Cumulative counts under different vaccination strategies for (a) total infections, (b) total hospi-
talizations, and (c) total mortality, assuming slow relaxation of non-pharmaceutical interventions.

(a) Infections (b) Hospitalizations (c) Mortality

Figure 18: Cumulative counts under different vaccination strategies for (a) total infections, (b) total hospi-
talizations, and (c) total mortality, assuming fast relaxation of non-pharmaceutical interventions.
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by Min = 5, α = 1000 and Max ∈ {35, 40, 45} with Max = 40 representing the base case used in all
the simulations of this work. Accordingly, we have three graphs G-35, G-40, and G-45. As can be
seen in Table 2, there is a slight increase in properties such as d̄, T̄ , and dmax while the diameter
drops by 1 for Max = 45. The slightly bigger change occurs in eigenvalues, but we note that the
spectral gap (i.e., λ1 − λ2) remains nearly constant.

Network |V | |E| d̄ T̄ dmax Tmax c̄ kmax ρmax diam λ1, λ2

G-35 7.6e06 2e+08 41.0 54.4 455 588.5 0.091 51 0.983 12 100.6, 87.8
G-40 7.6e06 2e+08 43.5 59.2 565 1526.9 0.092 57 0.983 12 118.5, 100.6
G-45 7.6e06 2e+08 49.2 64.4 636 655.6 0.096 66 0.983 11 127.1, 110.0

Table 2: Here |V | denotes the number of nodes, |E| the number of edges, d̄ the average degree, T̄
the average total contact time (unit: hour), dmax the maximal degree, Tmax the maximal total
contact time, c̄ the average clustering coefficient, kmax the maximal core, ρmax the relative size of
the maximal component, diam the network diameter, and λ1 and λ2 the two largest eigenvalues.
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(a) First eigenvalue λ1(G) (b) Max. core

Figure 19: Reduction in the first eigenvalue and max. core of the network at different vaccination phases.
As nodes are infected or vaccinated, we remove edges incident on them from the contact network, to form
sparser and sparser snapshot networks. We consider such snapshots under different prioritization strategies,
assuming no relaxation of NPIs and 100% distribution. After the first round of vaccination, the degree-based
strategy reduces the first eigenvalue and the max. core the most as compared to other strategies.

D Analysis of the time-varying network

Each time the chosen control strategy is applied to the network, some subset of nodes are removed
leading to structural changes in the network. We analyzed this evolution of the network using the
various measures introduced in Section B. The network measures for each residual network are
listed in Table 3. For ease of comparison, the evolution of the max. core and the spectral radius
are plotted in Figure 19. Also, in Figure 20, we have plotted the distribution of core number.

The measures that are generally affected by vaccination are max. degree, avg. degree, max.
core and eigenvalues. Diameter and size of giant component remain little changed over time. We
note that among all strategies, the most significant change in network properties is observed for the
degree-based strategy. The efficacy of targetting old population and targetting essential workers
are comparable to random vaccinations with respect to these measures.
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none beginning 7605430 43.5 565 3053.7 0.092 57 0.983 12 118.5,100.6

high degree before first vax 6306549 35.8 400 2161.8 0.086 42 0.984 12 87.8,79.5
essential before first vax 6305803 35.8 507 2165.2 0.086 43 0.984 13 89.7,80.5
old-age before first vax 6301976 35.7 512 1664.6 0.086 41 0.983 13 85.1,79.0
no-priority before first vax 6305637 35.8 504 1948.7 0.086 40 0.983 12 83.2,77.0

high degree after first vax 5719119 26.6 374 1673.4 0.09 33 0.981 13 48.9,46.2
essential after first vax 5704209 32.6 492 1999.0 0.082 40 0.984 13 83.6,74.3
old-age after first vax 5679458 33.1 506 1647.1 0.085 35 0.987 12 72.4,65.0
no-priority after first vax 5698684 32.8 494 1847.5 0.082 36 0.985 12 73.8,67.5

high degree before second vax 5605355 25.7 363 1278.2 0.09 29 0.981 13 47.4,44.9
essential before second vax 5563558 31.3 457 1292.0 0.082 36 0.983 13 71.0,64.7
old-age before second vax 5500145 31.3 487 1287.9 0.086 32 0.986 13 67.0,61.4
no-priority before second vax 5534739 31.1 480 1350.5 0.083 35 0.984 13 67.5,62.6

high degree after second vax 5059583 19.4 179 1259.7 0.097 28 0.977 14 45.3,42.4
essential after second vax 4961207 28.4 435 1292.0 0.078 34 0.984 12 65.2,58.3
old-age after second vax 4888575 28.8 380 1287.0 0.086 30 0.989 13 56.7,52.0
no-priority after second vax 4929293 28.3 363 1347.9 0.079 30 0.986 13 58.2,51.3

high degree before third vax 5022947 19.1 172 1259.7 0.098 28 0.977 14 43.9,41.3
essential before third vax 4914302 28.0 423 1232.2 0.078 34 0.983 13 64.0,60.2
old-age before third vax 4813271 28.1 370 1227.7 0.087 29 0.988 13 54.1,49.8
no-priority before third vax 4864470 27.7 360 1331.1 0.079 29 0.986 13 56.4,51.6

high degree after third vax 4520360 18.3 169 1259.7 0.092 28 0.98 14 43.7,41.1
essential after third vax 4533299 26.3 273 1219.0 0.076 32 0.983 12 61.3,57.3
old-age after third vax 4212668 25.8 361 1227.7 0.088 29 0.991 13 47.8,45.5
no-priority after third vax 4256026 25.0 349 1331.1 0.074 29 0.988 13 46.8,44.3

Table 3: Properties of the temporal snapshots of the social contact network before and after each
application of vaccination. The “Strategy” column refers to the vaccination prioritization. Each
line corresponds to a snapshot network extracted from the contact network by removing edges
incident on infected nodes and vaccinated nodes. These snapshot networks are the same ones used
in Figure 19.

E Why do social interaction-based heuristics work and how can

they be implemented

We briefly discuss the reasons why the degree- and weighted degree-based heuristics work. We also
briefly discuss the role of digital devices in estimating degrees of individuals.

Why do degree-based heuristics work. The efficacy of degree-based heuristics has been
discussed in several earlier papers, e.g., [3,10,22,51,73], as discussed in Section H. This phenomenon
is also well understood in certain random graph models [10,51]. Pastor-Satorras et al. [51] derive an
immunization threshold in terms of the fraction of high degree nodes that are immunized through
an analysis that relies on a degree-based mean field (DBMF) assumption. This is derived more
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Figure 20: The evolution of k-core distribution in the snapshot networks extracted at various stages of the
simulation. Different vaccination prioritization strategies are implemented in the four subfigures. Note that
these snapshot networks are the same ones used in Figure 19 and Table 3.

rigorously by Bollobas et al. [10], who show that there is a threshold fraction of high degree nodes
whose removal shatters the graph—this can be viewed as an immunization strategy in their random
graph model for the case when the transmission probability p = 1.

However, it is important to note that the theoretical results are not directly applicable in our
context for the following reasons: (i) many of the theoretical results show the efficacy of these
methods for power law networks – the networks we generate are similar to power law networks but
with a very different exponent; and (ii) many of the results are shown when vaccines are applied
at the start of the epidemic process, and the results do not say anything of what happens when the
vaccine is applied temporally – this is important, because the temporal epidemic process infects
individuals already and thus changes the network structure substantially, including the application
of the non-pharmaceutical interventions.

As nodes are infected or vaccinated, they are either not susceptible or less susceptible (i.e. lower
probability of getting infected). Consider the network structural changes due to such dynamics.
For simplicity, we remove all edges incident on nodes who are or have been infected and those who
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Figure 21: As nodes are infected or vaccinated, we remove edges incident on them from the contact network,
to form sparser and sparser snapshot networks. We consider such snapshots under age-based and degree-
based strategies, assuming no relaxation of NPIs and 100% distribution. After the first round of vaccination,
the degree-based strategy reduces degrees more than the age-based strategy: we observe more low degree
nodes and fewer high degree nodes in the snapshot networks from the degree-based strategy.

are vaccinated, to form a sparser snapshot network at different time point, especially right before
and right after each mass vaccination. In Figure 21, we compare the degree distributions of such
snapshot networks from age-based and degree-based vaccinations, before and after each vaccination.
The networks are extracted from a simulation run under as-is scenario with fast vaccine distribution
and 100% prioritization. Before the first vaccination, the snapshot network from both strategies
have the same degree distribution. After the vaccination, since more edges are removed with the
degree-based strategy, the snapshot network has more low degree nodes and fewer high degree
nodes, compared to those from the age-based strategy. Similar is observed between the snapshot
network before and after the second vaccination. After that the degree distribution does not change
much with vaccination, since the network is already very sparse.

The connection between spectral properties and epidemic thresholds provides another insight
into the efficacy of a degree-based strategy. As mentioned in Section B, it has been shown for
SIS/SIR models, via different approaches (including different mean field approximations), that if
the first eigenvalue (referred to as the spectral radius) λ1(G) of the network is below a certain
threshold, the epidemic is not very “large” [27,45,52]. Figure 19a shows the first eigenvalue λ1(G)
of the network at different points in time as interventions are applied. It is very significant to note
that λ1(G) shows a substantial drop when the degree intervention is applied. Thus, the intuition
behind the efficacy of such methods is clear – high degree nodes protect not only themselves, but
also confer a higher level of indirect protection on their neighbors as they interact with many
individuals. The fact that real-world social networks have sufficient nodes of high degree ensure
that such heuristics are effective. It is important to note, however, that just the presence of high
degree nodes themselves does not ensure that degree-based heuristics work.
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Figure 22: Degree distribution among nodes that
are prioritized differently. Essential workers and
older people seem to have lower degrees than high
degree people and highly vulnerable people.

Figure 23: Vulnerability distribution of nodes with
different priorities. People of highest degrees have
high vulnerability, close to that of the most vulner-
able people.

A dynamical property: Vulnerability and its relationship to degree. Given a generalized
SEIR system G(V,E) along with a random initial configuration and a node v ∈ V ; and an integer
t ≥ 1, we define t-Vul(v) as the probability that v gets infected at time t. Vulnerability of v by
time t (t-TotVul(v)) is the probability that v is gets infected by time t. Informally speaking,
t-Vul(v)and t-TotVul(v)estimate the chance of a node getting infected when a random set of
nodes are infected to begin with. Vulnerability in essence captures various ways the infection can
reach a given node. Degree-based interventions effectively reduce the vulnerability of several nodes
at once. Interestingly, nodes of high degree are also highly vulnerable, and this can be empirically
observed by noting the plots in Figures 22 and 23. Vulnerability computations are computationally
challenging (#P-hard) and our simulations provide good estimates of the same.

How can we estimate degrees. A central question is: can individual node degrees be estimated?
We believe that this is possible, and more so as a result of digital devices and apps that have recently
been deployed for contact tracing. The current set of apps built for contact tracing keep track of the
social interactions of an individual in a privacy-preserving way. These apps can easily be modified
to count the number of such interactions. Furthermore, our results show that duplicate counts that
might result are okay, as the degrees are likely to be skewed some. These apps can be modified to
not only store the keys, but also the encrypted form of the time a person spends with the person
that generates such a key.

Furthermore, a person does not need to reveal their degree to anyone but the app can simply
provide this information for prioritization. The alerting and scheduling of vaccination appointments
can be conducted through the app itself. Additionally, demographic information such as age, or
other risk-factor information such as additional comorbidities or race and/or ethnicity, may also be
used to further prioritize individuals within their degree-based allocation groups.

How accurate can such measurements be. Let V be partitioned into groups V1, . . . , Vr,
and suppose pi is the probability that a node in Vi has the app. Think of Vi as an age group.
Survey results show that younger individuals have a higher propensity to use digital device as well
as download the app. We assume each node v ∈ Vi decides independently with probability pi to
install the app; if v chooses to install the app, we say that it is “sampled”. Let H denote the
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sampled graph, which is induced by the nodes (node induced subgraph) which have the app, and
let V (H) denote the set of nodes in H. For a node v, let NG(v) denote the set of its neighbors
in G. Similarly, let NH(v) = {u : u ∈ NG(v) and u ∈ V (H)} denote the set of neighbors of v in
H. Let dG(v) = |NG(v)| denote its degree in G, and let dG(v, i) denote the number of neighbors
it has in group Vi (so dG(v) =

∑

i dG(v, i)). If v is sampled, let dH(v) = |NH(v)| denote its
degree in H. Let X(u) ∈ {0, 1} be a random variable which is 1 with probability pi, if u ∈ Vi,
and let Y (v) =

∑

u∈NG(v)X(u). Observe that E[dH(v)] = E[Y (v)] =
∑

u∈NG(v) Pr[X(u) = 1] =
∑

i

∑

u∈NG(v)∩Vi
pi =

∑

i pidG(v, i) = f(v). By applying a Chernoff bound to Y (v), we have

Pr[|Y (v) − f(v)| > ǫf(v)] ≤ 2e−ǫ2f(v)/3 ≤ 2/n2 if f(v) ≥ 6
ǫ2
lnn. Let Vh = {v : f(v) ≥ 6

ǫ2
lnn}.

Therefore, with probability at least 1−2/n, every node v ∈ Vh has dH(v) ∈ [(1−ǫ)f(v), (1+ǫ)f(v)].
Let Q ⊆ V denote the subset of nodes in the top quartile with respect to dG(v). Then, with high
probability, for every node v ∈ Vh ∩Q, we have dH(v) ∼ f(v). Therefore, if the sets Vh and Q have
high overlap, high degree in H corresponds to high degree in G. The expected number of nodes in
Vh ∩Q which get sampled is

∑

i

∑

v∈Vh∩Q∩Vi
pi.

Where is the tradeoff? The phased approach is a balance between exposure/infection risk
(policy equivalent of high social contact) and disease risk (age-based). Our proposal is a stronger
version of the former, but seems to be significantly better across all outcomes. This is one of the
counter-intuitive aspects of the proposed approach, since it does not take into account disease risk
explicitly, and purely relies on structural measures of the network. While individualized policies
aimed at minimizing mortality do exist (e.g., comorbidities) and are part of the phased approach,
lack of technology thus far had made it difficult to ‘individualize’ policies targeted on minimizing
transmission. Aggregate policies targeting essential workers and other high exposure categories
(e.g., school children for influenza) while in a similar vein to our approach, may still have high
variance in reducing transmission potential. The advantage of our approach is in leveraging the
mechanistic and network based understanding of disease spread, and creating priority categories
that cut across age-, risk- and other demographic characteristics. It is possible to construct patho-
logical instances of networks in which vaccinating high degree nodes is not optimal. But as is
well known in the field of network science, real world social networks are often characterized by
power-law degree distributions and exhibit a hub-spoke structure. In such networks, targeting the
hub nodes at individual level, ‘shatters’ the transmission network faster than aggregate policies.
Especially such a strategy might be necessary in regions with very limited vaccine supplies and
at higher risk of variant induced surges. We believe our work helps advance the case for better
integration of social network and digital technologies in swifter public health response.
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F The Agent-Based Simulator

The EpiHiper agent-based simulator supports disease models which are comprised of disease states,
disease transmissions (through contacts), and disease progressions. The disease models are spec-
ified independently of the people and their contact network over which the disease spreads. All
individuals have the same infection processes and disease progression dynamics. The infection
processes, however, factors in individual attributes such as susceptibility and infectivity which are
generally dynamic. All input files to EpiHiper are provided in JSON format with the exception of
the contact network which, due to its large size, uses either CSV or binary format.
Disease Transmissions are caused by contacts between a susceptible individual P s in state Xi

and an infectious individual P i in state Xk. The susceptible individual P s will transition to
an exposed state Xj based on information specified by the transmission configuration Ti,j,k, the
contact E(P i, P s), and attributes from the individuals P s and P i such as the susceptibility σ(P s)
of P s and the infectivity ι(P i) of P i.

Under the assumption of independence of transitions across contacts for individual P s with one
or more infectious individuals P i, the propensity of the state transition to the exposed state Xj

based on the transmission configuration Ti,j,k and the single contact E(P i, P s) is defined as:

ρ(P s, P i, Ti,j,k) = T × we ×
[

σ(P s) · ι(P i)
]

× ω(Ti,j,k) , (2)

where T is the contact duration, we is the edge weight, and ω(Ti,j,k) is the transmission rate.
The propensities of all state transitions to the exposed state Xj are added, and we use the

Gillespie algorithm [30] to determine whether a transition occurs during the simulation interval,
and, if it does, which contact to attribute.
Disease Progression covers the health state transitions within an individual P that are inde-
pendent of other people. For the EpiHiper model, a disease progression diagram describes all the
possible health state transitions that take place within a person. The nodes of the diagram are the
health states X = {Xi} and directed edges of the form e = (Xi, Xj) with an assigned probabil-
ity pe = prob(Xi, Xj) and a dwell time distribution De. The sum of all probabilities of transitioning
out of a given state Xi must be either 1 or 0. Zero indicates a terminal state.
The System State at any point in time is given by the attributes of the individuals (nodes) and
contacts (edges) of the network, the simulation time, and the value of user-defined variables.

The values nodeTrait and edgeTrait are user-defined attributes which may be used to govern
interventions (described below). They do not influence the disease transmission or progression
directly.
Interventions are external modifications of the state of the simulation where “external” means
not governed by the disease model nor the contact network. An intervention comprises of a trigger,
a target, and an action ensemble. The action ensemble, which is a set of instructions to apply
to the dynamic state of the target (a collection of nodes and/or edges), is only applied when the
trigger evaluates to 1 (or true). The trigger is a function of the system state and thus may depend
on any of the above-mentioned attributes, including the Person Trait Database. The operations of
an action ensemble are partitioned into the following three categories: (i) those triggered once per
intervention (e.g., to update global variables), and which are thus independent of the intervention
target, (ii) those that are applied to each element of the intervention target, and (iii) those applied
to a sampled subset of the intervention target and optionally to the complement of the sampled
subset. Moreover, sampling may be nested, thus permitting chained sub-sampling. Each individual
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Object Value Access Description
system time r the current time (mapped from iteration number/tick)
node id r PID of node
node infectivity rw infectivity scaling factor
node susceptibility rw susceptibility scaling factor
node healthState rw health state
node nodeTrait[traitName] rw value of nodeTrait[traitName] of node
edge sourceID r source vertex ID of edge
edge targetID r target vertex ID of edge
edge sourceActivity r activity of source of edge
edge targetActivity r activity of target of edge
edge active rw active flag of edge
edge weight rw weight of edge
edge edgeTrait[traitName] rw value of edgeTrait[traitName] of edge
variable name rw a user-defined numerical variable referenced by name

Table 4: EpiHiper state values of nodes and edges

action of the action ensemble is given a delay specifying the time (or offset) at which the action
should execute, which permits flexible, fine-tuned scheduling within the simulation.

Before starting the simulation, the state of all individuals P must be initialized. In EpiHiper, ini-
tialization is simply a special case of an intervention where the trigger is omitted (and by convention
is true).
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Figure 24: The COVID-19 disease model with both unvaccinated and vaccinated states. This disease
progression model is represented as a probabilistic timed transition system (PTTS): the state transitions
are probabilistic, and, in many cases, are timed, i.e., transitions after a given time period. An individual
starts from the upper S (Susceptible) state. If an individual receives a vaccine the individual enters a
new susceptible state represented by a dotted box. The dashed lines represent state transitions triggered
by either interactions with infectious individuals or vaccination. The solid lines represent probabilistic
timed state transitions. The shapes with a solid border represent states of an unvaccinated individual;
those with a dashed border represent states of a vaccinated individual. The thicker lines represent larger
probabilites. Therefore, if vaccinated, an individual has a smaller probability of getting infected (protection
against infection), and even if infected the individual has smaller probability of being hospitalized or needing
ventilation or death (protection against severe illness).

G The Disease Model Parameters

The within-host disease transmission model is shown in Figure 24. Transmission may occur
when an individual in one of the states Susceptible or RX Failure comes in contact with one or
more individuals in the states Presymptomatic, Symptomatic, or Asymptomatic. The individual
transmissions are governed by the parameters in Table 5. Progression from one disease state to
the next is governed by the parameters in Table 6
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State Attribute Value
transmissibility 0.18

Presymptomatic infectivity 0.8
Symptomatic infectivity 1.0
Asymptomatic infectivity 1.0
Susceptible susceptibility 1.0
RX Failure susceptibility 1.0

Table 5: Disease transmission parameters

Age
Progression Attribute 0-4 5-17 18-49 50-64 65+
Exposed - Asympt prob 0.35
Exposed - Asympt dt-mean 5
Exposed - Asympt dt-std dev 1
Asympt - Recovered prob 1
Asympt - Recovered dt-mean 5
Asympt - Recovered dt-std dev 1
Exposed - Presympt prob 0.65
Exposed - Presympt dt-fixed 1
Presympt - Sympt prob 0.65
Presympt - Sympt dt-fixed 1
Sympt - Attd prob 0.9594 0.9894 0.9594 0.912 0.788
Sympt - Attd dt-discrete 1:0.175, 2:0.175, 3:0.1, 4:0.1, 5:0.1, 6:0.1, 7:0.1, 8:0.05, 9:0.05, 10:0.05
Attd - Recovered prob 1
Attd - Recovered dt-mean 5
Attd - Recovered dt-std dev 1
Sympt - Attd(D) prob 0.0006 0.0006 0.0006 0.003 0.017
Sympt - Attd(D) dt-fixed 2
Attd(D) - Hosp(D) prob 0.95
Attd(D) - Hosp(D) dt-fixed 2
Hosp(D) - Vent(D) prob 0.06 0.06 0.06 0.15 0.225
Hosp(D) - Vent(D) dt-fixed 2
Vent(D) - Death prob 1
Vent(D) - Death dt-fixed 4
Hosp(D) - Death prob 0.94 0.94 0.94 0.85 0.775
Hosp(D) - Death dt-fixed 6
Attd(D) - Death prob 0.05
Attd(D) - Death dt-fixed 8
Sympt - Attd(H) prob 0.04 0.01 0.04 0.085 0.195
Sympt - Attd(H) dt-fixed 1
Attd(H) - Hosp prob 1
Attd(H) - Hosp dt-mean 5 5 5 5.3 4.2
Attd(H) - Hosp dt-std dev 4.6 4.6 4.6 5.2 5.2
Hosp - Recovered prob, 0.2
Hosp - Recovered dt-mean 3.1 3.1 3.1 7.8 6.5
Hosp - Recovered dt-std dev 3.7 3.7 3.7 6.3 4.9
Hosp - Vent prob 0.06 0.06 0.06 0.15 0.225
Hosp - Vent dt-mean 1
Hosp - Vent dt-std dev 0.2
Vent - Recovered prob 1
Vent - Recovered dt-mean 2.1 2.1 2.1 6.8 5.5
Vent - Recovered dt-std dev 3.7 3.7 3.7 6.3 4.9

Table 6: Disease progression parameters as given by the CDC document [15]. One value per line
applies to all age groups. Abbreviations: prob: probability, dt: dwell time, Attd: attended, Hosp:
hospitalized, Vent: ventilated, (D): resulting in death, and (H): resulting in hospitalization
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H Related Work

There has been a lot of work on analyzing interventions to control epidemics, and this falls into two
broad categories. The first involves using a system of coupled differential equations to represent
the dynamics, e.g., [42, 43, 55, 69, 72]. Even though closed-form solutions are not available even
for simple models, when the system is not very large, it can be solved by brute-force local search
methods, e.g., [43]. For some types of models, greedy strategies have been used [68,72]. The second
class of methods is network or agent based, of the form we study here, e.g., [23, 29, 31,38,40].

Analyzing interventions to minimize the expected outbreak size (or to optimize other epidemic
outcomes) in network models is much harder, and is generally open to problems. Prior work
has generally attempted to solve these problems by either simplifying the network (e.g., assuming
random graph models), or simplifying the disease model. The simplest setting is that of transmission
probability of 1 (modeling a highly contagious disease), with a fixed source. Even this setting is
challenging, and work by [24,32] designs bicriteria approximation algorithms for this problem.

A variation of this setting is when the source is chosen randomly, and, in this case, the problem
of minimizing the number of infections corresponds to deleting a subset of nodes such that the sum
of squares of the component sizes in the residual network is minimized. A minor modification of
the results of [6, 36] gives approximation algorithms for this objective. We note that [58] uses a
stochastic optimization approach for minimizing the expected number of infections. While their
worst case approximation factor can be quite large, their empirical performance is quite good. The
work of [3, 10] on the robustness of networks can be viewed as interventions to reduce the spread
of an outbreak.

It is well understood that the network structure has a significant impact on the dynamics of
epidemic spread. This has motivated a lot of research on modifying network properties to control
epidemic spread. One of the most studied properties is degree, and in many network models, as
well as in a broad class of real world networks, it has been found that removing the highest degree
nodes (equivalently, vaccinating high degree nodes) turns out to be very effective [3,10,19,22,51,73].
Cohen et al [19] show that a simple decentralized strategy of “acquaintance immunization” has the
effect of selecting high degree nodes. Another set of properties that has been studied extensively
are spectral properties, namely the eigenvalues and eigenvectors associated with the adjacency
matrix of the graph and its Laplacian. It has been shown using multiple approaches [27,45,52] that
epidemic spread exhibits a threshold behavior—if the spectral radius (the largest absolute value of
an eigenvalue) is below a certain threshold, the disease dies out. This has motivated a considerable
amount of work on reducing the spectral radius to control the outbreak [46, 53, 54, 56, 62]. In
general, the theoretical studies do not apply to temporal vaccine allocation problems – in such cases
the network is constantly changing as the epidemic spreads and vaccines are distributed in time.

In the context of COVID-19, where we have multiple approved vaccine candidates, the role
of vaccine efficacy, especially whether it reduces susceptibility to disease or transmission becomes
important [37]. A recent study by Bubar et al. [12] identified that under different underlying
assumptions, vaccine prioritization policies vary from 20-49 years to adults over 60 years old. They
also note that prioritizing seronegative individuals could improve the marginal impact of a given
policy. A similar study at a global scale using different supply assumptions was reported in [34].
See [1,9,26,34,41,55,59] for other recent papers on this topic. Multiple studies have also identified
the tradeoffs based on the underlying policy objectives [13, 41] using compartmental models. The
current allocation policy in the US at the federal level is centered around the framework developed
by the National Academies of Sciences, Engineering, and Medicine (NASEM) [48].
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Very few papers have studied vaccine allocation problems when there is a vaccine schedule
(temporal vaccine allocation). Furthermore, they do not study how robust such methods are
against uncertainty in estimating the structural properties; this is a crucial contribution of the
present paper. Nevertheless, these results do suggest the potential value of such methods.
Digital apps to estimate network properties. Digital contact tracing apps have recently
been deployed in several countries [2, 5, 17, 25, 35] with mixed success. Reasons for the range of
outcomes include: (i) low penetration levels, (ii) compliance, and (iii) accuracy of the apps in
discovering neighbors accurately. Our allocation method is based on exploiting simple network
properties that can be estimated using digital devices. We use two measures here: (i) degree and
(ii) weighted degree. Digital contact tracing apps can potentially measure both of these quantities
quite accurately.
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