Prioritizing Constraint Evaluation for
Efficient Points-to Analysis

Rupesh Nasre R. Govindarajan
Computer Science and Automation, Computer Science and Automation,
Indian Institute of Science, Indian Institute of Science,
Bangalore, India — 560012 Bangalore, India — 560012
Email: nasre@csa.iisc.ernet.in Email: govind@csa.iisc.ernet.in

Abstract—Pervasive use of pointers in large-scale real-world Algorithm 1 Points-to Analysis using Constraint Graph.

applications continues to make points-to analysis an impd¢ant Require: setC of points-to constraints
optimization-enabler. Rapid growth of software systems deands - Process address-of constraints
a scalable pointer analysis algorithm. A typical inclusionbased) : : ;
points-to analysis iteratively evaluates constraints andcomputes 2: Add edges to constraint graph G using copy constraints
a points-to solution until a fixpoint. In each iteration, (i) points-to 3 répeat _ _ o
information is propagated across directed edges in a consdmt 4: Propagate points-to information in G
5
6

=

graph G and (ii) more edges are added by processing the points- Add edges to G using load and store constraints
to constraints. We observe tha_t prioritizing the order in which . until fixpoint

the information is processed within each of the above two sps
can lead to efficient execution of the points-to analysis. Wle
earlier work in the literature focuses only on the propagaton
order, we argue that the other dimension, that is, prioritizing .)
the constraint processing, can lead to even higher improveents ~address-of assignmenp & &q), copy assignmentp(= q),
on how fast the fixpoint of the points-to algorithm is reached load assignmentp(= *q) and store assignmentg = q) [7].
This becomes especially important as we prove that finding an |oad and store assignments are also referred tmamplexas-
optimal sequence for processing the points-to constraints NP- signments in literature (e.g., [7]). We use the texoastraint
Complete. The prioritization scheme proposed in this paperis tat and . i t, h blv in thi ticle. Wi

general enough to be applied to any of the existing points-to sta emen n as_S|gnm_e_n nterchangeal y_ |_n _'S ar '_C e. we
analyses. Using the prioritization framework developed inthis deal with flow-insensitive, context-sensitive inclusibased

paper, we implement prioritized versions of Andersen’s anlysis, points-to analyses in this work.

Deep Propagation, Hardekopf and Lin's Lazy Cycle Detection A fiow-insensitive analysis iterates over a set of points-to

and Bloom Filter based points-to analysis. In each case, weport . - . o . .
significant improvements in the analysis times (33%, 47%, %, constraints until a fixpoint is obtained. Typically, the fla

20% respectively) as well as the memory requirements for a Points-to information is represented using a constraiapg6,
large suite of programs, including SPEC 2000 benchmarks and in which a node denotes a pointer variable and a directed edge

five large open source programs. from nodenl to noden2 represents propagation of points-to
information fromn1 to n2. Each node is initialized with the
points-to information computed by evaluating taddress-of

Static analysis of programs is important to achieve fastépnstraints. Edges are addedGanitially by copyconstraints
runtime execution, more secure code, less buggy progra@gd then bycomplexconstraints as the analysis progresses.
invariant guarantees and a better program understanding. Tis is because the edges introduceddoynplexconstraints
more and more emphasis is laid on guaranteeing secure cétgend upon the availability of points-to information atles
data-race free programs and memory-leak free programs, YH@ch, in turn, depends upon the propagation. Thus, as the
demand on scalable and precise static analysis increage®lysis performs an iterative progression of the points-t
Further, the rapid growth of code bases places even furtfigiormation propagation, new edges get introduced: idue
demand on scalable static analysis techniques. Pointsaie ato the evaluation of theomplexconstraints, resulting in the
ysis is an important static analysis which is an enabler fépmputation of more and more points-to information at its
several compiler optimizations. The effectiveness of savenodes. When no more edges and no more points-to information
compiler optimizations depends heavily on the underlyingan be computeds gets stabilized and a fixpoint (at the nodes)
pointer analysis. Thus, the scalability requirement ofnpai is reached. An outline of this analysis is given in Algorittim
analysis and its importance is unquestionable. Indeed, theTechniques have been developed for efficipmpagation
literature on points-to analysis is rich with several ieting of the points-to information across the edges of a constrain
ideas [1], [2], [3], [4], [5], [6], [7]. graph, i.e, Line 4 of Algorithm 1. Online cycle eliminatio8][

For analyzing a general purpose C program, it is sufficiedetects cycles inG on-the-fly and collapses all the nodes
to consider all pointer statements of the following formsn a cycle into a representative node. This speeds up the

I. INTRODUCTION

propagation of points-to information since all the nodesin tion V). Our experimental evaluation shows a significant

cycle eventually contain the same points-to informatioaveé/ improvement in the analysis times: 33% in Andersen’s
and Deep Propagation [7] perform a topological ordering of analysis, 47% in Lazy Cycle Detection, 44% in Deep
the edges and propagate difference in the points-to infoma Propagation and 20% in Bloom Filter based analysis.
in a breadth-first or depth-first manner. Various heuridties A positive side-effect of the application of prioritized

Greatest Input Rise, Greatest Output Rise, and Least Rgcent constraint evaluation is the reduction in the memory
Fired [9] work on the amount and recency of information requirement of the original analyses: 17% in Andersen’s
computed at various nodes in the constraint graph to achieve analysis and 23% in Deep Propagation.

a quicker fixpoint.

All of the above techniques essentially focus on the prop-
agation order (Line 4 of Algorithm 1) and prioritize the Given our observation that prioritizing the processing of
order in which the points-to propagation takes place. Harevpoints-to constraints in Line 5 of Algorithm 1 improves the
these techniques do not attempt to dictate which evaluatianalysis time, it raises the questiodoes there exist an
order of the constraints (Line 5 of Algorithm 1) would proveorder in which the constraints should be processed which can
more beneficial for faster points-to information compwiati ensure optimal number of steps for reaching the fixpokaP
Specifically, there are two aspects of the constraint etialua instance, given a set of points-to constraints
that are hitherto not exploited in literature: (i) how mamiges a=&x,b=&y,p=&q,*q =b,xp = a,

a constraint adds, and (ii) where @a constraint adds edges.t takes two iterations to reach the fixpoint, if they are pro-
We observe that both these parameters are important and cessed in the above order. However, processing the camstrai
significantly influence the fast convergence of the fixpoirnib the following order ensures fixpoint in one iteration.
computation. It should be noted that neither the propagatio a = &x,b = &y,p = &q, *p = a,*q = b.

order nor the constraint evaluation order changes the fitpoSince existing techniques decouple propagation and ei@iua
of the points-to solution. of the complexconstraints, they do not reorder the constraints,

We develop a framework that deals with the priority ordewhich results in requiring multiple iterations to reach the
ing of the points-to constraints and the propagation offseia fixpoint.
information. The two criteria mentioned above give rise to a In this section, we prove that computing such a sequence
priority assigned to each constraint. The priority is dyi@ameven for a restricted scenario where only copy constrairgs a
in nature and can change as the analysis progresses. Ouralowed is NP-Complete.
oritized analysis not only evaluates constraints in therfiyi
order, but also evaluates certain constraints repeateafigch Theorem 1. Computing the flow-insensitive inclusion-based
on priority. The result is a skewed evaluation of importam a points-to solution in an optimal number of steps from a set of
useful constraints early and in a repeated manner to re&ch ¢bpy constraints is NP-Complete.

(same) fixpoint solution faster.
To summarize, while earlier approaches [8], [9], [7] focus 0 Proof: We reduce Set Cover problem to points-to analy-
the propagation order of the points-to information, we addr sis. Consider a Set Cover instance 8Cf, K) with universe
the evaluation order of the points-to constraints U and a setS of subsetsS;. The decision version of the Set
Major contributions of this paper are as below. Cover problem states that given a univetsand a setS with
« We prove that finding a sequence of the points-to corubsetsS; possibly having elements in common, whether there
straints to reach the fixpoint in an optimal number ofxists a set of{ subsets whose union contains all the elements
steps in a flow-insensitive inclusion-based analysis is NBentained in anyS,. The problem SG{,S, K) is known to
Complete (Section I1). be NP-Complete [12].

o We develop a priority based greedy analysis framework We reduce SQ(, S, K) to PTA(C, S, K) which is a flow-
for efficient computation of points-to information (Secinsensitive points-to analysis over a set of points-to y3op
tion 1ll). The framework is general and can be used faronstraintsC' with an initial points-to information and the
other static analyses. fixpoint defined with respect to point&t The decision version

« We instantiate our framework by definingonstraint of PTA checks if the constraints i@’ can be evaluated in a

priority based on the structure of and the number @hanner such that the fixpoint with respectdds reached in
points-to facts changed by a constraint. We extend it #§ steps. A step indicates evaluation of a constraint.

a dynamic constraint ordering that can be easily appliedThe reduction is performed as below. For each elersent
to a particular points-to analysis algorithm (Section 1V)S;, we create an initial points-to informatia®) — {s}, i.e.,

o We show the effectiveness of our approach by applying points-tos. For each setS;, we create a copy statement
it on top of the state-of-the-art algorithms (Andersen’s = S;. This transformation from SC(, S, K) to PTA(C, S,
analysis [1], BDD-based Lazy Cycle Detection [10]K) is linear in the number of sets and the number of elements.
Deep Propagation [7] and Bloom Filters [11]) for SPEQhus, SC polynomially reduces to PTA.

2000 benchmarks and five large open source programgf an efficient (polynomial) solution exists for PTA, then
(httpd, sendmail gdb, wine-serverandghostscripf (Sec- the solution can be mapped back to SC. Thus, if there is

II. OPTIMAL ORDERING OFCONSTRAINTS

a sequence of{ steps to obtain the fixpoint, and since the Next, we explain how introducing a prioritized version of
fixpoint would contain all the points-to information, thenAndersen’s analysis would evaluate the same set of contrai
the subsetsS; corresponding to the chosen copy constrain®he priority scheme can use various mechanisms for ordering
(S = &;) would cover all the elementse U/ that correspond the constraints. We use a mechanism wherein the priority of
to the points-to facts in the fixpoint, forming the set cover. a constraint is the number of new points-to facts it adds in
Similarly, if a set cover of size/ exists, then no other the previous iteration. Thus, the constraint priority isdsnic
subset would be able to add any new points-to information &md may change across iterations. At the start of the asalysi
S and theK subsets would form an optimal sequencerof i.e., before Iteration 1, the constraints can be orderedgusi
steps to obtain the fixpoint over the constraints. any ordering, including the program order. In this example,
Thus, PTA is NP-Hard. (a) we choose to use a dependence order. That is, a constraint
It is easy to see that a given sequencekotonstraints can gets more priority over another constraintif ¢c; may define
act as a polynomial time verifier to check if PTA evaluates t@ variable that, uses Thus,p = q gets higher priority over

a fixpoint. Thus, PTA is in NP. (b) r = p,r = xp, *p = r. The constraint ordering at the start of

From (a) and (b), PTA is NP-Complete. m lteration 1 is shown in the top drawing of Figure 1(c). The
value in parentheses following a constraint is the number of

I1I. PRIORITIZED COMPUTATION OF CONSTRAINTS new points-to pairs the constraint adds in that iteratioor. F

We first explain our priority-based approach using an eiastance, the constrairta = p adds 18 new points-to pairs
ample, then discuss various priority schemes followed hy oto G in Iteration 1.
prioritization framework. Our priority based approach nimy As in the case of unprioritized Andersen’s analysis above,
viewed similar to the maximum benefit approach in the onlirgrior to Iteration 1, the copy constrainés = d andb = a

set cover problem [13]. add edgesl to e anda to b respectively. Iteration 1 of our
o prioritized approach adds directed edges and computetspoin
A. Motivating Example to information as shown in the top drawing of Figure 1(c).

Consider the program fragment given in Figure 1(a). Let tt@pecifically, the constrainta = p adds edges fronp to
initial points-to information due to the address-of coasits qrst andp to a. This allows for addition of the points-to
be a — {a,q,r,s,t} and p — {b,c,d}. Figure 1(b) illus- setb, c, d to those ofqrst, a andb, i.e., 18 new points-
trates the constraint graghat the end of different iterations to pairs. Similarly, the constrait = *a adds 4 new edges:
of Andersen’s analysis [1] with points-to information pesp from nodesyrst, a, b, dtoc and 8 new points-to pairs:
gated using Deep Propagation [7]. For simpler expositia®, w — {a,b,c,d,q,r,s,t}. The last constrainte = c does
assume that online cycle elimination [8] is not performed. not add any edges or new points-to information. Contrasting

A node is represented a§P} wheren is a pointer andP} the state ofG in lIteration 1 of the prioritized Andersen’s
is its points-to set computed so far. Directed edge from nodealysis with that of Andersen’s analysis, we observe that
n; to n, represents the propagation of points-to informatiotwo additional edges are added in the prioritized analysis,
from n; to n,. As the behavior of the pointetgr, s, t is the namelyb to ¢ andd to c. Thus, compared to Iteration 1 of
same in this example, we use a single node to represent alldofdersen’s analysis, Iteration 1 of the prioritized vensamlds
them. Prior to Iteration 1, edgelsto e anda to b are added to the following additional points-to information to the stan:
Gusing copy constraints (refer Algorithm 1). Iteration 1rtda a,b,q,r,s,t — {b,c,d},c — {a,b,c,d,q,r,s,t}. In gen-
with propagating the points-to s¢&, g, r, s, t } from node eral, our priority based analysis enables addition of mdoes
a to b. Since the points-to set af is empty, no information to the constraint graph early resulting in more possibsiti
flows to e. The next step of processingpmplexconstraints for early propagation of points-to information. Furtherteo

adds the edges as indicated below. that if the constraintra = p is evaluated twice, then the
*e = C. none. edges fromp to b, ¢, d would be added, making provision
c = xa: atoc,qrst toc. for propagation of more points-to pairs. We exploit thistfac
*a = p: ptoa,ptogrst. for skewed evaluation in our algorithm (Section V).

The new edges introduced in this iteration are shown asOur priority based analysis framework keeps track of the
thick lines. Thus, at the end of the first iteration, the pgintnumber of points-to facts that are newly added by each
to information computed at different nodes as well as thenstraint evaluation and accordingly assigns prioritythte
constraint graph are shown in Figure 1(b), Iteration 1. constraint. Multiple constraints may receive the samerjyio

The analysis continues propagating more points-to inferm@rming clusters of constraints. A customary way of repnese
tion and then adding more edges (shown as thick lines) in eanp various priorities is using levels. Thus, constraintsich
iteration until it reaches the fixpoint in Iteration 5. Thedin addi new points-to facts are assigned a priority lekel As
points-to information computed at the nodes by Anderserilse analysis progresses, constraints are mapped to differe
analysis is shown in Figure 1(b) Iteration 5. In all the itemas priority levels. As an example, since = xa adds 8 new
of the analysis, a fixed ordering of the constraints is usegbints-to pairs in Iteration 1, it is moved @ (to be used
which is typically the order in which the constraints app@ar in Iteration 2). Similarly, the constrainta = p is moved to
the program (Figure 1(a)). Pyg. The constraintke = ¢ remains aPp,.

Input constraints *e=c,c=*a,e =d,b=a,*a=p

Fixed processing ordere =d, b =a; *e =c,c=*a, *a=p

(@)
a{agrst} a {abcdqrst}
t rst {bcd
Rl b {aqrst} arstbedh {abcdqrst}
a{agrst}
t cf ¢ {abcdarst}
arstd b p {bcd p {bed)
p {bcd} c{ dg dg
s — o
- ef el
e
Iteration O Iteration 1 Iteration 2
a {abcdqrst} a {abcdqrst} a {abcdqrst}
rst {bcd rst {bcd qrst {abcdqrst}
apricd 63b0dqf5@ axloed {abcdarst} {abcdarst}
¢ {abcdqrst} ¢ {abcdgrst} ¢ {abcdarst}
p {bed} p {bcd} p {bcd}
cd} d {abcdgrst} d {abcdgrst}
W e {abcdgrst} e {abcdqrst}
Iteration 3 Iteration 4 Iteration 5
(b) Andersen’s Analysis
a {abcdqrst} Consl;aiznlp o(red)efin" a {abcdgrst}
Constraint ordering c=*a(0)
*a = p (18) qgrst {bcd} *e = ¢ (10) qgrst {bcd}
c="*a(8) b {abcdarst} {abcdqrst}
*e=c (0)
¢ {abcdqrst} ¢ {abcdqrst}
p {bed} p {bed}
/d ¢ abcdqrst}
ef eTabcdarst}
Iteration 1 lteration 2
Constraint ordering a {abcdgrst}
*e = ¢ (20)
- a {abcdqrst}
’;a: *2 58; arst {abedarst} b fabedarst Constraint ordering
{abcdarst} :g z ‘C) ((8)) grst {abcdgrst} {abedarst)
c=*a(0)
'c {abcdqrst}
p {bcd} o o) ¢ {abcdqrst}
abedarstt d {abcdgrst}
e{abcdqrst} &Tabcdarst
Iteration 3 Iteration 4

(c) Prioritized Andersen’s Analysis

Fig. 1. (a) Input constraints and fixed constraint orderiogAndersen’s analysis. (b) Constraint graphs for Andéssanalysis. (c) Constraint graphs for
Prioritized Andersen’s analysis.

The prioritized ordering of the constraints at the start agfcheme, and a linguistic scheme can be used to order the
Iteration 2 (shown in Figure 1(c) Iteration 2) remains thmea constraints within the same priority level.
as in lteration 1. The new edges added (thick lines) and the _ . ..
points-to information computed at various nodes are as show- Prioritization Framework
in Figure 1(c). In this iteration, the constraira = p adds 6 We now formalize our notion of a priority based framework.
new points-to pairsd;e — {b,c,d}), the constrainic = xa A prioritized frameworkR is a 4-tuple.
adds no new points-to information and the constraint= c R =(C,P,F,<), where
adds 10 new points-to paird,e — {a,q.r,s,t}). Note that « C is the set of input constraints,
the edgesc to b and ¢ to d get added in this iteration, « P is the set of priority levels of siz&/p,
whereas in the case of the original Andersen’s analysis,e F = {fi, fo,..., fx} is a family of priority functions.
the same edges are added in lteration 3 (Figure 1(b)). The In " iteration, the analysis uses one @¢f for some
points-to information at node depends upon the information j € 1..k. Then, a constraint € C' is assigned a priority
propagated via this edge (pointee §etq, r, s, t}). The third pif f;(c) =p, and
drawing of Figure 1(c) shows the prioritized ordering of the « < is a partial order defined on the priority levels assigned
constraints at the start of Iteration 3, sorted by the number to a pair of constraints, and c, at thestN iteration. If
of points-to pairs each constraint added in Iteration 2. The f,(c,) = p, and f(c,) = p,, thenp, < p, iff p, is at a
points-to information computed is as shown in Figure 1(c). higher priority level tharp,.
In this iteration, onlyxe = ¢ adds 20 new points-to pairs
(qut - {a7 q) r7 S) t})'

The method converges after Iteration 4. We instantiate our prioritization framework with a set obtw

As shown in the example, a priority based analysis evaluafegictions. The first functiory; is used for the first iteration
constraints in such an order that it enables addition of moahereas the other functiorf, is used for the subsequent
edges and more useful edges early in the constraint grdfsiiations of the analysis. Thug; = {fi, f2}. The function
to ensure quick fixpoint computation. The propagation of thé assigns priority to a constraint according to its depth in
points-to information via these edges is done by the unahegyly the dependence graph of constraints. Thus, it uses a ltiguis
analysis (Andersen’s method [1] or Deep Propagation [€]) etscheme to define a constraint priority. For instanceg;if
which is not dictated by our method. The above example algefines a variable that uses, ther; gets higher priority than
suggests that the fixpoint computation of an analysis can e Note that one could use any suitable priority function of
improved by going beyond the conventional mechanism ehoice. The functiory, assigns a priority level to a constraint
treating all the constraints with the same priority. Altgbuithe ¢ in iteration i + 1 according to the amount of points-to
example is illustrated in the context of points-to analyiigs information newly added by: in iteration i. The complete
equally applicable to other static analyses such as Mod/Rafalysis developed using the prioritization frameworkiieg
analysis. The above example also illustrated two prioriip Algorithm 2. The functioneval uate() in Line 10
schemes — one based on the dependence across constréements a single iteration of the points-to informatiom-
based ondef-usechain and another based on the amouputation and propagation using any method like Andersen’s
of information a constraint changes. We carefully categporianalysis [1], Deep Propagation [7] or Lazy Cycle Detection
different priority schemes in the next subsection and fdizea [14].

IV. PRIORITIZATION ALGORITHM

the prioritization framework in Section IlI-C. Similar to Algorithm 1, our algorithm first processes the
address-of and copy constraints (Lines 1-2). Line 3 finds the
B. Priority Schemes dependence across constraints and and Line 4 partitions the

niPs different priority levels depending upon the topologica
ordering of the nodes.
S _) Therepeat-until loop at Lines 5-17 iterates through
« Linguistic schemein this scheme, the constraints argarious constraints at various priority levels until none o
prioritized based on their structure and the constraiffe constraint evaluations changes the points-to infdomat
variables. For instance, the priority mechanism in the lag{iggesting that the fixpoint is reached. Each iteration isf th
subsection for ordering constraints prior to Iteration & isloop corresponds to the different iterations of the potots-
linguistic scheme. Another linguistic scheme may prio%inalysis illustrated in Figure 1 of Section III.
itize all I(_)ad and store con_straints over copy CO”Str_ai”tS-Constraints in each priority level are processed, starting
. Eﬁect—_drl_v_en schemeln this schem(_a, the constraintsfrom the highest priority level, in thé or loop (Lines 6—
are prioritized based on the evaluation effects, e.g., t8). |n Line 10, the points-to information is computed using
number of times a constraint gets evaluated or the NUMBET ynderlying points-to analysis method. The method return
of points-to facts it adds (as in the example above). 5 single integer suggesting the amount of new points-to
It is possible to come up with a hybrid scheme that usé@sformation computed. Based on the returned integer value,
a combination of the above two schemes. For instance, amenew priority level is assigned to the constraint (Line 11).
could assign different priority levels based on an effadteth If the new priority level is the same as the current priority,

There are several ways in which the points-to constrai
can be prioritized. We classify them into two types.

Algorithm 2 Prioritized Points-to Analysis. up, several of thdoad and store constraints §§ = xq and

Require: setC of points-to constraints xp = q) start adding a fixed number of points-to information.
process address-of constraints and remove fébm Therefore, interdependent constraints, due to buckétizaiet
add edges t& using copy constraints and remove fr@n grouped at the same priority level. Thus, iterating oves¢he

3: sort C using dependence order interdependent constraints helps in reaching the fixpastef.
partition the constraints in different priority levels However, the importance of iterating over the constraints a
repeat the same priority level should not be over-emphasized. Due

6: forall I evel e Highest priority level .. Lowest priority to the cyclic nature of (self or transitive) dependence, st

level do cases, it suffices to iterate only twice over the constraamts
times =0 a priority level. The number of indirections present in hand
repeat written programs is typically quite small. Hence, loopingr b

o for all ¢ € Pieyer dO yond two iterations gradually reduces the gain (the amofint o

diff = evaluate(c) points-to information added). Therefore, thepeat - unt i |
new-level = priority-level(diff) loop from Lines 8-15 iterates for at mdstr eshol d number

12: Plevel = Piever \ C of times over the constraints at the same priority level. The

Prew-level = Prew-1ever U {C} conditioni nner fi xpoi nt takes care of not iterating an
end for (i + 1)* time if the i*" iteration does not change the points-

15: until inner fixpoint or++times > threshold to information.

end for We remark that the priority scheme does not require the
until outer fixpoint constraint graph explicitly. The algorithm works on coagits

rather than on individual pointers.

A. Algorithm Complexity
the same constraint may get processed again sht_)rtly, as itha ot ¥ be the number of pointer variables amdbe the
changed the points-to information. Thepeat - unti | 100p ,mper of points-to constraints in a program. Finding depen

(Lines 8-15) shows that the cons'Fraint_s in th_e same Priorf@dance across constraints in Line 3 of Algorithm 2J62N).
level get processed repeatedly until an inner fixpoint (fiRPO £4.h call toevaluate in Line 10 requiresO () time. for-

for the constraints within the same priority level). Thises- loop at Line 9 executes times whereL is the number of
tially allows the skewed processing of some constraints, Briority levels. The inner epeat - unti | loop executes at
they get evaluated more often than others. mostt hr eshol d number of times while the outer one at
Lines 12 and 13 remove a constraint from its current priorityjne 5 executesO(M) times. Thus, the complexity of the
level and put it in a new level, if its new priority level iSaIgorithm iISO(M2N + M x L x threshold x L x N), which is
different from the current one. Note that the new priorityele O(M2N+L2MN) sincet hr eshol d is typically a small number
computed is directly proportional to the change in the ®int(in our implementation it is 2). A useful heuristic is to ctseo
to information. This essentially means that the constsaint2 ~ O(M) in which case, it simplifies t@(M2N). Assuming
which add more new points-to pairs are given higher priority ~ O(N), the complexity become®(X3), same as that of

Since adding more edges typically results in the propagatinndersen’s analysis [1] or Deep Propagation [7].
of more points-to information, constraints that add morge=d
get higher priority. V. EXPERIMENTAL EVALUATION

We explain the computation of the new priority level at We evaluate the effectiveness of prioritized points-tol-ana
Line 11 next. The number of priority levels used in our methogsis using 16 SPEC C/C++ benchmarks and five large
requires to be carefully chosen. Keeping this number sameagen source programat{pd, sendmail gdb, wine-serverand
the differencedi f f) in the points-to information may requireghostscripf. The characteristics of the benchmark programs
a large number of priority levels to be considered, as a feave given in Table IKLOC is the kilo lines of unprocessed
constraints may change hundreds of points-to facts. Mamrgowource codeTotal Instis the total number of instructions
this, in most cases, is unnecessary, as the fixpoint conipuitain the LLVM [15] intermediate code after optimizing at -O2
benefits from clusters of constraints having approximatedy level. Pointer Instis the total number of pointer instructions
same priorities, rather than an isolated high priority ¢aist. processed by the analysiBunc is the number of functions
Therefore, we combine a range of priority values into a singtlefined in each program. We evaluate the impact of our
priority level. This bucketizationproves helpful in skewed prioritization approach on the following methods.

evaluation of constraints in a priority level. « anders This is the base Andersen’s algorithm [1] that
Further, bucketization exploits an important observation uses a simple iterative procedure over the points-to con-

about constraint solving (as a side-effect): several depen- straints to reach a fixpoint solution. The underlying data

dent constraints, at different times during the analysisdify structure used is a sorted vector of pointees per pointer.

the same amount of points-to information. We observed this Our implementation ofanders incorporates difference
empirically and on inspection, realized that after initiarm- propagation to propagate only the changed points-to

Benchmark | KLOC #Tlc,’g # Pomter] # Func 33%) due to prioritized scheduling of points-to constraint
gcc 222.185| 328,425| 119,384| 1,829 This emphasizes the importance of a good constraint order.
perlbmk gi-gg; i‘l‘gvg‘l‘g gg%i 1'§$; In case ofbddlcd we observe a larger benefit due to
gap - : , P 0 ; .
vortex 67.216 | 75458 16,114 963 prlontlzatlon (44% on an average, excludigdb). Th_e benefit
mesa 59.255| 96,919 | 26,076 | 1,040 is an outcome of an interplay betwebddlcd algorithm and
g;lafltfy gg-ggz 28‘233 lgv‘é% ;ig prioritized scheduling. Cycle detection benefits from eval
0 . s s
vpr 17.731| 25851 6.575 208 ating the cyc.llc constr_alnts together which chan.ge an equal
eon 17.679 | 126,866 | 43,617 | 1,723 number of points-to pairs and hence get grouped into the same
ammp ﬁ-ggg gg.gz 1?’2%3 géé priority level. The prioritized scheduling approach eaés all
parser . , ,
gzip 8618 | 8434 991 920 of them in close-proximity, often giving correct hints toeth
bzip2 4.650 4,832 759 90 cycle detection mechanism, resulting in an overall efficien
mcf } ig}g 3'823 1v8§g j,c2> analysis. In case ajdb, the prioritized LCD version goes out
equake . ,
art 1272| 1977 286 43 of memory (see discussion in Section V-B).
hitpd 125.877| 220,552 | 104,962| 2,339 In case ofbloom both the versionsb{oom and p-bloon)
Sﬁ”d{“a'! t i§§'§83 égéé‘ég 42;33‘; (13:88? analyze all the benchmarks successfully to completionh wit
ghostscrip . , , ,) L. 0 . . .
gdb 474501 | 576.624| 362171| 7127 p bloomachleylng ?0/0 reduction |n. the apglyss time.
wine-server | 178.592 | 110,785| 66,501 | 2,105 The execution times of context-insensitive analysisep
TABLE | and p-deep are significantly lower due to the relatively
BENCHMARK CHARACTERISTICS lower computational requirements of the context-inseresit

algorithm. But even in this case, introducing prioritipati
results in an improvement that is either smaller for benakma
)) i) o which require few hundred milliseconds analysis time or not
information and implements online cycle elimination [8served (for the benchmarks where the analysis time is a few
and offline variable substitution [16]. _ milliseconds).! However, for the larger benchmarks such as

« bddled This is Lazy Cycle DetectiofL.CD) algorithm pn4 ghostscripand gdb, the improvements are significant,
implemented using BDD from Hardekopf and Lin [10}egyiting in more than 50% reduction in the analysis times Th
obtained from the first author's website [17]. We extenfbason is quite similar to that in case lddicd Online cycle
it for context-sensitivity. ~ detection implemented as part deepbenefits from priori-

« bloom The bloom filter method uses an approximatg, e scheduling. However, another artifactdsfepfacilitates
representation for storing both the points-to facts and trpﬁgher benefits with prioritized scheduling. Deep Propagat
context information using_e} bloom filter. As Fhis represenyorks on the topological ordering of the directedpy edges
tation results in false-positives, the method is appro%ma, o;oss pointer nodes in the constraint graph. Effect-drive
and introduces precision loss. For our experiments, Weiyitization of constraints addsopy edges that propagate
use themediumconfiguration [11] which results in 'ess(approximately) the same number of points-to constraints i

than 2% precision loss for the chosen benchmarks. 5 jteration, resulting in most of the propagation pathlatse
- deep This is the context-insensitive Deep Propagatiog, deep propagation.

method [7] obtained from the first author’s website [18].
The idea is to propagate points-to information in thg Memory
constraint graph to all the reachable nodes along a path,

before the other paths are considered. It uses a spars&n® memory requirements (in MB) for various methods are
bitmap representation to store points-to sets. shown in Table Ill. In general, one would expect the memory

. . - . , , requirements to remain almost the same. However, the @itern
deepis context-insensitive while other implementations are

context-sensitive; further, all methods are flow-insevesiand ;tructure and |mplementathn of the algorithm play a keg ol
S o T in the overall memory requirement.
field-insensitive. Context-sensitivity is implementedngsan

invocation-graph based approach [19]. For each methode p-anders consistently requires significantly .Iess memory
denote its prioritized version gs-a. All prioritized versions thananders On an average, the memory requirement for the

— . 0 :
implement effect-driven scheme with all the optimizationgrlorltlzed version gets reduced by 17%. The memory savings

described in Section IV with the number of priority level re largely due to the diﬁerence propagation and_the use of
set to 203 (see Section V-C). The experiments are carried porary data structures during constraint evaluatiosteld

on an Intel Xeon machine with 2 GHz clock, 4 MB L2 cach& eeping small difference information for propagationss
and 4 GB RAM ' iterations as inanders our effect-driven prioritized scheme

combines difference information together and propagatst
A. Analysis Time along complete paths in consecutive evaluations. Thisfliene

The analysis times (in seconds) of various methods ar
y () qPrioritization improves the performance even in contesensitive ver-

shown in Table II. Compan_ngmdersversusp_—an_ders W€ sions ofanders bloom and bddicd although by a smaller margin. Due to
observe a 13%—41% reduction in the analysis time (averagpace limitation, we do not report those numbers here.

Context-sensitive Context-insensitive
Benchmark anders| p-anders bddlcd p-bddicd bloom p-bloom deep| p-deep
gce 329.463 286.474 || 17,411.208| 7,984.474| 10,237.702| 8,534.893 1.740 1.176
perlbmk 143.448 98.375 5,879.913| 3,159.513 2,632.044| 2,144.364 1.744 1.396
vortex 91.283 69.732 4,725.745| 3,397.158| 1,998.501| 1,693.492 0.116 0.088
eon 93.495 79.264 2,391.831| 1,515.148 1,241.602 848.439 11.701 2.320
parser 35.445 26.387 618.337 330.953 145.777 124.844 0.176 0.072
gap 128.478 84.963 330.233 186.818 152.102 124.994 0.092 0.044
vpr 29.456 20.119 199.510 95.647 88.826 63.339 0.024 0.008
crafty 29.337 22.128 154.983 91.551 46.899 34.436 0.004 0.004
mesa 89.388 65.143 21.732 12.095 10.041 8.945 0.248 0.108
ammp 34.236 23.285 54.648 31.399 15.185 12.586 0.032 0.012
twolf 41.499 33.774 27.375 13.470 5.132 4.031 0.032 0.016
gzip 25.234 14.885 6.533 3.134 1.808 1.170 0.004 0.004
bzip2 23.322 13.968 4.703 3.907 1.348 1.199 0.004 0.004
mcf 22.395 17.147 32.049 18.384 5.040 4.805 0.004 0.004
equake 24.306 17.178 4.054 3.665 1.100 0.866 0.004 0.004
art 26.459 19.153 7.678 4.144 2.400 2.004 0.004 0.004
httpd 224.534 193.287 47.399 24.785 52.793 42.785 53.727 23.722
sendmail 172.743 136.246 117.528 96.590 25.346 17.867 12.729 10.613
ghostscript | 4,384.238| 3,183.843|| 20,612.772| 12,371.973 2,597.863| 2,101.794 207.03 | 126.140
gdb 9,338.228| 5,847.285|| 24,871.681 OOM 22,847.375| 18,035.790|| 587.829 | 294.066
wine-server| 201.323 147.289 36.689 23.499 23.686 18.398 8.165 5.488
average 737.539 495.235 3,693.171 1468.415 2,006.313| 1,610.526 42.162 22.157

" The average is calculated ignoring tBM entry.

TABLE I
ANALYSIS TIME (SECONDY

is similar in spirit to what Deep Propagation achieves over
Wave Propagation [7].

Both bloom and p-bloomcomplete successfully on all the
benchmarks and do not use difference propagation. Hence the
memory requirements are quite similar (555 MB versus 539
MB on an average).

< ghostscript
05 M gdo
A perlbmk

Analysis time (normalized)

04 D4 gzip
p-deepoutperformsdeepin terms of the memory require- 03 X{ebeiade
ment by 23% on an average. Memory savings are largely due Zf
to difference propagation. oo ‘ ‘ ‘ ‘ ‘ |
On the other handp-bddlcd requires 45% more memory anders 2 17 3 101 208 503
than bddlcd In fact, in case ofgdb, p-bddicd runs out of Number of buckets
memory whereas the non-prioritized version completes suc-
cessfully. Unlike other algorithms discussed hdrddicd is Fig. 2. Effect of bucketization

worklist based. A constraint may get added to the worklist
while its another instance is already present. Thus, thé&ligor
size is not bound by the total number of points-to constsain
Having a prioritized scheme requires multiple such wot&lie
be created, pushing different instances of the same camtstri
into different worklists based on the current priority ofeth
constraint. Thus, using multiple worklists increases tineant
of memory consumed.

[p-anders
M anders

Average # new points-to facts added

Iteration number

C. Effect of configuration parameters

Effect of bucketization. First, we experimented with several Fig. 3. Effect of prioritization

values for the number of priority levels. The sensitivity of

the analysis time (execution time to complete the points-to

analysis) to the number of priority levels (buckets) fotime steadily reduces with the increasing number of buckets
p-andersis shown in Figure 2. Note that the values arélowever, the number of buckets should not be arbitrarily
normalized with respect tanders To avoid clutter, we show increased. It is important to keep related constraintsttmge
the effect on only four representative benchmaghestscript so that an inner fixpoint over the related constraints woeld b
gdb, perlbomk and gzip along with the average over all thebeneficial (Section V-A). Using too many priority levels may
benchmarks listed in Table I. We observe that the analysigve related constraints in different priority levels andud

Context-sensitive Context-insensitive
Benchmark | anders| p-anders]| bddicd | p-bddicd [[bloom | p-bloom || deep p-deep
gce 2859 2174 2633 3794 1202 1192 83 73
perlbmk 2133 1878 1888 3223 502 499 100 93
vortex 1857 1553 1527 2284 231 222 16 16
eon 1276 907 2798 3697 414 408 248 66
parser 478 419 1016 1438 149 142 4 4
gap 457 397 1289 1680 301 298 8 8
vpr 735 688 964 1356 112 112 2 2
crafty 672 600 739 935 96 95 1 1
mesa 894 825 1682 2466 223 220 14 14
ammp 427 372 935 1330 103 102 3 2
twolf 624 485 926 1256 153 148 4 4
gzip 514 446 802 1053 71 70 1 1
bzip2 633 582 693 1009 68 69 1 1
mcf 403 379 551 716 68 70 1 1
equake 546 501 593 953 68 68 1 1
art 597 524 664 972 65 65 1 1
httpd 791 686 1156 1754 739 736 674 425
sendmail 914 799 1592 2425 442 438 256 224
ghostscript 1958 1644 2470 3528 2322 2317 || 2871 2364
gdb 2194 1635 3299 OOM 3931 3667 || 3556 2765
wine-server 774 615 1182 1886 385 378 185 149
average 1035 862 1400 1888 555 539 382 296
* The average is calculated ignoring tB®©M entry.
TABLE Il

MEMORY REQUIREMENT(MB)

reduce the benefit of the inner fixpoint. Further, after a poirimplemented as a priority queue. Theoretically, a priority
increasing the number of buckets starts giving diminishirgueue incurs, on an average, an O(log n) complexity for each
returns. insertion and removal of an element. In our hashtable-based
implementation, insertion and removal are O(1) operations
Effect of skewed evaluation.We measure for each iterationgiven a reference to a constraint. To study how the two
the number of times (all the constraints in) each prioritynplementations perform in practice, we developed a gsiori
level reaches an inner fixpoint in the second iteration. Wpieue-based analysis with C++ STL. Our preliminary results
observe that on an average around 84% of the occupienl SPEC 2000 benchmarks indicate that the hashtable-based
priority levels reach fixpoint in second iteration. This ®lso Andersen’s analysispfander3 requires 33% — 93% lesser
the effectiveness of our prioritized ordering which enabldime than the priority queue-based analysis. Although more
faster fixpoint computation. experimentation is necessary to draw further conclusians,
We would like to note that values of the configuratioseems clear that the priority levels implemented as a hialehta
parameters play an important role in the analysis efficienpgrform better than that implemented as a true priority queu
and must be chosen carefully. However, our experience
suggests that the parameters vary according to the program VI. RELATED WORK

characteristics and there is no simple rule to arrive aneglti 5, axcellent survey on pointer analysis techniques is pre-

values for all the programs. sented by Hind and Pioli [20].

S Several novel techniques have been developed to improve
Effect qf prioritization. We counted the average number Oﬁpon the original Andersen’s analysis [4], [21], [22], [23]
new pomts-tq facts gener_ated by each con_stramtafuxders Binary Decision Diagrams (BDD) [4], [23] are used to store
andp-andersin each iteration fowortex (see Figure 3}.Due points-to information in a succinct manner. The ide&obt-

to .pr|or|t|zmg appropriate constramtp,—an_ders_computgs th? strapping[6] uses divide and conquer strategy by partitioning
points-to facts faster and reachesf the f|qu|nt n 8 Itenstio o set of pointers into disjoint alias sets using a fast asd |
compared to 10 as ianders A similar behavior is observed precise algorithm (e.g., [2]) and later, a more preciseritiyn
for other benchmarks. analyzes each partition. Due to the small partition sizes, t
D. Comparison with priority queue overall analysis scales well with the program size. Theyamsl
over the alias partitions can be done in parallel. Nasre.et al
L?"] convert points-to constraints into a set of linear eures
g¥d solve it using a standard linear solver. Storing coraplet
calling context information achieves a good precision, dut
2Dye to constraints getting evaluated multiple timepianders the notion the€ cOst of storage and analysis time. Therefore, apprdagima
of iteration is not well defined. representations have been introduced to trade off precisio

In all our experiments the buckets are implemented as
hashtable wherein the priority level acts as the key. One m
argue that the prioritization can possibly be more effidient

scalability. Das [3] proposedne level flowLattner et al. [25] ACKNOWLEDGMENT

unified contexts, while Nasre et al. [11] hashed contexts to\we thank Aditya Kanade, Akash Lal, Aditya Thakur and
alleviate the need to store the complete context informatio Kapil Vaswani for their helpful comments on an initial draft

Inclusion based analysis can also be improved using s@jf-the paper.

eral novel enhancements proposed in literature. Onlinéecyc
elimination [8] breaks dependence cycles amongst pointer
variables on the fly. Offline variable substitution [16] opies [1]
over constraints prior to the constraint evaluation to find o
pointer equivalent variables. Except for the offline valgab 2
substitution, all the other enhancements operate dyndlgnica
on the constraint evaluations. Our linguistic scheme based [3I
dependences across constraints falls in the offline categogy
However, in general, similar to the effect-driven schente, i
is dynamic in nature and can be used online to update tH&
constraint dependences as more points-to information g
computed. The linguistic scheme also finds resemblance with
the node listing approach [26] for dataflow analysis of strucl’]
tured programs. (8]

Wave and Deep Propagation techniques [7] perform a
breadth-wise and depth-wise propagation of points-torinfo [9
mation in a constraint graph. Various techniques proposgeg,
for worklist management [9] also identify heuristics to cka
the fixpoint faster. Specifically, Greatest Output Rise (GO
algorithm comes close to our effect-driven priority schem
However, similar to Deep and Wave Propagation, the worklist
management algorithms deal with the propagation of pdimts{12]
information in the constraint graph and are orthogonal to o3
prioritized analysis of the points-to constraints. Ouropti-
zation framework is more comprehensive and applicable to[la]
variety of existing techniques.

1]

[15]
[16]

VII. CONCLUSIONS

In this paper, we proposed a prioritized order of processi%}g}
constraints in the points-to analysis method to improve it&]
efficiency. First, we proved that finding an optimal sequence
of points-to constraints for even a restricted flow-insévesi [2g]
version is NP-Complete. Subsequently, we identified two new
dimensions for evaluating points-to constraints: how mar%/1
edges a constraint adds and where in the constraint grapkpit
adds edges. Based on this observation, we presented dipriori
zation framework for evaluating a set of points-to constisai
We illustrated the generality of the proposed framewoiliy)
by implementing prioritized versions of Andersen’s anilys
Lazy Cycle Detection using BDD, Bloom-filter based analysi§5]
and Deep Propagation. Experimental evaluation shows that
the presented priority scheme can greatly benefit the sta@$]
of-the-art algorithms to reach a fixpoint faster. In additio
to improving the analysis time, the proposed approach also
reduces the memory requirement of the algorithms that use
difference propagation.

While the framework is illustrated in the context of points-
to analysis, the idea of prioritized evaluation is generad a
applicable to other static and dynamic analyses. We believe
that further work on prioritizing constraints can open up
interesting possibilities for performing optimizations.

REFERENCES

L. O. Andersen, “Program analysis and specialization tfe C pro-
gramming language,” iPhD Thesis, DIKU, University of Copenhagen,
1994.

] B. Steensgaard, “Points-to analysis in almost lineareff in POPL,

1996, pp. 32-41.

M. Das, “Unification-based pointer analysis with diecal assign-
ments,” inPLDI, 2000, pp. 35-46.

M. Berndl, O. Lhotak, F. Qian, L. Hendren, and N. Uman#®gints-to

analysis using BDDs,” irPLDI, 2003.

J. Whaley and M. S. Lam, “Cloning-based context-sevesifiointer alias
analysis using binary decision diagrams,”RDI, 2004, pp. 131-144.
V. Kahlon, “Bootstrapping: a technique for scalable flamd context-
sensitive pointer alias analysis,” RLDI, 2008.

F. M. Q. Pereira and D. Berlin, “Wave propagation and deegpagation
for pointer analysis,” iInCGO, 2009, pp. 126-135.

M. Fahndrich, J. Foster, Z. Su, and A. Aiken, “Partiallina cycle

elimination in inclusion constraint graphs,” RLDI, 1998.

] A. Kanamori and D. Weise, “Worklist management stragsgifor

dataflow analysis,” ilMSR TechnicalReport, MSR-TR-94-12, 1994.
B. Hardekopf and C. Lin, “The ant and the grasshoppet dad accurate
pointer analysis for millions of lines of code,” RLDI, 2007, pp. 290—
299.

R. Nasre, K. Rajan, R. Govindarajan, and U. P. Khedk&galable
context-sensitive points-to analysis using multi-dimenal bloom fil-
ters,” in APLAS, 2009.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, “Introtion to
algorithms,” inMcGraw Hill, 2009.

B. Awerbuch, Y. Azar, A. Fiat, and T. Leighton, “Makingpmmitments
in the face of uncertainty: how to pick a winner almost evearet
(extended abstract),” iISTOC, 1996.

B. Hardekopf and C. Lin, “Exploiting pointer and loaati equivalence
to optimize pointer analysis,” iBAS, 2007.

LLVM, “The LLVM compiler infrastructure,” in http://livm.org, .

A. Rountev and S. Chandra, “Off-line variable subsiitn for scaling
points-to analysis,” ifPLDI, 2000, pp. 47-56.

B. Hardekopf, “http://www.cs.utexas.edu/usershen
Deep-Propagation, “http://compilers.cs.ucla.ésluwando/projects/pta/.”
M. Emami, R. Ghiya, and L. J. Hendren, “Context-sewsitinterproce-
dural points-to analysis in the presence of function po#iten PLDI,
1994, pp. 242-256.

M. Hind and A. Pioli, “Which pointer analysis should ie®’ in ISSTA,
2000, pp. 113-123.

] N. Heintze and O. Tardieu, “Ultra-fast aliasing an@yssing CLA: a

million lines of C code in a second,” iRLDI, 2001.
O. Lhotak and L. Hendren, “Scaling Java points-to asialyising spark,”
in CC, 2003.

] J. Whaley and M. Lam, “An efficient inclusion-based peito analysis

for strictly-typed languages,” iSAS, 2002.

R. Nasre and G. Ramaswamy, “Points-to analysis as @msysf linear
equations,” inSAS, 2010.

C. Lattner, A. Lenharth, and V. Adve, “Making contexrsitive points-
to analysis with heap cloning practical for the real worlay’ PLDI,
2007, pp. 278-289.

K. W. Kennedy, “Node listings applied to data flow anagysin POPL,
1975, pp. 10-21.

