
Prioritizing Constraint Evaluation for
Efficient Points-to Analysis

Rupesh Nasre
Computer Science and Automation,

Indian Institute of Science,
Bangalore, India – 560012

Email: nasre@csa.iisc.ernet.in

R. Govindarajan
Computer Science and Automation,

Indian Institute of Science,
Bangalore, India – 560012

Email: govind@csa.iisc.ernet.in

Abstract—Pervasive use of pointers in large-scale real-world
applications continues to make points-to analysis an important
optimization-enabler. Rapid growth of software systems demands
a scalable pointer analysis algorithm. A typical inclusion-based
points-to analysis iteratively evaluates constraints andcomputes
a points-to solution until a fixpoint. In each iteration, (i) points-to
information is propagated across directed edges in a constraint
graph G and (ii) more edges are added by processing the points-
to constraints. We observe that prioritizing the order in which
the information is processed within each of the above two steps
can lead to efficient execution of the points-to analysis. While
earlier work in the literature focuses only on the propagation
order, we argue that the other dimension, that is, prioritizing
the constraint processing, can lead to even higher improvements
on how fast the fixpoint of the points-to algorithm is reached.
This becomes especially important as we prove that finding an
optimal sequence for processing the points-to constraintsis NP-
Complete. The prioritization scheme proposed in this paperis
general enough to be applied to any of the existing points-to
analyses. Using the prioritization framework developed inthis
paper, we implement prioritized versions of Andersen’s analysis,
Deep Propagation, Hardekopf and Lin’s Lazy Cycle Detection
and Bloom Filter based points-to analysis. In each case, we report
significant improvements in the analysis times (33%, 47%, 44%,
20% respectively) as well as the memory requirements for a
large suite of programs, including SPEC 2000 benchmarks and
five large open source programs.

I. I NTRODUCTION

Static analysis of programs is important to achieve faster
runtime execution, more secure code, less buggy programs,
invariant guarantees and a better program understanding. As
more and more emphasis is laid on guaranteeing secure code,
data-race free programs and memory-leak free programs, the
demand on scalable and precise static analysis increases.
Further, the rapid growth of code bases places even further
demand on scalable static analysis techniques. Points-to anal-
ysis is an important static analysis which is an enabler for
several compiler optimizations. The effectiveness of several
compiler optimizations depends heavily on the underlying
pointer analysis. Thus, the scalability requirement of pointer
analysis and its importance is unquestionable. Indeed, the
literature on points-to analysis is rich with several interesting
ideas [1], [2], [3], [4], [5], [6], [7].

For analyzing a general purpose C program, it is sufficient
to consider all pointer statements of the following forms:

Algorithm 1 Points-to Analysis using Constraint Graph.
Require: setC of points-to constraints

1: Process address-of constraints
2: Add edges to constraint graph G using copy constraints
3: repeat
4: Propagate points-to information in G
5: Add edges to G using load and store constraints
6: until fixpoint

address-of assignment (p = &q), copy assignment (p = q),
load assignment (p = ∗q) and store assignment (∗p = q) [7].
Load and store assignments are also referred to ascomplexas-
signments in literature (e.g., [7]). We use the termsconstraint,
statementand assignmentinterchangeably in this article. We
deal with flow-insensitive, context-sensitive inclusion-based
points-to analyses in this work.

A flow-insensitive analysis iterates over a set of points-to
constraints until a fixpoint is obtained. Typically, the flowof
points-to information is represented using a constraint graphG,
in which a node denotes a pointer variable and a directed edge
from noden1 to noden2 represents propagation of points-to
information fromn1 to n2. Each node is initialized with the
points-to information computed by evaluating theaddress-of
constraints. Edges are added toG initially by copyconstraints
and then bycomplexconstraints as the analysis progresses.
This is because the edges introduced bycomplexconstraints
depend upon the availability of points-to information at nodes
which, in turn, depends upon the propagation. Thus, as the
analysis performs an iterative progression of the points-to
information propagation, new edges get introduced inG due
to the evaluation of thecomplexconstraints, resulting in the
computation of more and more points-to information at its
nodes. When no more edges and no more points-to information
can be computed,G gets stabilized and a fixpoint (at the nodes)
is reached. An outline of this analysis is given in Algorithm1.

Techniques have been developed for efficientpropagation
of the points-to information across the edges of a constraint
graph, i.e, Line 4 of Algorithm 1. Online cycle elimination [8]
detects cycles inG on-the-fly and collapses all the nodes
in a cycle into a representative node. This speeds up the

propagation of points-to information since all the nodes ina
cycle eventually contain the same points-to information. Wave
and Deep Propagation [7] perform a topological ordering of
the edges and propagate difference in the points-to information
in a breadth-first or depth-first manner. Various heuristicslike
Greatest Input Rise, Greatest Output Rise, and Least Recently
Fired [9] work on the amount and recency of information
computed at various nodes in the constraint graph to achieve
a quicker fixpoint.

All of the above techniques essentially focus on the prop-
agation order (Line 4 of Algorithm 1) and prioritize the
order in which the points-to propagation takes place. However,
these techniques do not attempt to dictate which evaluation
order of the constraints (Line 5 of Algorithm 1) would prove
more beneficial for faster points-to information computation.
Specifically, there are two aspects of the constraint evaluation
that are hitherto not exploited in literature: (i) how many edges
a constraint adds, and (ii) where inG a constraint adds edges.
We observe that both these parameters are important and can
significantly influence the fast convergence of the fixpoint
computation. It should be noted that neither the propagation
order nor the constraint evaluation order changes the fixpoint
of the points-to solution.

We develop a framework that deals with the priority order-
ing of the points-to constraints and the propagation of points-to
information. The two criteria mentioned above give rise to a
priority assigned to each constraint. The priority is dynamic
in nature and can change as the analysis progresses. Our pri-
oritized analysis not only evaluates constraints in the priority
order, but also evaluates certain constraints repeatedly based
on priority. The result is a skewed evaluation of important and
useful constraints early and in a repeated manner to reach the
(same) fixpoint solution faster.

To summarize, while earlier approaches [8], [9], [7] focus on
the propagation order of the points-to information, we address
the evaluation order of the points-to constraints.

Major contributions of this paper are as below.
• We prove that finding a sequence of the points-to con-

straints to reach the fixpoint in an optimal number of
steps in a flow-insensitive inclusion-based analysis is NP-
Complete (Section II).

• We develop a priority based greedy analysis framework
for efficient computation of points-to information (Sec-
tion III). The framework is general and can be used for
other static analyses.

• We instantiate our framework by definingconstraint
priority based on the structure of and the number of
points-to facts changed by a constraint. We extend it to
a dynamic constraint ordering that can be easily applied
to a particular points-to analysis algorithm (Section IV).

• We show the effectiveness of our approach by applying
it on top of the state-of-the-art algorithms (Andersen’s
analysis [1], BDD-based Lazy Cycle Detection [10],
Deep Propagation [7] and Bloom Filters [11]) for SPEC
2000 benchmarks and five large open source programs
(httpd, sendmail, gdb, wine-serverandghostscript) (Sec-

tion V). Our experimental evaluation shows a significant
improvement in the analysis times: 33% in Andersen’s
analysis, 47% in Lazy Cycle Detection, 44% in Deep
Propagation and 20% in Bloom Filter based analysis.
A positive side-effect of the application of prioritized
constraint evaluation is the reduction in the memory
requirement of the original analyses: 17% in Andersen’s
analysis and 23% in Deep Propagation.

II. OPTIMAL ORDERING OFCONSTRAINTS

Given our observation that prioritizing the processing of
points-to constraints in Line 5 of Algorithm 1 improves the
analysis time, it raises the question:does there exist an
order in which the constraints should be processed which can
ensure optimal number of steps for reaching the fixpoint?For
instance, given a set of points-to constraints
a = &x, b = &y, p = &q, ∗q = b, ∗p = a,

it takes two iterations to reach the fixpoint, if they are pro-
cessed in the above order. However, processing the constraints
in the following order ensures fixpoint in one iteration.
a = &x, b = &y, p = &q, ∗p = a, ∗q = b.

Since existing techniques decouple propagation and evaluation
of thecomplexconstraints, they do not reorder the constraints,
which results in requiring multiple iterations to reach the
fixpoint.

In this section, we prove that computing such a sequence
even for a restricted scenario where only copy constraints are
allowed is NP-Complete.

Theorem 1. Computing the flow-insensitive inclusion-based
points-to solution in an optimal number of steps from a set of
copy constraints is NP-Complete.

Proof: We reduce Set Cover problem to points-to analy-
sis. Consider a Set Cover instance SC(U ,S, K) with universe
U and a setS of subsetsSi. The decision version of the Set
Cover problem states that given a universeU and a setS with
subsetsSi possibly having elements in common, whether there
exists a set ofK subsets whose union contains all the elements
contained in anySi. The problem SC(U ,S, K) is known to
be NP-Complete [12].

We reduce SC(U ,S, K) to PTA(C, S, K) which is a flow-
insensitive points-to analysis over a set of points-to (copy)
constraintsC with an initial points-to information and the
fixpoint defined with respect to pointerS. The decision version
of PTA checks if the constraints inC can be evaluated in a
manner such that the fixpoint with respect toS is reached in
K steps. A step indicates evaluation of a constraint.

The reduction is performed as below. For each elements ∈
Si, we create an initial points-to informationSi → {s}, i.e.,
Si points-tos. For each setSi, we create a copy statement
S = Si. This transformation from SC(U ,S, K) to PTA(C, S,
K) is linear in the number of sets and the number of elements.
Thus, SC polynomially reduces to PTA.

If an efficient (polynomial) solution exists for PTA, then
the solution can be mapped back to SC. Thus, if there is

a sequence ofK steps to obtain the fixpoint, and since the
fixpoint would contain all the points-to information, then
the subsetsSi corresponding to the chosen copy constraints
(S = Si) would cover all the elementss ∈ U that correspond
to the points-to facts in the fixpoint, forming the set cover.

Similarly, if a set cover of sizeK exists, then no other
subset would be able to add any new points-to information to
S and theK subsets would form an optimal sequence ofK

steps to obtain the fixpoint over the constraints.
Thus, PTA is NP-Hard. (a)
It is easy to see that a given sequence ofK constraints can

act as a polynomial time verifier to check if PTA evaluates to
a fixpoint. Thus, PTA is in NP. (b)

From (a) and (b), PTA is NP-Complete.

III. PRIORITIZED COMPUTATION OF CONSTRAINTS

We first explain our priority-based approach using an ex-
ample, then discuss various priority schemes followed by our
prioritization framework. Our priority based approach maybe
viewed similar to the maximum benefit approach in the online
set cover problem [13].

A. Motivating Example

Consider the program fragment given in Figure 1(a). Let the
initial points-to information due to the address-of constraints
be a → {a, q, r, s, t} and p → {b, c, d}. Figure 1(b) illus-
trates the constraint graphG at the end of different iterations
of Andersen’s analysis [1] with points-to information propa-
gated using Deep Propagation [7]. For simpler exposition, we
assume that online cycle elimination [8] is not performed.

A node is represented asn{P} wheren is a pointer and{P}
is its points-to set computed so far. Directed edge from node
n1 to n2 represents the propagation of points-to information
from n1 to n2. As the behavior of the pointersq, r, s, t is the
same in this example, we use a single node to represent all of
them. Prior to Iteration 1, edgesd to e anda to b are added to
G using copy constraints (refer Algorithm 1). Iteration 1 starts
with propagating the points-to set{a,q,r,s,t} from node
a to b. Since the points-to set ofd is empty, no information
flows to e. The next step of processingcomplexconstraints
adds the edges as indicated below.
*e = c: none.
c = *a: a to c, qrst to c.
*a = p: p to a, p to qrst.
The new edges introduced in this iteration are shown as

thick lines. Thus, at the end of the first iteration, the points-
to information computed at different nodes as well as the
constraint graph are shown in Figure 1(b), Iteration 1.

The analysis continues propagating more points-to informa-
tion and then adding more edges (shown as thick lines) in each
iteration until it reaches the fixpoint in Iteration 5. The final
points-to information computed at the nodes by Andersen’s
analysis is shown in Figure 1(b) Iteration 5. In all the iterations
of the analysis, a fixed ordering of the constraints is used,
which is typically the order in which the constraints appearin
the program (Figure 1(a)).

Next, we explain how introducing a prioritized version of
Andersen’s analysis would evaluate the same set of constraints.
The priority scheme can use various mechanisms for ordering
the constraints. We use a mechanism wherein the priority of
a constraint is the number of new points-to facts it adds in
the previous iteration. Thus, the constraint priority is dynamic
and may change across iterations. At the start of the analysis,
i.e., before Iteration 1, the constraints can be ordered using
any ordering, including the program order. In this example,
we choose to use a dependence order. That is, a constraintc1
gets more priority over another constraintc2 if c1 may define
a variable thatc2 uses. Thus,p = q gets higher priority over
r = p, r = ∗p, ∗p = r. The constraint ordering at the start of
Iteration 1 is shown in the top drawing of Figure 1(c). The
value in parentheses following a constraint is the number of
new points-to pairs the constraint adds in that iteration. For
instance, the constraint*a = p adds 18 new points-to pairs
to G in Iteration 1.

As in the case of unprioritized Andersen’s analysis above,
prior to Iteration 1, the copy constraintse = d andb = a
add edgesd to e anda to b respectively. Iteration 1 of our
prioritized approach adds directed edges and computes points-
to information as shown in the top drawing of Figure 1(c).
Specifically, the constraint*a = p adds edges fromp to
qrst and p to a. This allows for addition of the points-to
set b,c,d to those ofqrst, a andb, i.e., 18 new points-
to pairs. Similarly, the constraintc = *a adds 4 new edges:
from nodesqrst, a, b, d to c and 8 new points-to pairs:
c → {a, b, c, d, q, r, s, t}. The last constraint*e = c does
not add any edges or new points-to information. Contrasting
the state ofG in Iteration 1 of the prioritized Andersen’s
analysis with that of Andersen’s analysis, we observe that
two additional edges are added in the prioritized analysis,
namelyb to c and d to c. Thus, compared to Iteration 1 of
Andersen’s analysis, Iteration 1 of the prioritized version adds
the following additional points-to information to the solution:
a, b, q, r, s, t→ {b, c, d}, c→ {a, b, c, d, q, r, s, t}. In gen-
eral, our priority based analysis enables addition of more edges
to the constraint graph early resulting in more possibilities
for early propagation of points-to information. Further note
that if the constraint*a = p is evaluated twice, then the
edges fromp to b,c,d would be added, making provision
for propagation of more points-to pairs. We exploit this fact
for skewed evaluation in our algorithm (Section IV).

Our priority based analysis framework keeps track of the
number of points-to facts that are newly added by each
constraint evaluation and accordingly assigns priority tothe
constraint. Multiple constraints may receive the same priority
forming clusters of constraints. A customary way of represent-
ing various priorities is using levels. Thus, constraints which
addi new points-to facts are assigned a priority levelPi. As
the analysis progresses, constraints are mapped to different
priority levels. As an example, sincec = ∗a adds 8 new
points-to pairs in Iteration 1, it is moved toP8 (to be used
in Iteration 2). Similarly, the constraint∗a = p is moved to
P18. The constraint∗e = c remains atP0.

d {}

e {}

p {bcd}

Iteration 0

c {}

b {}

a {aqrst}

qrst {}

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

d {}

e {}

p {bcd}

qrst {bcd}

Iteration 2

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

d {bcd}

e {bcd}

p {bcd}

qrst {bcd}

Iteration 3

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

d {abcdqrst}

e {abcdqrst}

p {bcd}

qrst {bcd}

Iteration 4

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

d {abcdqrst}

e {abcdqrst}

p {bcd}

qrst {abcdqrst}

Iteration 5

*a = p (18)
c = *a (8)
*e = c (0)

Constraint ordering

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

d {}

e {}

p {bcd}

qrst {bcd}

Iteration 1

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

d {abcdqrst}

e {abcdqrst}

p {bcd}

qrst {bcd}

Iteration 2

*a = p (6)
c = *a (0)
*e = c (10)

Constraint ordering

*e = c (20)
*a = p (0)
c = *a (0)

Constraint ordering a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

d {abcdqrst}

e {abcdqrst}

p {bcd}

qrst {abcdqrst}

Iteration 3

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

d {abcdqrst}

e {abcdqrst}

p {bcd}

qrst {abcdqrst}*e = c (0)
*a = p (0)
c = *a (0)

Constraint ordering

Iteration 4

Fixed processing ordere = d, b = a; *e = c, c = *a, *a = p

*e = c, c = *a, e = d, b = a, *a = pInput constraints

a {aqrst}

b {aqrst}

c {}

d {}

e {}

p {bcd}

qrst {}

Iteration 1

(b) Andersen’s Analysis

(c) Prioritized Andersen’s Analysis

(a)

Fig. 1. (a) Input constraints and fixed constraint ordering for Andersen’s analysis. (b) Constraint graphs for Andersen’s analysis. (c) Constraint graphs for
Prioritized Andersen’s analysis.

The prioritized ordering of the constraints at the start of
Iteration 2 (shown in Figure 1(c) Iteration 2) remains the same
as in Iteration 1. The new edges added (thick lines) and the
points-to information computed at various nodes are as shown
in Figure 1(c). In this iteration, the constraint∗a = p adds 6
new points-to pairs (d, e → {b, c, d}), the constraintc = ∗a
adds no new points-to information and the constraint∗e = c

adds 10 new points-to pairs (d, e → {a, q, r, s, t}). Note that
the edgesc to b and c to d get added in this iteration,
whereas in the case of the original Andersen’s analysis,
the same edges are added in Iteration 3 (Figure 1(b)). The
points-to information at nodee depends upon the information
propagated via this edge (pointee set{a, q, r, s, t}). The third
drawing of Figure 1(c) shows the prioritized ordering of the
constraints at the start of Iteration 3, sorted by the number
of points-to pairs each constraint added in Iteration 2. The
points-to information computed is as shown in Figure 1(c).
In this iteration, only∗e = c adds 20 new points-to pairs
(qrst → {a, q, r, s, t}).

The method converges after Iteration 4.
As shown in the example, a priority based analysis evaluates

constraints in such an order that it enables addition of more
edges and more useful edges early in the constraint graph
to ensure quick fixpoint computation. The propagation of the
points-to information via these edges is done by the underlying
analysis (Andersen’s method [1] or Deep Propagation [7], etc.)
which is not dictated by our method. The above example also
suggests that the fixpoint computation of an analysis can be
improved by going beyond the conventional mechanism of
treating all the constraints with the same priority. Although the
example is illustrated in the context of points-to analysis, it is
equally applicable to other static analyses such as Mod/Ref
analysis. The above example also illustrated two priority
schemes – one based on the dependence across constraints
based ondef-usechain and another based on the amount
of information a constraint changes. We carefully categorize
different priority schemes in the next subsection and formalize
the prioritization framework in Section III-C.

B. Priority Schemes

There are several ways in which the points-to constraints
can be prioritized. We classify them into two types.

• Linguistic scheme:In this scheme, the constraints are
prioritized based on their structure and the constraint
variables. For instance, the priority mechanism in the last
subsection for ordering constraints prior to Iteration 1 isa
linguistic scheme. Another linguistic scheme may prior-
itize all load and store constraints over copy constraints.

• Effect-driven scheme:In this scheme, the constraints
are prioritized based on the evaluation effects, e.g., the
number of times a constraint gets evaluated or the number
of points-to facts it adds (as in the example above).

It is possible to come up with a hybrid scheme that uses
a combination of the above two schemes. For instance, one
could assign different priority levels based on an effect-driven

scheme, and a linguistic scheme can be used to order the
constraints within the same priority level.

C. Prioritization Framework

We now formalize our notion of a priority based framework.
A prioritized frameworkR is a 4-tuple.

R = 〈C,P ,F ,≤〉, where

• C is the set of input constraints,
• P is the set of priority levels of sizeNP ,
• F = {f1, f2, ..., fk} is a family of priority functions.

In ith iteration, the analysis uses one offj for some
j ∈ 1..k. Then, a constraintc ∈ C is assigned a priority
p if fj(c) = p, and

• ≤ is a partial order defined on the priority levels assigned
to a pair of constraintscx and cy at theith iteration. If
fi(cx) = px andfi(cy) = py, thenpx ≤ py iff py is at a
higher priority level thanpx.

IV. PRIORITIZATION ALGORITHM

We instantiate our prioritization framework with a set of two
functions. The first functionf1 is used for the first iteration
whereas the other functionf2 is used for the subsequent
iterations of the analysis. Thus,F = {f1, f2}. The function
f1 assigns priority to a constraint according to its depth in
the dependence graph of constraints. Thus, it uses a linguistic
scheme to define a constraint priority. For instance, ifc1

defines a variable thatc2 uses, thenc1 gets higher priority than
c2. Note that one could use any suitable priority function of
choice. The functionf2 assigns a priority level to a constraint
c in iteration i + 1 according to the amount of points-to
information newly added byc in iteration i. The complete
analysis developed using the prioritization framework is given
in Algorithm 2. The functionevaluate() in Line 10
implements a single iteration of the points-to informationcom-
putation and propagation using any method like Andersen’s
analysis [1], Deep Propagation [7] or Lazy Cycle Detection
[14].

Similar to Algorithm 1, our algorithm first processes the
address-of and copy constraints (Lines 1–2). Line 3 finds the
dependence across constraints and and Line 4 partitions them
in different priority levels depending upon the topological
ordering of the nodes.

The repeat-until loop at Lines 5–17 iterates through
various constraints at various priority levels until none of
the constraint evaluations changes the points-to information,
suggesting that the fixpoint is reached. Each iteration of this
loop corresponds to the different iterations of the points-to
analysis illustrated in Figure 1 of Section III.

Constraints in each priority level are processed, starting
from the highest priority level, in thefor loop (Lines 6–
16). In Line 10, the points-to information is computed using
an underlying points-to analysis method. The method returns
a single integer suggesting the amount of new points-to
information computed. Based on the returned integer value,
a new priority level is assigned to the constraint (Line 11).
If the new priority level is the same as the current priority,

Algorithm 2 Prioritized Points-to Analysis.
Require: setC of points-to constraints

process address-of constraints and remove fromC
add edges toG using copy constraints and remove fromC

3: sort C using dependence order
partition the constraints in different priority levels
repeat

6: for all level ∈ Highest priority level .. Lowest priority
level do
times = 0

repeat
9: for all c ∈ Plevel do

diff = evaluate(c)
new-level = priority-level(diff)

12: Plevel = Plevel \ c
Pnew-level = Pnew-level ∪ {c}

end for
15: until inner fixpoint or++times > threshold

end for
until outer fixpoint

the same constraint may get processed again shortly, as it has
changed the points-to information. Therepeat-until loop
(Lines 8–15) shows that the constraints in the same priority
level get processed repeatedly until an inner fixpoint (fixpoint
for the constraints within the same priority level). This essen-
tially allows the skewed processing of some constraints, as
they get evaluated more often than others.

Lines 12 and 13 remove a constraint from its current priority
level and put it in a new level, if its new priority level is
different from the current one. Note that the new priority level
computed is directly proportional to the change in the points-
to information. This essentially means that the constraints
which add more new points-to pairs are given higher priority.
Since adding more edges typically results in the propagation
of more points-to information, constraints that add more edges
get higher priority.

We explain the computation of the new priority level at
Line 11 next. The number of priority levels used in our method
requires to be carefully chosen. Keeping this number same as
the difference (diff) in the points-to information may require
a large number of priority levels to be considered, as a few
constraints may change hundreds of points-to facts. Moreover,
this, in most cases, is unnecessary, as the fixpoint computation
benefits from clusters of constraints having approximatelythe
same priorities, rather than an isolated high priority constraint.
Therefore, we combine a range of priority values into a single
priority level. This bucketizationproves helpful in skewed
evaluation of constraints in a priority level.

Further, bucketization exploits an important observation
about constraint solving (as a side-effect): several interdepen-
dent constraints, at different times during the analysis, modify
the same amount of points-to information. We observed this
empirically and on inspection, realized that after initialwarm-

up, several of theload and store constraints (p = ∗q and
∗p = q) start adding a fixed number of points-to information.
Therefore, interdependent constraints, due to bucketization, get
grouped at the same priority level. Thus, iterating over these
interdependent constraints helps in reaching the fixpoint faster.

However, the importance of iterating over the constraints at
the same priority level should not be over-emphasized. Due
to the cyclic nature of (self or transitive) dependence, in most
cases, it suffices to iterate only twice over the constraintsat
a priority level. The number of indirections present in hand-
written programs is typically quite small. Hence, looping be-
yond two iterations gradually reduces the gain (the amount of
points-to information added). Therefore, therepeat-until
loop from Lines 8–15 iterates for at mostthreshold number
of times over the constraints at the same priority level. The
conditioninner fixpoint takes care of not iterating an
(i + 1)th time if theith iteration does not change the points-
to information.

We remark that the priority scheme does not require the
constraint graph explicitly. The algorithm works on constraints
rather than on individual pointers.

A. Algorithm Complexity

Let N be the number of pointer variables andM be the
number of points-to constraints in a program. Finding depen-
dence across constraints in Line 3 of Algorithm 2 isO(M2N).
Each call toevaluate in Line 10 requiresO(N) time. for-
loop at Line 9 executesL times whereL is the number of
priority levels. The innerrepeat-until loop executes at
most threshold number of times while the outer one at
Line 5 executesO(M) times. Thus, the complexity of the
algorithm isO(M2N+ M× L× threshold× L× N), which is
O(M2N+L2MN) sincethreshold is typically a small number
(in our implementation it is 2). A useful heuristic is to choose
L2 ≈ O(M) in which case, it simplifies toO(M2N). Assuming
M ≈ O(N), the complexity becomesO(N3), same as that of
Andersen’s analysis [1] or Deep Propagation [7].

V. EXPERIMENTAL EVALUATION

We evaluate the effectiveness of prioritized points-to anal-
ysis using 16 SPEC C/C++ benchmarks and five large
open source programs (httpd, sendmail, gdb, wine-serverand
ghostscript). The characteristics of the benchmark programs
are given in Table I.KLOC is the kilo lines of unprocessed
source code.Total Inst is the total number of instructions
in the LLVM [15] intermediate code after optimizing at -O2
level. Pointer Inst is the total number of pointer instructions
processed by the analysis.Func is the number of functions
defined in each program. We evaluate the impact of our
prioritization approach on the following methods.

• anders: This is the base Andersen’s algorithm [1] that
uses a simple iterative procedure over the points-to con-
straints to reach a fixpoint solution. The underlying data
structure used is a sorted vector of pointees per pointer.
Our implementation ofanders incorporates difference
propagation to propagate only the changed points-to

Benchmark KLOC # Total # Pointer # Func
Inst Inst

gcc 222.185 328,425 119,384 1,829
perlbmk 81.442 143,848 52,924 1,067
gap 71.367 118,715 39,484 877
vortex 67.216 75,458 16,114 963
mesa 59.255 96,919 26,076 1,040
crafty 20.657 28,743 3,467 136
twolf 20.461 49,507 15,820 215
vpr 17.731 25,851 6,575 228
eon 17.679 126,866 43,617 1,723
ammp 13.486 26,199 6,516 211
parser 11.394 35,814 11,872 356
gzip 8.618 8,434 991 90
bzip2 4.650 4,832 759 90
mcf 2.414 2,969 1,080 42
equake 1.515 3,029 985 40
art 1.272 1,977 386 43
httpd 125.877 220,552 104,962 2,339
sendmail 113.264 171,413 57,424 1,005
ghostscript 438.204 906,398 488,998 6,991
gdb 474.591 576,624 362,171 7,127
wine-server 178.592 110,785 66,501 2,105

TABLE I
BENCHMARK CHARACTERISTICS

information and implements online cycle elimination [8]
and offline variable substitution [16].

• bddlcd: This is Lazy Cycle Detection(LCD) algorithm
implemented using BDD from Hardekopf and Lin [10]
obtained from the first author’s website [17]. We extend
it for context-sensitivity.

• bloom: The bloom filter method uses an approximate
representation for storing both the points-to facts and the
context information using a bloom filter. As this represen-
tation results in false-positives, the method is approximate
and introduces precision loss. For our experiments, we
use themediumconfiguration [11] which results in less
than 2% precision loss for the chosen benchmarks.

• deep: This is the context-insensitive Deep Propagation
method [7] obtained from the first author’s website [18].
The idea is to propagate points-to information in the
constraint graph to all the reachable nodes along a path,
before the other paths are considered. It uses a sparse
bitmap representation to store points-to sets.

deepis context-insensitive while other implementations are
context-sensitive; further, all methods are flow-insensitive and
field-insensitive. Context-sensitivity is implemented using an
invocation-graph based approach [19]. For each methoda, we
denote its prioritized version asp-a. All prioritized versions
implement effect-driven scheme with all the optimizations
described in Section IV with the number of priority levels
set to 203 (see Section V-C). The experiments are carried out
on an Intel Xeon machine with 2 GHz clock, 4 MB L2 cache
and 4 GB RAM.

A. Analysis Time

The analysis times (in seconds) of various methods are
shown in Table II. Comparinganders versusp-anders, we
observe a 13%–41% reduction in the analysis time (average

33%) due to prioritized scheduling of points-to constraints.
This emphasizes the importance of a good constraint order.

In case of bddlcd, we observe a larger benefit due to
prioritization (44% on an average, excludinggdb). The benefit
is an outcome of an interplay betweenbddlcd algorithm and
prioritized scheduling. Cycle detection benefits from evalu-
ating the cyclic constraints together which change an equal
number of points-to pairs and hence get grouped into the same
priority level. The prioritized scheduling approach evaluates all
of them in close-proximity, often giving correct hints to the
cycle detection mechanism, resulting in an overall efficient
analysis. In case ofgdb, the prioritized LCD version goes out
of memory (see discussion in Section V-B).

In case ofbloom, both the versions (bloom and p-bloom)
analyze all the benchmarks successfully to completion, with
p-bloomachieving 20% reduction in the analysis time.

The execution times of context-insensitive analysis (deep
and p-deep) are significantly lower due to the relatively
lower computational requirements of the context-insensitive
algorithm. But even in this case, introducing prioritization
results in an improvement that is either smaller for benchmarks
which require few hundred milliseconds analysis time or not
observed (for the benchmarks where the analysis time is a few
milliseconds).1 However, for the larger benchmarks such as
httpd, ghostscriptand gdb, the improvements are significant,
resulting in more than 50% reduction in the analysis time. The
reason is quite similar to that in case ofbddlcd. Online cycle
detection implemented as part ofdeepbenefits from priori-
tized scheduling. However, another artifact ofdeepfacilitates
higher benefits with prioritized scheduling. Deep Propagation
works on the topological ordering of the directedcopyedges
across pointer nodes in the constraint graph. Effect-driven
prioritization of constraints addscopy edges that propagate
(approximately) the same number of points-to constraints in
an iteration, resulting in most of the propagation path available
for deep propagation.

B. Memory

The memory requirements (in MB) for various methods are
shown in Table III. In general, one would expect the memory
requirements to remain almost the same. However, the internal
structure and implementation of the algorithm play a key role
in the overall memory requirement.

p-anders consistently requires significantly less memory
thananders. On an average, the memory requirement for the
prioritized version gets reduced by 17%. The memory savings
are largely due to the difference propagation and the use of
temporary data structures during constraint evaluation. Instead
of keeping small difference information for propagation across
iterations as inanders, our effect-driven prioritized scheme
combines difference information together and propagates them
along complete paths in consecutive evaluations. This benefit

1Prioritization improves the performance even in context-insensitive ver-
sions of anders, bloom and bddlcd, although by a smaller margin. Due to
space limitation, we do not report those numbers here.

Context-sensitive Context-insensitive
Benchmark anders p-anders bddlcd p-bddlcd bloom p-bloom deep p-deep
gcc 329.463 286.474 17,411.208 7,984.474 10,237.702 8,534.893 1.740 1.176
perlbmk 143.448 98.375 5,879.913 3,159.513 2,632.044 2,144.364 1.744 1.396
vortex 91.283 69.732 4,725.745 3,397.158 1,998.501 1,693.492 0.116 0.088
eon 93.495 79.264 2,391.831 1,515.148 1,241.602 848.439 11.701 2.320
parser 35.445 26.387 618.337 330.953 145.777 124.844 0.176 0.072
gap 128.478 84.963 330.233 186.818 152.102 124.994 0.092 0.044
vpr 29.456 20.119 199.510 95.647 88.826 63.339 0.024 0.008
crafty 29.337 22.128 154.983 91.551 46.899 34.436 0.004 0.004
mesa 89.388 65.143 21.732 12.095 10.041 8.945 0.248 0.108
ammp 34.236 23.285 54.648 31.399 15.185 12.586 0.032 0.012
twolf 41.499 33.774 27.375 13.470 5.132 4.031 0.032 0.016
gzip 25.234 14.885 6.533 3.134 1.808 1.170 0.004 0.004
bzip2 23.322 13.968 4.703 3.907 1.348 1.199 0.004 0.004
mcf 22.395 17.147 32.049 18.384 5.040 4.805 0.004 0.004
equake 24.306 17.178 4.054 3.665 1.100 0.866 0.004 0.004
art 26.459 19.153 7.678 4.144 2.400 2.004 0.004 0.004
httpd 224.534 193.287 47.399 24.785 52.793 42.785 53.727 23.722
sendmail 172.743 136.246 117.528 96.590 25.346 17.867 12.729 10.613
ghostscript 4,384.238 3,183.843 20,612.772 12,371.973 2,597.863 2,101.794 207.03 126.140
gdb 9,338.228 5,847.285 24,871.681 OOM 22,847.375 18,035.790 587.829 294.066
wine-server 201.323 147.289 36.689 23.499 23.686 18.398 8.165 5.488
average 737.539 495.235 3,693.171 1468.415* 2,006.313 1,610.526 42.162 22.157
* The average is calculated ignoring theOOM entry.

TABLE II
ANALYSIS TIME (SECONDS)

is similar in spirit to what Deep Propagation achieves over
Wave Propagation [7].

Both bloom and p-bloomcomplete successfully on all the
benchmarks and do not use difference propagation. Hence the
memory requirements are quite similar (555 MB versus 539
MB on an average).

p-deepoutperformsdeepin terms of the memory require-
ment by 23% on an average. Memory savings are largely due
to difference propagation.

On the other hand,p-bddlcd requires 45% more memory
than bddlcd. In fact, in case ofgdb, p-bddlcd runs out of
memory whereas the non-prioritized version completes suc-
cessfully. Unlike other algorithms discussed here,bddlcd is
worklist based. A constraint may get added to the worklist
while its another instance is already present. Thus, the worklist
size is not bound by the total number of points-to constraints.
Having a prioritized scheme requires multiple such worklists to
be created, pushing different instances of the same constraint
into different worklists based on the current priority of the
constraint. Thus, using multiple worklists increases the amount
of memory consumed.

C. Effect of configuration parameters

Effect of bucketization. First, we experimented with several
values for the number of priority levels. The sensitivity of
the analysis time (execution time to complete the points-to
analysis) to the number of priority levels (buckets) for
p-anders is shown in Figure 2. Note that the values are
normalized with respect toanders. To avoid clutter, we show
the effect on only four representative benchmarksghostscript,
gdb, perlbmk and gzip along with the average over all the
benchmarks listed in Table I. We observe that the analysis

Fig. 2. Effect of bucketization

Fig. 3. Effect of prioritization

time steadily reduces with the increasing number of buckets.
However, the number of buckets should not be arbitrarily
increased. It is important to keep related constraints together
so that an inner fixpoint over the related constraints would be
beneficial (Section V-A). Using too many priority levels may
move related constraints in different priority levels and would

Context-sensitive Context-insensitive
Benchmark anders p-anders bddlcd p-bddlcd bloom p-bloom deep p-deep
gcc 2859 2174 2633 3794 1202 1192 83 73
perlbmk 2133 1878 1888 3223 502 499 100 93
vortex 1857 1553 1527 2284 231 222 16 16
eon 1276 907 2798 3697 414 408 248 66
parser 478 419 1016 1438 149 142 4 4
gap 457 397 1289 1680 301 298 8 8
vpr 735 688 964 1356 112 112 2 2
crafty 672 600 739 935 96 95 1 1
mesa 894 825 1682 2466 223 220 14 14
ammp 427 372 935 1330 103 102 3 2
twolf 624 485 926 1256 153 148 4 4
gzip 514 446 802 1053 71 70 1 1
bzip2 633 582 693 1009 68 69 1 1
mcf 403 379 551 716 68 70 1 1
equake 546 501 593 953 68 68 1 1
art 597 524 664 972 65 65 1 1
httpd 791 686 1156 1754 739 736 674 425
sendmail 914 799 1592 2425 442 438 256 224
ghostscript 1958 1644 2470 3528 2322 2317 2871 2364
gdb 2194 1635 3299 OOM 3931 3667 3556 2765
wine-server 774 615 1182 1886 385 378 185 149
average 1035 862 1400 1888* 555 539 382 296
* The average is calculated ignoring theOOM entry.

TABLE III
MEMORY REQUIREMENT(MB)

reduce the benefit of the inner fixpoint. Further, after a point,
increasing the number of buckets starts giving diminishing
returns.

Effect of skewed evaluation.We measure for each iteration
the number of times (all the constraints in) each priority
level reaches an inner fixpoint in the second iteration. We
observe that on an average around 84% of the occupied
priority levels reach fixpoint in second iteration. This shows
the effectiveness of our prioritized ordering which enables
faster fixpoint computation.

We would like to note that values of the configuration
parameters play an important role in the analysis efficiency
and must be chosen carefully. However, our experience
suggests that the parameters vary according to the program
characteristics and there is no simple rule to arrive at optimal
values for all the programs.

Effect of prioritization. We counted the average number of
new points-to facts generated by each constraint foranders
andp-andersin each iteration forvortex (see Figure 3).2 Due
to prioritizing appropriate constraints,p-anderscomputes the
points-to facts faster and reaches the fixpoint in 8 iterations
compared to 10 as inanders. A similar behavior is observed
for other benchmarks.

D. Comparison with priority queue

In all our experiments the buckets are implemented as a
hashtable wherein the priority level acts as the key. One may
argue that the prioritization can possibly be more efficiently

2Due to constraints getting evaluated multiple times inp-anders, the notion
of iteration is not well defined.

implemented as a priority queue. Theoretically, a priority
queue incurs, on an average, an O(log n) complexity for each
insertion and removal of an element. In our hashtable-based
implementation, insertion and removal are O(1) operations,
given a reference to a constraint. To study how the two
implementations perform in practice, we developed a priority
queue-based analysis with C++ STL. Our preliminary results
on SPEC 2000 benchmarks indicate that the hashtable-based
Andersen’s analysis (p-anders) requires 33% – 93% lesser
time than the priority queue-based analysis. Although more
experimentation is necessary to draw further conclusions,it
seems clear that the priority levels implemented as a hashtable
perform better than that implemented as a true priority queue.

VI. RELATED WORK

An excellent survey on pointer analysis techniques is pre-
sented by Hind and Pioli [20].

Several novel techniques have been developed to improve
upon the original Andersen’s analysis [4], [21], [22], [23].
Binary Decision Diagrams (BDD) [4], [23] are used to store
points-to information in a succinct manner. The idea ofboot-
strapping[6] uses divide and conquer strategy by partitioning
the set of pointers into disjoint alias sets using a fast and less
precise algorithm (e.g., [2]) and later, a more precise algorithm
analyzes each partition. Due to the small partition sizes, the
overall analysis scales well with the program size. The analysis
over the alias partitions can be done in parallel. Nasre et al.
[24] convert points-to constraints into a set of linear equations
and solve it using a standard linear solver. Storing complete
calling context information achieves a good precision, butat
the cost of storage and analysis time. Therefore, approximate
representations have been introduced to trade off precision for

scalability. Das [3] proposedone level flow, Lattner et al. [25]
unified contexts, while Nasre et al. [11] hashed contexts to
alleviate the need to store the complete context information.

Inclusion based analysis can also be improved using sev-
eral novel enhancements proposed in literature. Online cycle
elimination [8] breaks dependence cycles amongst pointer
variables on the fly. Offline variable substitution [16] operates
over constraints prior to the constraint evaluation to find out
pointer equivalent variables. Except for the offline variable
substitution, all the other enhancements operate dynamically
on the constraint evaluations. Our linguistic scheme basedon
dependences across constraints falls in the offline category.
However, in general, similar to the effect-driven scheme, it
is dynamic in nature and can be used online to update the
constraint dependences as more points-to information gets
computed. The linguistic scheme also finds resemblance with
the node listing approach [26] for dataflow analysis of struc-
tured programs.

Wave and Deep Propagation techniques [7] perform a
breadth-wise and depth-wise propagation of points-to infor-
mation in a constraint graph. Various techniques proposed
for worklist management [9] also identify heuristics to reach
the fixpoint faster. Specifically, Greatest Output Rise (GOR)
algorithm comes close to our effect-driven priority scheme.
However, similar to Deep and Wave Propagation, the worklist
management algorithms deal with the propagation of points-to
information in the constraint graph and are orthogonal to our
prioritized analysis of the points-to constraints. Our prioriti-
zation framework is more comprehensive and applicable to a
variety of existing techniques.

VII. C ONCLUSIONS

In this paper, we proposed a prioritized order of processing
constraints in the points-to analysis method to improve its
efficiency. First, we proved that finding an optimal sequence
of points-to constraints for even a restricted flow-insensitive
version is NP-Complete. Subsequently, we identified two new
dimensions for evaluating points-to constraints: how many
edges a constraint adds and where in the constraint graph it
adds edges. Based on this observation, we presented a prioriti-
zation framework for evaluating a set of points-to constraints.
We illustrated the generality of the proposed framework
by implementing prioritized versions of Andersen’s analysis,
Lazy Cycle Detection using BDD, Bloom-filter based analysis
and Deep Propagation. Experimental evaluation shows that
the presented priority scheme can greatly benefit the state-
of-the-art algorithms to reach a fixpoint faster. In addition
to improving the analysis time, the proposed approach also
reduces the memory requirement of the algorithms that use
difference propagation.

While the framework is illustrated in the context of points-
to analysis, the idea of prioritized evaluation is general and
applicable to other static and dynamic analyses. We believe
that further work on prioritizing constraints can open up
interesting possibilities for performing optimizations.

ACKNOWLEDGMENT

We thank Aditya Kanade, Akash Lal, Aditya Thakur and
Kapil Vaswani for their helpful comments on an initial draft
of the paper.

REFERENCES

[1] L. O. Andersen, “Program analysis and specialization for the C pro-
gramming language,” inPhD Thesis, DIKU, University of Copenhagen,
1994.

[2] B. Steensgaard, “Points-to analysis in almost linear time,” in POPL,
1996, pp. 32–41.

[3] M. Das, “Unification-based pointer analysis with directional assign-
ments,” inPLDI, 2000, pp. 35–46.

[4] M. Berndl, O. Lhoták, F. Qian, L. Hendren, and N. Umanee,“Points-to
analysis using BDDs,” inPLDI, 2003.

[5] J. Whaley and M. S. Lam, “Cloning-based context-sensitive pointer alias
analysis using binary decision diagrams,” inPLDI, 2004, pp. 131–144.

[6] V. Kahlon, “Bootstrapping: a technique for scalable flowand context-
sensitive pointer alias analysis,” inPLDI, 2008.

[7] F. M. Q. Pereira and D. Berlin, “Wave propagation and deeppropagation
for pointer analysis,” inCGO, 2009, pp. 126–135.

[8] M. Fähndrich, J. Foster, Z. Su, and A. Aiken, “Partial online cycle
elimination in inclusion constraint graphs,” inPLDI, 1998.

[9] A. Kanamori and D. Weise, “Worklist management strategies for
dataflow analysis,” inMSR TechnicalReport,MSR-TR-94-12, 1994.

[10] B. Hardekopf and C. Lin, “The ant and the grasshopper: fast and accurate
pointer analysis for millions of lines of code,” inPLDI, 2007, pp. 290–
299.

[11] R. Nasre, K. Rajan, R. Govindarajan, and U. P. Khedker, “Scalable
context-sensitive points-to analysis using multi-dimensional bloom fil-
ters,” in APLAS, 2009.

[12] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, “Introduction to
algorithms,” inMcGraw Hill, 2009.

[13] B. Awerbuch, Y. Azar, A. Fiat, and T. Leighton, “Making commitments
in the face of uncertainty: how to pick a winner almost every time
(extended abstract),” inSTOC, 1996.

[14] B. Hardekopf and C. Lin, “Exploiting pointer and location equivalence
to optimize pointer analysis,” inSAS, 2007.

[15] LLVM, “The LLVM compiler infrastructure,” inhttp://llvm.org, .
[16] A. Rountev and S. Chandra, “Off-line variable substitution for scaling

points-to analysis,” inPLDI, 2000, pp. 47–56.
[17] B. Hardekopf, “http://www.cs.utexas.edu/users/benh/.”
[18] Deep-Propagation, “http://compilers.cs.ucla.edu/fernando/projects/pta/.”
[19] M. Emami, R. Ghiya, and L. J. Hendren, “Context-sensitive interproce-

dural points-to analysis in the presence of function pointers,” in PLDI,
1994, pp. 242–256.

[20] M. Hind and A. Pioli, “Which pointer analysis should i use?” in ISSTA,
2000, pp. 113–123.

[21] N. Heintze and O. Tardieu, “Ultra-fast aliasing analysis using CLA: a
million lines of C code in a second,” inPLDI, 2001.

[22] O. Lhotak and L. Hendren, “Scaling Java points-to analysis using spark,”
in CC, 2003.

[23] J. Whaley and M. Lam, “An efficient inclusion-based points-to analysis
for strictly-typed languages,” inSAS, 2002.

[24] R. Nasre and G. Ramaswamy, “Points-to analysis as a system of linear
equations,” inSAS, 2010.

[25] C. Lattner, A. Lenharth, and V. Adve, “Making context-sensitive points-
to analysis with heap cloning practical for the real world,”in PLDI,
2007, pp. 278–289.

[26] K. W. Kennedy, “Node listings applied to data flow analysis,” in POPL,
1975, pp. 10–21.

