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Abstract—This paper proposes an energy management tech-
nique for a consumer-to-grid system in smart grid. The benefit to
consumers is made the primary concern to encourage consumers
to participate voluntarily in energy trading with the central
power station (CPS) in situations of energy deficiency. A novel
system model motivating energy trading under the goal of
social optimality is proposed. A single-leader multiple-follower
Stackelberg game is then studied to model the interactions
between the CPS and a number of energy consumers (ECs),
and to find optimal distributed solutions for the optimization
problem based on the system model. The CPS is considered as a
leader seeking to minimize its total cost of buying energy from
the ECs, and the ECs are the followers who decide on how much
energy they will sell to the CPS for maximizing their utilities. It
is shown that the game, which can be implemented distributedly,
possesses a socially optimal solution, in which the benefits-sum
to all consumers is maximized, as the total cost to the CPS is
minimized. Numerical analysis confirms the effectiveness of the
game.

Index Terms—Smart grid, consumer-centric, game theory, en-
ergy management, variational inequality, variational equilibrium.

I. INTRODUCTION

A key element of smart grid implementation is the enabling
of consumers to participate by encouraging them to provide
ancillary services to the main power grid [1]. The development
of new energy management applications and services, based
on consumers’ active participation, can help leverage the
technology and capability upgrades available from the smart
grid [1].

In a constrained energy market, the engagement of con-
sumers in energy management can greatly enhance the grid’s
reliability, and significantly improve the social benefit of the
overall system [2]. For instance, a study by McKinsey &
Company shows that 10 − 15 billion US dollars (USD) in
annual benefit can be achieved from large-scale USA-wide
active participation of all customers in energy management
programs [2]. Consequently, energy management research, in
the context of smart grid, has received considerable attention
recently, as can be seen from a large amount of work reviewed
in [1]. However, one of the key challenges for successful
energy management in smart grids is to motivate consumers
to actively and voluntarily participate in such management
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programs. If the consumers are not interested in actively taking
part in energy management, the benefits of smart grid will not
be fully realized [3]. Therefore, to make the consumers an
integral part of any energy management scheme, the design
of the scheme needs to be consumer-centric [3], whereby the
main recipients of smart grid benefits are energy consumers
as both buyers from, and sellers to, the energy grid.

In this paper, a consumer-centric energy management
scheme is proposed for a consumer-to-grid system that gives
significant benefit to consumers who actively participate in the
smart grid. The idea of consumer-centric smart grid (CCSG)
was first introduced in [3]. Further, in [4], customer domain
analysis of smart grid is studied along with the tasks arising
in this domain. Our energy management scheme in this paper
complements the existing work on CCSG by proposing a
discriminate pricing strategy to encourage as many energy
consumers (ECs) as possible to participate in energy trading
with the central unit. In the proposed pricing mechanism, ECs
with smaller surplus energy may expect higher unit selling
price and the price is adaptive to the number of participating
ECs and their offered energy for sale. At the same time, our
scheme is also designed to minimize the total purchasing cost
for the central power station (CPS). The work presented in
this paper significantly extends our previous work in [5]. It
provides an improved and generalized system model, detailed
performance analysis of the solution based on the model, and
more comprehensive simulation results.

The main contributions of this paper are as follows. 1) A
general system model is proposed for facilitating consumer-
centric energy management. Novel utility and cost models are
proposed to enable discriminate pricing mechanisms. These
models achieve a good balance in reflecting practical require-
ments and providing mathematical tractability; 2) A single-
leader multiple-follower Stackelberg game is proposed to solve
the above energy management problem by enabling decentral-
ized decision making through limited interaction between the
CPS and the ECs; 3) The optimality and the convergence of the
proposed algorithm based on the Stackelberg game are proven;
and 4) Insights are obtained for the choice of parameters in the
system model through both analytical and numerical results.

The rest of the paper is organized as follows. The sys-
tem model and the optimization problem are presented in
Section II. The proposal for an energy management game
to perform this optimization is described in Section III. The
properties of the game are discussed in Section IV. Sec-
tion V describes an algorithm to achieve social optimality and
Section VI gives numerical results. Finally, some concluding
remarks are made in Section VII.
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II. SYSTEM MODEL

Consider a smart grid network that consists of a CPS and
multiple ECs. Here, the CPS refers to a power generating
unit that is connected to the ECs of the network by means of
power lines, and ECs are the energy entities such as electric
vehicles (EVs), solar and wind farms, smart homes and bio-
gas plants, which have energy storage devices (batteries) and
communication devices such as smart meters for communi-
cating with the CPS [6]. Each EC may represent a group of
similar energy customers of the smart grid acting as a single
entity. Due to the massive demands of consumers at peak
hours, the CPS may be unable to meet the energy demands.
Buying energy from ECs can be more cost efficient than setting
up expensive generators or bulk capacitors for meeting excess
needs. ECs can voluntarily take part in trading their excess
energy with the CPS with appropriate incentives. It is noted
that although we mainly target demand management for peak
hours in this paper, it is straightforward to extend the proposed
scheme to other situations such as during power outages and
emergencies, whenever the CPS is unable to meet the demands
of consumers.

In this paper, we consider per time-slot based energy
management, to adapt to the variation of energy usage in a
day. For example, the peak hours’ operation can be divided
into multiple time slots of 30 minutes each [7]. One main
assumption based on the per time-slot model is that the CPS
is not interested in buying more energy than the goal it sets
in advance. This assumption is necessary for making the
proposed scheme work efficiently. The proposed scheme can
be repeatedly applied over multiple continuous time slots, like
an online game, with updated parameters based on the results
in the previous time slot and updated participating ECs. The
CPS and the ECs can also set their parameters according to
statistical prediction models to achieve some benefit similar to
that of arbitraging between various time slots. For example,
the CPS may seek more than what it actually needs in a time
slot, should it see the benefit of doing so.

Let us consider N ECs in a set N in the smart grid network,
which are participating in energy trading with the CPS. At a
particular time slot of energy deficiency Edef, EC n has an
amount of energy En available to sell to the CPS. En may be
different for different n based on parameters such as the type
of EC, the current weather (e.g., a solar farm may wish to sell
a large amount of energy on a sunny day compared to other
cloudy or rainy days) and the capacity of the storage device.
The amount of energy Edef required by the CPS is assumed
to be fixed, and hence the energy supplied by all ECs to the
CPS needs to satisfy the constraint∑

n

en ≤ Edef; en ≤ En, ∀n ∈ N , (1)

where en is the energy supplied by EC n. The use of
∑

n en ≤
Edef instead of

∑
n en = Edef is based on the fact that this

is a “best-effort” activity and it is not always guaranteed to
achieve Edef.

Now, we want to design an energy management scheme
to achieve social optimality in the energy trading. Social
optimality means that all players can benefit from the energy

trading to maximize the social welfare. It implies that 1) every
EC with energy surplus can participate in energy trading and
is motivated to do so; 2) each EC can optimize its benefit
when social welfare is maximized; and 3) the overall energy
purchasing cost can be controlled and minimized to benefit
all consumers. Hence the scheme should allow and encourage
as many ECs as possible to participate in energy trading by
balancing their expectations and returns, rather than overly em-
phasizing individual’s benefit. Such optimality will ultimately
reward all ECs as both energy consumers and providers. As
to be seen later, the social optimality here matches well with
the social optimality in the Generalized Nash Game. Next,
we present three models, which are designed to encourage
more ECs to participate in energy trading and minimize energy
shortage and purchasing cost, and ultimately to benefit all
consumers, and achieve such social optimality.

A. Unit Price Model

More trading ECs can lead to better completion of the
purchasing target and more savings on buying cost. However,
not all the ECs are interested in trading energy with the CPS
if the benefit is not attractive. This could particularly happen
to numerous ECs with smaller En whose expected return can
be small under a feed-in tariff (FIT) scheme. In this case, ECs
would store the energy, due to uncertainty, rather than selling
it. To encourage as many ECs as possible to participate, we
want the CPS to provide different incentives to different ECs,
depending mainly on their energy available for sale and also
on their preferences. This is achieved through the unit energy
price (price per unit of energy), pn, that the CPS pays to EC
n for its offered energy en. In our scheme, pn can be different
for different ECs, and these are adaptively determined by the
CPS during the trading process with the ECs, through their
supplied energy as to be seen later. Note that the current grid
system does not allow discriminate pricing among consumers.
However, real-time pricing is an envisaged addition to future
smart grids [8] and an example of this is found in standard
FIT schemes [9].

The CPS wants to minimize its total cost of purchasing
energy so that it can sell the energy to its consumers at a
cheaper rate, which in turn will benefit all the consumers.
Therefore, we introduce a “total unit energy price” parameter
P =

∑
n pn, analogous to the “total cost per unit production”

widely used in economics [10]. Here, the parameter P is used
by the CPS to control the total purchasing cost. As to be
seen in Section IV-B2, P scales a set of normalized prices
to generate the unit energy prices pn, and hence the total
direct energy purchasing cost (the sum of the product enpn)
is linearly proportional to P . Such a P will also be used to
determine the initial pn as P/N in our proposed scheme. The
parameter P is fixed for each time slot1, and can be determined
by the CPS using any real-time price estimator such as that
proposed in [11].

At the same time, we also require pmin ≤ pn ≤ pmax where
pmin and pmax are the minimum and maximum price per unit
energy. The lower bound pmin is used to prevent an EC from

1P may have different values for different time slots.
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being deterred from energy trading. The upper bound pmax
can be used to prevent the CPS from allowing a too large of a
pn, and hence this reduces the overall purchasing cost. Their
values are in the range of 0 ≤ pmin, pmax ≤ P , and any interim
pn will be rounded to either pmin or pmax when it is out of this
range.

The final price model we have is that the CPS pays pn to
EC n based on its offered energy en, while maintaining the
constraint ∑

n

pn = P, pmin ≤ pn ≤ pmax. (2)

B. Utility Model and ECs’ Objectives

In general, each EC’s objective is to maximize its own
benefit. However, such an objective can only be achieved when
social optimality is achieved. Without considering the social
optimality, the CPS will very likely disappoint most of ECs
when maximizing the benefits of only a limited number of
ECs. This can result in a significant reduction in participating
ECs, and degrade the performance of energy management. One
way of maximizing ECs’ benefits under the social optimality
constraint is through maximizing a function representing the
sum of all ECs’ benefits, with an individual EC being able to
set its preference in the function. For this purpose, we consider
the function as a sum of each individual’s utility function.

The nth EC’s benefit depends on the unit price pn, the
supplied energy en, and the available energy for sale En.
Hence the individual’s utility function can be written as
U(en, En, pn). A good utility function should have the fol-
lowing two properties.

Property 1: The utility function is an increasing func-
tion of pn and en, i.e., ∂U(en, En, pn) / ∂pn > 0 and
∂U(en, En, pn) / ∂en > 0.

Property 2: The utility function is a concave function of en,
i.e., ∂2U(en, En, pn) / ∂2en < 0, which means that the utility
can become saturated or even decrease with an excessive en.
This reflects the fact that since a consumer is equipped with
a battery with limited capacity, extensive supply of electricity
once exceeding a certain limit would risk the depletion of
the battery because of the calendar ageing effect [12] and
consequently, decrease the consumer’s utility.

Among many potential utility functions possessing the
above properties, we propose to use the following one:

U(en, En, pn) = pnen + (En − cnen)en. (3)

Here, pnen represents the direct income an EC can receive, and
(En− cnen)en represents the possible loss where cn ≥ 0 is a
constant that can be chosen to suit different ECs’ preferences.
Different values of cn reflect the different negative impacts of
extensive supply on an EC’s utility. An EC can set a larger
cn if it prefers to sell less. Introducing En into the model
is to emulate the fact that ECs with different amounts of
energy available for sale can tolerate different thresholds of
extensive supply, and utility decreases only when en exceeds
the threshold. Introducing En in the form of Enen also allows
EC n to decide its offered energy en proportional to its
available energy En in its decision making process as to be

seen in Section IV-B1. This function possesses the so-called
feature of linearly decreasing marginal benefit which has been
widely adopted in various utility functions [13]. Please note
that En is the available energy of EC n at the considered time
slot. At different time slots the value of En can be different ∀n.
With the goal of maximizing the sum of individual’s utilities,
the common objective of ECs can be represented as

max
e

Ũ(e,E,p) = max
en,n=1,··· ,N

∑
n

(
pnen + (En − cnen)en

)
,

subject to
∑
n

en ≤ Edef, (4)

where e = [e1, e2, . . . , eN ]T , E = [E1, E2, . . . , EN ]T and
p = [p1, p2, . . . , pN ]T . That is, EC n chooses en ≤ En, to
supply to the CPS so as to maximize the sum of utilities in
(4).

C. Cost Model and the CPS’s Objective

While the objective of an EC is to maximize its utility
through its choice of en, the CPS wants to minimize its total
cost. Although the direct purchasing cost is

∑
n enpn, we

propose to use the following function to better capture the
total incurred cost:

L̃(p, e, Edef) =
∑
n

(enp
r
n + anpn + βnen + bn)+

α(Edef −
∑
n

en), (5)

where enprn, r > 1 corresponds to the direct cost enpn but is
weighted by pr−1n , in order to generate discriminate prices for
ECs with different ens; the term (anpn + βnen + bn), with
an, βn, bn ≥ 0, ∀ n ∈ N , accounts for the costs associated
with transmission and store of the purchased energy; and
α(Edef −

∑
n en), α ≥ 0 denotes the cost associated with

insufficient energy purchasing, for example, shed load.
For simplicity, we assume βn = α and discard the term

αEdef in (5) and obtain

L̃(p, e) =
∑
n

(enp
r
n + anpn + bn) =

∑
n

L(pn, en), (6)

where L(pn, en) , enp
r
n + anpn + bn denotes the individual

cost function for EC n. Note that it will become clear in
Section IV-B2 that such simplification has little influence on
our scheme. The analysis for the scheme will be presented
from Section III to V.

Now the objective of the CPS can be formally presented as

min
p
L̃(p, e) = min

pn,n=1,··· ,N

∑
n

(enp
r
n + anpn + bn),

subject to
∑
n

pn = P, pmin ≤ pn ≤ pmax, ∀n. (7)

D. Optimization Problem

The optimization problems in (4) and (7) are connected by
pn and en. The CPS can find solutions for both problems by
jointly optimizing (4) and (7) in the case when the CPS has full
control over the decision making processes of the ECs. How-
ever, in practice, the CPS does not have any direct control over
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the ECs’ decisions as these are made by each customer [14],
and parameters such as En and cn can be unknown to the
CPS. Therefore, a decentralized control mechanism is required
for the ECs to decide on the energy they sell to the CPS to
realize the optimization in (4). The mechanism also needs to
successfully capture the interaction between the ECs and the
decision making of the CPS for prescribed energy trading. We
propose such an energy management mechanism, using game
theory, in the next section.

III. NON-COOPERATIVE GAME FORMULATION

To decide on energy trading parameters, a single-leader
multiple-follower Stackelberg game [15] is proposed to study
the interaction between the CPS and the ECs. In the proposed
Stackelberg game, the CPS is the leader of the game, which
decides on unit energy price pn, within constraint (2), to be
paid to the EC n for its offered energy en. Each EC n ∈ N
is a follower that plays a generalized Nash game [16] with
other ECs in the network to decide on the amount of energy
it will sell to the CPS, within constraint (1) in response to
the price pn. Note that this is not just a Nash game2 but a
generalized Nash game due to the presence of the common
coupled constraint in (1). Thus, the Stackelberg game can be
formally defined by its strategic form as

Γ = {(N ∪ {CPS}), {En}n∈N , Ũ , L̃,p}, (8)

where
• (N ∪ {CPS}) is the total set of players in the game,

where N is the set of followers who act in response to
the action taken by the leader of the game in set {CPS};

• En is the strategy vector of each EC n ∈ N satisfying the
constraint in (1), i.e.,

∑
n en ≤ Edef, en ∈ En, ∀n ∈ N ;

• Ũ is the objective function that each EC n wants to
maximize. L̃ is the objective function of the CPS; and

• p is the strategy vector of the CPS.
It is assumed that the ECs maintain their privacy, and do

not inform each other of the amount of energy they offer to
the CPS. This leads to a non-cooperative Stackelberg game
in which the followers do not communicate with each other,
but they may interact with the leader by controled signaling
through smart meters [6]. For example, the CPS can send a
single bit to EC n if its offered energy is beyond the constraint
in (1) given the energy offered by other ECs in the network.
Importantly, in this game, the decision making process of
an EC n depends not only on its own strategy but also on
the strategy of other ECs in the network via (1). Thus, the
generalized Nash game amongst the ECs, to decide on the
amount of energy to be supplied to the CPS by each EC n, is a
jointly convex generalized Nash equilibrium problem (GNEP),
in which the ECs’ actions are coupled solely by constraint
(1) [16]. The solution of a GNEP is the generalized Nash
equilibrium (GNE) [16].

2In non-cooperative Nash game each player wants to maximize its own
utility function rather than their sum of utilities. However, the proposed
scheme focuses on designing a socially optimal energy management scheme
that enable each player to contribute in the energy management so as to
confirm the social welfare of all ECs in the system.

The game is initiated as soon as the ECs in the network
start playing a GNEP for a price pn = p, ∀n ∈ N ,
announced by the CPS. The ECs play the GNEP and offer,
according to their GNE, the amount of energy they wish to
sell to the CPS at price p. For a similar price p, each EC
receives a similar incentive, and thus the offered energies
reflect the ECs’ supply capacities. With such insight into the
capacity of each EC’s energy supply, the CPS decides on
its optimal price vector p∗ = [p∗1, p

∗
2, ..., p

∗
N ]T to pay the

ECs by solving the constrained optimization problem in (7)
using convex optimization [6]. Thereafter, as soon as the ECs
decide on their GNE energy vector e∗ = [e∗1, e

∗
2, ..., e

∗
N ]T ,

after playing the GNEP for the optimal price vector p∗, the
proposed Stackelberg game reaches equilibrium. From here on,
the solution of the proposed Stackelberg game (e∗,p∗) will
be referred to as an energy management equilibrium solution
(EMES) in which the CPS will decide on an optimized price
vector p∗ to pay to the ECs in the network, and the ECs will
agree on a GNE energy vector e∗ to be supplied to the CPS
for the given p∗.

Definition 1: Consider the Stackelberg game Γ = {(N ∪
{CPS}), {En}n∈N , Ũ , L̃,p} where Ũ and L̃ are defined by
(4) and (7) respectively. A set of strategies (e∗,p∗) constitute
the EMES of this game if and only if it satisfies the following
set of inequalities:

Ũ(e∗n, e
∗
−n,E,p) ≥ Ũ(en, e

∗
−n,E,p),

∀en ∈ e, n ∈ N ,
∑
n

en ≤ Edef, (9)

and

L(p∗n,p
∗
−n) ≤ L(pn,p

∗
−n),

∀n ∈ N ,∀pn ∈ p, pmin ≤ pn ≤ pmax, (10)

where e−n is the GNE energy vector of all the ECs in the
set N \ {n} which denotes the new set after removing EC n
from N , p−n is the price vector set by the CPS for all the
ECs in the set N \ {n}, and E is the set of strategies of all
ECs satisfying (1).
Thus, at EMES, no EC can improve its utility by deviating
from its EMES strategy provided all other ECs are playing
their EMES strategies. Similarly, deviation from EMES price
p∗n, ∀n ∈ N , cannot lower the total cost for the CPS once the
Stackelberg game reaches the EMES.

IV. PROPERTIES OF THE GAME

A. Existence of Equilibrium

In a non-cooperative game, the existence of an equilibrium
(in pure strategies) is not always guaranteed [17]. Moreover,
for consumer-centric smart grids, it is important that the
solution be beneficial for all the consumers in the network [3].
Therefore, the existence and optimality of a solution of the
proposed Stackelberg game needs to be determined.

Lemma 1: A solution exists for the proposed Stackelberg
game if the GNEP amongst the ECs in the smart grid network
constitutes a generalized Nash equilibrium. The solution will
be socially optimal if the GNE of the GNEP is also socially
optimal.
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Proof: As the game is formulated, the proposed Stack-
elberg game reaches the EMES as soon as the ECs in the
network agree on a GNE energy vector to be supplied to
the CPS in response to the optimized price vector p∗ set by
the CPS. The cost function for the CPS in (7) is a strictly
convex function, and thus, a unique solution always exists
for the CPS’s optimization problem in choosing pn for the
EC n, ∀n ∈ N , [18] because the optimization is done on a
convex set. Therefore, the existence of a solution for the GNEP
among the ECs, for this unique price vector, would guarantee
the existence of an EMES in the proposed Stackelberg game.
Similarly, the solution will be a socially optimal solution if
the GNE of the GNEP amongst the ECs leads to a socially
optimal GNE.

To investigate the existence and the optimality of the solu-
tion of the proposed GNEP, first, we formulate the GNEP as
a variational inequality (VI) problem VI(E,F) [19], which is
essentially to determine a vector e∗ ∈ E ⊂ Rn, such that

〈F(e∗), e− e∗〉 ≥ 0, e ∈ E,

where e = [e1, e2, · · · , eN ]T , F = −∇eU(en, En, pn), and
〈x,y〉 denotes the inner product of x and y.

The solution of the VI(E,F) is a variational equilibrium
(VE) [16]. In the proposed scheme, we are particularly in-
terested in showing the existence and efficiency of the VE.
This is because the proposed GNEP is a jointly convex
GNEP due to the coupled constraint (1), and hence the VE
is the socially optimal solution among all the GNEs [16].
Therefore, in designing a socially optimal consumer-centric
energy management scheme, it is our primary interest to
demonstrate the existence and efficiency of a VE solution.
In the rest of this paper, we will use the terms “GNEP” and
“variational inequality” interchangeably.

Theorem 1: The consumers’ game amongst the ECs in
response to the CPS’s decision vector, i.e., the price vector,
possesses a socially optimal variational equilibrium.

Proof: It can be proven by showing the existence and
uniqueness of the VE through the pseudo-gradient of the utility
function in (4). The interested reader is referred to [5], where
the complete proof is provided.

Remark 1: From Theorem 1, the GNEP among the ECs in
response to the unique optimized price paid to them by the
CPS admits a socially optimal solution. As a consequence,
as proved in Lemma 1, the proposed Stackelberg game of
consumer-centric energy management possesses a socially
optimal solution.

B. Decision Making Process

For a clear understanding of the decision making process
of the players at EMES, we formulate Karush-Kuhn-Tucker
(KKT) conditions, using the method of Lagrange multipli-
ers [20], for both ECs’ and CPS’s optimization problems.

1) ECs’ decisions: The solution of the KKT condition [16]
for any EC n’s GNEP is

En − 2cnen + pn − ξ = 0, ξ ≥ 0. (11)

This leads to

en = (En + pn − ξ)/(2cn) ≤ (En + pn)/(2cn). (12)

Equation (12) indicates that at equilibrium, the energy EC
n offering for sale is proportional to the unit energy price pn
and its available energy for sale En, scaled by the constant cn.
If an EC prefers to sell more energy, it can choose a smaller
cn.

2) CPS’s decision: The Lagrangian for CPS’s optimization
in (7) is given by

Ω =
∑
n

(enp
r
n + anpn + bn) + λ(P −

∑
n

pn), (13)

where λ is the Lagrange multiplier. From (13), we get

∂Ω / ∂pn = renp
r−1
n + an − λ = 0, (14)

∂Ω / ∂λ = P −
∑
n

pn = 0.

Now assuming the associated costs are the same for all the
ECs, i.e., an = a and bn = b for any n, from (14) we get(

pn1

pn2

)r−1

=
en2

en1

, n1, n2 ∈ [1, N ], n1 6= n2. (15)

Thus, if N ECs are connected to the CPS and play a GNEP
to decide on their amounts of energy to be sold to the CPS,
at equilibrium the unit energy price paid to an EC by the CPS
is inversely proportional to the energy it offers. Within the
constraint of pmin ≤ pn ≤ pmax for all n, the unit price pn can
be computed as

pn =
e

1
1−r
n∑N

n=1 e
1

1−r
n

P. (16)

When an obtained pn is out of the range [pmin, pmax], the pn
will be rounded to either pmin or pmax.

Equation (16) shows that the unit energy price is linearly
proportional to P , and thus is the direct purchasing cost∑

n pnen. It also indicates that the discriminate pricing mech-
anism can be flexibly realized by setting different values of r
for different motivating strategies. The smaller the r, the larger
the difference between the unit energy prices pn. Hence, for
social optimality, in which all the ECs participate in energy
trading with the CPS to their benefit, the consumers with less
energy to sell are given greater incentives to play the game.

According to the analysis above, we can see that a similar
rule to (16) for determining pn can be obtained when we
replace the cost function (6) with (5) in the CPS’s decision
process. This shows that the major theoretical results derived
in this paper can be directly translated to those for the more
general cost function in (5). Hence the simplification from (5)
to (6) does not affect the efficiency of the proposed scheme.

V. ALGORITHM

To reach the EMES of the proposed game, an algorithm is
proposed in this section that can be implemented by the CPS
and the ECs in a distributed fashion with limited communica-
tion between one another. We note that the decision making
process of the ECs can be modeled as a strongly monotone
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Algorithm 1 Algorithm to reach EMES

Step-1
(i)- CPS announces Edef and P .
(ii)- Each EC n calculates pn = P/N , and ECs play a

GNEP to determine VE energy en, for pn, using SSHPM.
(iii)- Each EC n submits offered VE energy to CPS.
(iv)- CPS optimizes (7) using a standard convex optimiza-

tion technique [22], and determines pn = p∗n ∀n ∈ N .
The optimized price vector p∗ is obtained.

Step-2
(v)- Each EC n receives p∗n offered by CPS.
(vi)- ECs play a GNEP using SSHPM to determine the VE

energies e∗n to supply to CPS.
The VE energy vector e∗ for p∗ is obtained.

The game reaches the EMES.
S-S Hyperlane Projection Method (SSHPM)
1) At iteration k, each EC n computes the hyperplane
projection r(e(k)n ) and updates e(k+1)

n = r(e
(k)
n ).

if r(e(k)n ) = 0

a) EC n determines en = e
(k+1)
n to offer to CPS.

b) EC n sends ξn = En − 2cnen + p∗n to CPS.
else
EC n

a) Determines the hyperplane z
(k)
n and the half space

H
(k)
n from the projection.

b) Updates e(k+1)
n from the projection of e(k)n on E ∩

H
(k)
n .

c) Determines en = e
(k+1)
n to offer to CPS.

d) Sends ξn = En − en + p∗n to CPS.
end if

2) CPS checks ξn ∀n ∈ N .
if ξn = ξ ∀n ∈ N
a) CPS determines the offered energy at VE for p∗n.
b) CPS initiates the energy trading with EC n.

else
CPS acknowledges ECs to update their offered energy

at next iteration k = k + 1.
end if

End of SSHPM

VI problem as can be seen from Theorem 1. For this problem,
the slack variable, ξn = En − en + pn, possesses the same
value for all the ECs, i.e., ξn = ξ, n = 1, · · · , N , when
their choice of supply amount of energy reaches the VE [16].
This property is being used by the CPS in the algorithm
to check the convergence of the proposed GNEP to the VE
and inform the ECs about it. Here, a hyperplane projection
method, particularly the S-S hyperplane projection method
(SSHPM) [21], is used to solve the monotone variational
inequality. The CPS decides on its unit energy price to pay to
each EC by using any standard convex optimization technique.

As presented in Algorithm 1, the algorithm is executed
in two steps assuming that all the information exchanges
between the CPS and the ECs are done through two way
communication via their smart meters [6]. It starts with the
announcement of the required energy Edef and the total unit

energy price P by the CPS. In the first step, each EC n in
the network assumes its own equally distributed unit energy
price pn = P/N , and plays a GNEP to decide on the amount
of energy it would offer to the CPS for this price, within
constraint (1). Knowing the offered energy from the ECs, the
CPS gets insight into the capacity of each EC as the offered
energy is proportional to the available energy. It then optimizes
the unit energy price p∗n for each n, within constraint (2), by
standard convex optimization. In the second step, each EC n
receives the optimized price p∗n from the CPS, and amends the
offered energy en = e∗n to be supplied to the CPS by playing
a GNEP for the price p∗n. The GNEP, in both steps, reaches
the VE as soon as the slack variables ξn ∀n ∈ N reach the
same value ξn = ξ. However, the Stackelberg game reaches
the EMES when the GNEP amongst the ECs reaches the VE
for the optimized price vector p∗.

In SSHPM, a geometrical interpretation is used and two
projections per iteration are required. Suppose e(k) is the
current approximation of the solution of VI(E;F). First, the
projection r(e(k)) = ProjE[e(k)−F(e(k))] is computed, where
ProjE[z] = argminw∈E ‖ w − z ‖, w ∈ R. Then, a point z(k)

is searched in the line segment between e(k) and r(e(k)) such
that the hyperplane ∂H , {e ∈ R|〈F(z(k)), e − z(k)〉 = 0}
strictly separates e(k) from any solution e∗ of the problem.
Once the hyperplane is constructed, e(k+1) is computed in the
next iteration onto the intersection of feasible set E with the
hyperspace H(k) , {e ∈ R|〈F(z(k)), e − z(k)〉 ≤ 0} which
contains the solution set. Further details on the implementation
of SSHPM can be found in [15].

Convergence of the proposed algorithm is formally stated
in the following proposition.

Proposition 1: The proposed algorithm using the hyper-
plane projection method always converges to the optimal
solution.

Proof: The hyperplane projection method is always guar-
anteed to converge to a non-empty solution if the problem is
strongly monotone [16], which is the case for the proposed
algorithm. Furthermore, for the energy amount offered by
the ECs, the optimization problem of the CPS also always
converges to a unique solution due to its strict convexity. Thus,
the proposed algorithm is guaranteed to converge to an optimal
solution for the given constraints in (1) and (2).

VI. NUMERICAL RESULTS

We consider an example in which a number of ECs are
participating in energy trading with the CPS, which has an
energy deficiency in a time slot of interest. The available
energy of any EC is assumed to be a uniformly distributed
random variable in the range of [64, 240] kWh. Other param-
eters are chosen as Edef = 700 kWh, P = 185 US cents
per KWh, r = 2, cn = 0.5, pmax = P , pmin = 8.45 [23]
and an = 1, bn = 1 for all n, unless stated otherwise. Note
that the other costs in the total purchasing cost, such as the
one associated with insufficient energy purchasing, are not
considered in the simulation. Should these costs be accounted
for, P needs to be carefully determined in relation to them.
All results are averaged over all possible random values of the
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ECs’ capacities, using 1000 independent simulation runs, and
no anomaly is observed, such as failing to produce a solution,
in any iteration.

Fig. 1 demonstrates the convergence of the utility achieved
by each EC, the amount of energy sold by each EC, and
the cost incurred by the CPS during the energy trading
process in a random simulation. In this example, the energy
deficiency is Edef = 700 kWh, and 5 ECs are considered
and the randomly generated values of the available energy
are depicted as E1 to E5 in the figure. From Fig. 1(a) and
Fig. 1(b), we can see that both the utility and offered energy
for each EC linearly increase with iterations increasing, and
utility and offered energy increase towards equilibrium in a
similar fashion. An EC with more available energy sells more
and achieves higher utility. Both the offered energy and the
achieved utility converge to the EMES after approximately
6 iterations. Fig. 1(c) shows the variation of the unit energy
price determined by CPS during the trading. Unlike the energy
and utility curves which almost increase monotonically in
iterations, the unit energy price fluctuates a lot, until it reaches
the EMES. Fig. 1(c) also clearly show that discriminate unit
energy prices are achieved at the EMES, validating one of
the goals of the proposed scheme. ECs have less energy for
sale are offered higher unit energy price, to be motivated to
participate in the energy trading.

In Fig. 2, we demonstrate the effects of the number of UEs
on the proposed scheme. Fig. 2(a) shows how the total energy
required by the CPS affects the average utility achieved by
each EC, for 5, 10 and 15 ECs. The average utility achieved
by each EC decreases with an increasing number of ECs, but
increases consistently with increasing energy deficiency. This
demonstrates the robustness of the proposed scheme. Fig. 2(b)
shows how the average total cost to the CPS is affected by
the number of UEs, when Edef = 700 kWh. Interestingly,
the total cost incurred by the CPS gradually decreases as the
number of ECs increases from 5 to 15, and starts increasing
with an increase in ECs from 20 to 25. In fact, for a fixed
price, increasing the number of ECs from 5 to 15 allows the
CPS to buy its required energy from more ECs at a lower price
and consequently the total cost gradually decreases. However,
the CPS needs to pay at least the minimum amount (here
pmin = 8.45 cents/kWh) to each customer to keep it trading
energy. Hence, as the number of ECs increases from 20 to
25, the total cost increases due to this mandatory minimum
payment to more ECs in the network.

Fig. 3 illustrates how the total cost is affected by the total
unit price P and the price upper bound pmax, where N = 5. We
assume that the CPS can pay a maximum of between P/N
and P cents per kWh to any EC. As can be seen from the
figure, the average total cost incurred by the CPS eventually
decreases as pmax increases, and then reaches a stable state
immune to any price change. In fact keeping the threshold
at P/N restricts the freedom of the CPS in choosing its unit
energy price from any EC, and consequently it incurs a higher
total cost. As pmax increases the CPS can choose a higher price,
bounded by pmax, to pay to the EC with less energy, which
in turn enables the CPS to pay a lower price to other ECs
in the network, and consequently the total cost to the CPS
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Fig. 1: Convergence to the EMES for the ECs and CPS.

decreases. Nevertheless, at a particular threshold, the CPS can
minimize its own cost by price optimization, and hence there
is no change in average total cost with further change in pmax.
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Fig. 2: Effects of varying number of ECs on the scheme.

The figure also shows that the total cost is proportional to P
and the difference between different cost for different P almost
remains as a constant when pmax varies, which is consistent
with the analytical results in Section IV-B2.

To show the effectiveness of the proposed scheme, we
compare it with a standard FIT scheme [9]. An FIT scheme is
a long-term incentive based energy trading scheme designed
to encourage the uptake of renewable energy systems that
provide the main grid with power, e.g., when the grid does
not have enough supply to meet demand. A higher tariff is
paid to the electricity producers as an incentive to take part
in the FIT scheme. For comparison, it is assumed that the
contract between the energy sources and the CPS is such
that the sources are capable of providing the energy the CPS
requires. For the FIT scheme, the per unit tariff is considered
to be 60 US cents/kWh [23].

In [5], we studied the performance comparison between the
proposed scheme and the FIT scheme based on the average
total cost to the CPS for different network sizes. We showed
that for a smaller size network of 5 to 15 ECs, the proposed

scheme has significantly lower cost than the FIT scheme.
However, as the network size increases, due to the mandatory
payment to a large number of ECs, the cost for the proposed
scheme becomes closer to that of the FIT scheme. Here, we
compare the average utility per EC for various network sizes,
and the average total cost to the CPS as the total unit energy
price changes in Fig. 4(a) and Fig. 4(b) respectively. Fig. 4(a)
shows that, as the number of ECs increases in the network, the
average utility reduces for both schemes. However, the utility
for the proposed scheme is always shown to be better than the
utility achieved by the ECs for the FIT scheme. This is due
to the fact that the proposed scheme allocates the amount of
energy for each EC, using a Stackelberg game, in such a way
that the consumer’s benefit is maximized. In contrast, the FIT
is a contract based scheme that makes the customers supply the
amount stipulated in their contracts irrespective of the current
situation. As shown in Fig. 4(a), for the proposed scheme each
EC in the network achieves an averaged utility 1.5 times better
than that achieved by adopting the FIT scheme, where the
number 1.5 is obtained by averaging over all different sets, i.e.,
5, 10, 15, 20 and 25, of ECs studied in the system. Assuming
the same total price per unit energy for both the proposed and
the FIT schemes, the change in the average total cost to the
CPS for buying energy from the ECs is shown in Fig. 4(b) to
increase in proportion to the increase in total price per unit
of energy P , as explained for Fig. 3. However, due to the
optimal allocation of P for each EC, the average total cost
for the proposed scheme is always lower than that of the FIT
scheme. The performance benefit of the proposed scheme is
also shown to increase with increasing P . This is due to price
optimization by the CPS of the proposed scheme in response
to the current VE energy demand of the ECs, in contrast with
the contract-based payment of the FIT scheme.

VII. CONCLUSION

In this paper, a consumer-centric energy management
scheme for smart grids has been studied, which is based
on maximizing end-user benefits, as well as keeping the
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Fig. 4: Comparisons of utility, cost and price, between the proposed
scheme and the Feed-in-Tariff scheme.

total cost to the central power station at a minimum. Novel
utility and cost models are proposed, and a Stackleberg
game is formulated to solve the optimization problem. It
is shown that the game reaches a Stackelberg equilibrium,
which consists of the socially optimal energy and price vector
for the ECs and the CPS respectively. The properties of the
solution have also been studied. Moreover, a decentralized
algorithm has been proposed that can be implemented by
the energy consumers and the central power station with
limited communication requirements. The effectiveness of the
scheme has been demonstrated via simulation, with noticeable
performance improvements over a conventional feed-in-tariff
scheme.

The proposed scheme can be extended and improved in
various aspects. One limitation of such a time slot based
approach is that it ignores the fact that a predominant source
of demand side flexibility stems from inter-temporal elasticity
of substitution. The proposed scheme can be improved to treat
this problem by introducing learning curves for key parameters

such as P , Edef, r and cn. The constants in the system
model can be better calibrated using practical usage data.
The interaction of different parameters in the system model is
worthy of further investigation, according to the preliminary,
but already very interesting, simulation results disclosed in this
paper.

REFERENCES

[1] X. Fang, S. Misra, G. Xue, and D. Yang, “Smart grid - the new
and improved power grid: A survey,” IEEE Communications Surveys
Tutorials, vol. PP, no. 99, pp. 1 –37, 2011.

[2] R. Walawalkar, S. Fernands, N. Thakur, and K. R. Chevva, “Evolution
and current status of demand response (DR) in electricity markets:
Insight from PJM and NYISO,” Energy Journal, vol. 35, no. 4, pp.
1553–1560, Apr. 2010.

[3] W.-H. Liu, K. Liu, and D. Pearson, “Consumer-centric smart grid,” in
Proc. IEEE PES Innovative Smart Grid Technologies, Anaheim, CA,
Jan. 2011, pp. 1 –6.

[4] N. Zafar, E. Phillips, H. Suleiman, and D. Svetinovic, “Smart grid cus-
tomer domain analysis,” in Proc. IEEE International Energy Conference
and Exhibition, Manama, Bahrain, Dec. 2010, pp. 256 –261.

[5] W. Tushar, J. A. Zhang, D. B. Smith, S. Thiebaux, and H. V. Poor,
“Prioritizing consumers in smart grid: Energy management using game
theory,” in Proc. IEEE International Conference on Communications,
Budapest, Hungary, Jun. 2013, pp. 1–5, [http://arxiv.org/abs/1304.0992].

[6] A. Mohsenian-Rad, V. Wong, J. Jatskevich, R. Schober, and A. Leon-
Garcia, “Autonomous demand-side management based on game-
theoretic energy consumption scheduling for the future smart grid,” IEEE
Transactions on Smart Grid, vol. 1, no. 3, pp. 320 –331, Dec. 2010.

[7] J. Pierce, “The Australian national electricity market: Choosing a new
future,” in Proc. World Energy Forum on Energy Regulation, Quebec,
Canada, May 2012.

[8] R. Anderson and S. Fuloria, “On the security economics of electricity
metering,” in Proc. The Ninth Workshop on the Economics of Infor-
mation Security, Harvard University, Cambridge, MA, Jun. 2010, pp. 1
–18.

[9] A. B. Couture, T. Cory, K. Kreycik, and C. E. Williams, “Policymaker’s
guide to feed-in tariff polcy design,” National Renewabele Energy Lab-
oratory, U.S. Dept. of Energy, 2010, http://www.nrel.gov/docs/fy10osti/
44849.pdf/.

[10] P. W. Farris, N. T. Bendle, P. E. Pfeifer, and D. J. Reibstein, Marketing
Metrics: The Definitive Guide to Measuring Marketing Performance.
Upper Saddle River, NJ, USA: Pearson Prentice Hall., 2010.

[11] Z. Yun, Z. Quan, S. Caixin, L. Shaolan, L. Yuming, and S. Yang, “RBF
neural network and ANFIS-based short-term load forecasting approach
in real-time price environment,” IEEE Transactions on Power Systems,
vol. 23, no. 3, pp. 853 –858, Aug. 2008.

[12] A. Eddahech, O. Briat, E. Woirgard, and J. Vinassa, “Remaining useful
life prediction of lithium batteries in calendar ageing for automotive
applications,” Microelectronics Reliability, vol. 52, no. 910, pp. 2438 –
2442, 2012.

[13] P. Samadi, A. Mohsenian-Rad, R. Schober, V. Wong, and J. Jatskevich,
“Optimal real-time pricing algorithm based on utility maximization for
smart grid,” in Proc. of the First IEEE International Conference on
Smart Grid Communications, Gaithersburg, MD, Oct. 2010, pp. 415 –
420.

[14] C. Wu, H. Mohsenian-Rad, and J. Huang, “Vehicle-to-aggregator inter-
action game,” IEEE Transactions on Smart Grid, vol. 3, no. 1, pp. 434
–442, Mar. 2012.

[15] W. Tushar, W. Saad, H. V. Poor, and D. B. Smith, “Economics of electric
vehicle charging: A game theoretic approach,” IEEE Transactions on
Smart Grid, vol. 3, no. 4, pp. 1767–1778, Dec. 2012.

[16] F. Facchinei and C. Kanzow, “Generalized Nash equilibrium problems,”
4OR, vol. 5, pp. 173 –210, Mar. 2007.
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