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Abstract

Background: Genome-wide disease-gene finding approaches may sometimes provide us with a long list of

candidate genes. Since using pure experimental approaches to verify all candidates could be expensive, a number

of network-based methods have been developed to prioritize candidates. Such tools usually have a set of

parameters pre-trained using available network data. This means that re-training network-based tools may be

required when existing biological networks are updated or when networks from different sources are to be tried.

Results: We developed a parameter-free method, interconnectedness (ICN), to rank candidate genes by assessing

the closeness of them to known disease genes in a network. ICN was tested using 1,993 known disease-gene

associations and achieved a success rate of ~44% using a protein-protein interaction network under a test scenario

of simulated linkage analysis. This performance is comparable with those of other well-known methods and ICN

outperforms other methods when a candidate disease gene is not directly linked to known disease genes in a

network. Interestingly, we show that a combined scoring strategy could enable ICN to achieve an even better

performance (~50%) than other methods used alone.

Conclusions: ICN, a user-friendly method, can well complement other network-based methods in the context of

prioritizing candidate disease genes.

Background
The wide applications of high-throughput techniques

have enabled researchers to investigate disease mechan-

isms in a genome-wide scale [1,2]. However, one chal-

lenge is that these techniques are usually unable to

precisely pinpoint the causative genes. For example, a

linkage analysis may give a disease-linked chromosomal

region, which may harbor hundreds of candidate genes

[3,4]; an association study may identify a number of

false positives if the disease under investigation has a

complex inheritance pattern [5]. While a whole genome

re-sequencing can find a number of genetic variations in

a patient, only a few of them may play a role in the dis-

ease etiology [1]. Therefore, time-consuming and

laborious experiments are usually required to determine

the real disease genes from a large number of candidates

given by high-throughput experiments. One strategy to

accelerate the whole disease gene finding process is to

use a computational approach to prioritize candidate

genes.

Many computational approaches for prioritizing candi-

date genes have been developed, assuming that one dis-

ease could be caused by a group of functionally related

genes. Such approaches measure the functional similar-

ity of each candidate gene to known disease genes using

experimentally verified biological data (for details see

review [6-9] and Additional File 1). Among these

approaches, network-based ones have shown a good

performance. The working hypothesis of network-based

methods is that genes causing one disease are likely to

locate closely to each other in a biological network

[6,10]. Some network-based methods prioritize
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candidate genes based on whether they directly interact

with known disease genes [11,12]; other methods further

consider the shortest-path distance between candidate

genes and known disease genes in a network when

direct links do not exist [13,14]. On the other hand, dif-

ferent methods might employ distinct scoring strategies.

Lage et al. [15] developed a Bayesian predictor that

could combine interactome and phenome to infer puta-

tive protein complexes likely to associate with a disease.

The CIPHER method scores the candidate genes using a

regression model of phenotype similarity and gene clo-

seness in a network [16]. Other network-based algo-

rithms, such as random walk [17], network flow [18],

page rank [19], network partition [20], and network

clustering [21], were also designed to prioritize candi-

date disease genes.

Network-based methods usually have some para-

meters that need to be trained using available data

sets. The random walk method needs a parameter to

control the probability of returning to the initial node

[17], and the network flow algorithm uses a parameter

to describe the relative importance of prior informa-

tion [18]. Lage’s method requires determining several

parameters in order to build the predictor [15]. When-

ever biological networks are updated or new training

data become available, their parameters should be re-

tuned in order to optimize their performance. It may

be difficult for biologists to rep eat these processes by

themselves. Additionally, a parameter set may just

work for certain cases. Here, we take the random walk

(RW) method as an example. Although a parameter

setting (r = 0.5) of RW appears to suffice the identifi-

cation of many disease genes, using other parameters

may be required to find certain disease genes (Figure

1). How to intelligently choose the parameters could

be a difficult task to users. We argue that a parameter-

free algorithm could be more useful to users in this

regard.

In this study, we propose a new candidate gene priori-

tization approach that measures the interconnectedness

(ICN) between genes in a network. It was designed to

be a parameter-free method. Unlike other network-

based methods, ICN measures closeness of each candi-

date genes to known disease genes by taking alternative

paths into consideration, in addition to the direct link

and the shortest-path distance. In comparison with

other outperforming network-based methods, ICN is a

competitive method. In particular, we show that an

impressive performance of prioritizing candidate disease

genes could be achieved by combining ICN with other

network-based methods. Finally, a novel type of spino-

cerebellar ataxia (SCA) was chosen to demonstrate the

ability of this method.

Results and discussion
Principles of the interconnectedness-based method

Most network-based gene prioritization methods,

including this one we have developed here, were created

on the basis that causative genes of one disease may

tend to locate closely in the network [6,10]. The

approaches taken by various methods differ on how clo-

seness between genes is measured. Before this method is

developed, other network-based methods prioritize can-

didate genes by finding direct-linked disease genes or

close disease genes using shortest-path distance. One

concern with these previous methods is that they might

be less effective than expected if there are noises or

missing direct links in the network used to measure

inter-gene closeness. Consequently, we designed the

InterConnectedNess-based method, ICN, to measure the

closeness between genes by considering alternative

paths, in addition to the shortest one, that could con-

nect candidate genes to known disease genes. Briefly,

ICN determines that these genes are more likely to

belong to the same functional module if two genes have

more shared interacting genes. A functional module

may correspond to a protein complex [15,18] or to a

signalling pathway [22]. If a functional module is impli-

cated with a disease, changes to a member gene in this

module may cause this disease [23,24]. We applied ICN

to the problem of prioritizing disease candidate genes.

Comparison with other network-based prioritization

algorithms

According to the comprehensive comparison performed

in [25], the best two outperforming methods for priori-

tizing candidate genes were the Random Walk method

(RW) [17] and the PRINCE (PRIoritizatioN and Com-

plex Elucidation) algorithm (PR) [18]. In this project,

they were re-implemented in order to compare their

Figure 1 Associations between parameter values and disease-

gene association predictions. There are 220 disease-gene

association cases in this example. The parameter r is used in

random walk method to control the probability of returning to

initial node [17]. The solid blocks indicate this method with a

specific parameter value successfully gives the true disease genes

the highest ranking (for details see the Materials and methods).

Hsu et al. BMC Genomics 2011, 12(Suppl 3):S25

http://www.biomedcentral.com/1471-2164/12/S3/S25

Page 2 of 12



performance with that of ICN. Their parameters were

optimized as described in [18] (for details see Materials

and Methods).

Two biological networks were recruited as the data

sets to evaluate the performance of ICN and other two

methods. These networks were chosen because each

network has features distinctive from that of the other.

We intended to examine if each method could perform

in a consistent manner using different types of network

data. The first one is a protein-protein interaction net-

work (PIN) consisting of 140,382 interactions and

12,164 genes. PIN consists of data retrieved from nine

protein-protein interaction data sources [26-34]. The

second one is a functional association network (FAN)

consisting of 1,217,908 interactions and 16,648 genes

downloaded from the STRING database [35]. These two

networks share 11,776 common genes and 95,630 com-

mon interactions. Two major differences between these

data sets are the number of interactions and the types

of edges. While PIN edges are un-weighted, FAN edges

are annotated with weights indicating the confidence of

functional linkage between each pair of connected genes

[36]. ICN is able to incorporate edge weights in quanti-

fying the closeness between genes in a network. The sta-

tistics of available data in each network is summarized

in Table 1.

A leave-one-out procedure was employed to carry out

the evaluation. The disease-gene associations were

obtained from OMIM [37]. These genes were manually

grouped in to different disease families as described in

Materials and Methods. In each validation trial, the

association of one test gene with a disease family was

removed, and each method was tried to re-build this

association. To mimic the situations we may encounter

when using different high-throughput genome-wide

techniques to find disease genes, we created two test

scenarios, the simulated linkage analysis and the whole

genome scan. In the simulated linkage analysis, each

time a test disease gene together with 100 genes on its

flanking regions was taken as the candidate set. In the

whole genome scan, each time a test disease gene

together with all human genes in the network, excluding

other members from the corresponding disease family,

was taken as the candidate set. If a test gene was ranked

top k in a candidate set in a trial, this trial was regarded

as a successful one. We further defined the “success

rate” as the fraction of successful trials for a method

under a particular test scenario.

The results of simulated linkage analysis for each

method are presented in Figure 2. 1,993 and 2,616 dis-

ease-gene associations were tested using PIN and FAN,

respectively. When PIN was used, ICN achieved the best

performance with a success rate of 44.7%, ranking the

known disease genes as top 1 candidate (k=1) in 870

out of 1,993 cases. RW and PR also achieved the similar

performance with a success rate of 43.3% (862/1993)

and 43.4% (865/1993), respectively. When the rank cut-

off (k) was increased, PR had the best performance,

while the performance of ICN was still comparable with

that of PR (Figure 2A). When FAN was used, RW

achieved a success rate of 71.3% (1865/2616), better

than that ICN (64.1%, 1678/2616) and PR (66.4%, 1738/

2616) did. On the other hand, as rank cutoff was

increased (k >= 5), the performance of ICN and PR was

better than that of RW (Figure 2B).

The performance comparison under the test scenario

of whole genome scan is shown in Figure 3. When PIN

was used, ICN successfully ranked the known disease

genes as top 1 candidate in 192 out of 1,993 cases, with

a success rate of 0.096. RW performance with a success

rate of 15.0% (299/1,993) was higher than ICN and PR

(6.9%, 137/1,993). Similarly, the performance of ICN

(10.4%, 272/2,616) was between RW (19.1%, 499/2,616)

and PR (6.7%, 174/2,616) when FAN was used. The

benchmark reveals that although ICN did not outper-

form in all cases, it was quite comparable to other

methods.

If the cases with disease genes being ranked as top 1

candidates by at least one of three prioritization meth-

ods were considered as successful predictions, the over-

all success rates so achieved were 54.3 % (1,083/1,993)

by using PIN and 79.2% (2,073/2,616) by using FAN,

Table 1 Statistics of biological networks

Protein-protein interaction network (PIN) Functional association network
(FAN)

Data source(s) Integration from DIP, BOND, IntAct, MINT, MIPS, HPRD, BioGRID, Reactome, and pathway
commons

STRING v8.2

Network type Unweighted Weighted

# genes 12,164 16,648

# interactions 140,382 1,217,908

# disease families 344 509

# disease-gene
associations

1,993 2,616

# disease genes 1,640 1,909
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respectively, under the test scenario of simulated linkage

analysis. The overall performance was much better than

that of respective methods. Figure 4 presents the over-

laps of successful predictions among ICN, RW, and PR.

No matter which biological network was used, RW and

PR shared more success cases than other combinations.

This is not really surprising, since RW and PR took a

similar iterative procedure to look for candidate genes

in a network [17,18]. Interestingly, each method pre-

dicted unique cases. In particular, ICN gave the highest

number of unique success cases using PIN, and it gave a

comparable number of unique cases with that of RW

using FAN. These results indicate that each method

may perform better than other methods on certain

cases. Analyzing the difference of the unique success

cases generated by different methods may help us get a

deeper understanding of unique advantage of each

method, which could assist us to further improve the

performance.

Exploring the cases uniquely predicted by respective

methods

Intuitively, topological properties of genes in a network

may affect the performance of candidate gene prioritiza-

tion when network-based methods are used. To under-

stand how the performance of different methods could

be influenced, we examined if the disease genes uniquely

identified by individual methods had distinctive topolo-

gical properties. For simplicity, disease genes uniquely

identified by ICN are denoted as ICN-unique genes/

cases, and so forth for other methods, in the following

text.

Firstly, the number of interacting partners, also

referred to as the degree in the graph theory [38], of

each method-unique case was considered. We noticed

that when PIN was used, the average degree of RW-

unique cases was significantly higher than these of ICN-

and PR-unique cases (P-value = 0.002 and 2.9×10-6,

Wilcoxon signed-rank test). Secondly, we explored to

which extent a method-unique gene may be located, in

a network, away from the known genes implicated in a

disease family. Here we found that when PIN was used,

the distribution of the shortest-path distances of ICN-

unique cases is similar to that of PR-unique cases (Fig-

ure 5B). Both ICN-unique and PR-unique cases are sig-

nificantly more distant from known disease genes than

that of RW-unique cases (P-values = 1.9×10-5 and

2.6×10-5, respectively, Wilcoxon signed-rank test). The

analysis of the method-unique cases using FAN yielded

a similar result (Additional File 2).

On the whole, these results support that a prioritiza-

tion method may outperform the others when candi-

date disease genes to be assessed have certain

method-favored topological properties. When candi-

date genes have more interacting partners in a net-

work and are closer to other known disease genes,

RW may perform better than the other methods. In

contrast, ICN and PR may outperform RW when

Figure 2 A performance of prioritization methods tested on simulated linkage analyses. The performance of different methods is assessed

by using PIN (A) and FAN (B), respectively.
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prioritizing candidate genes that are more distant

away from other known disease genes in a network.

Therefore, it is quite possible that combining the

ranking results of different methods may further

improve the performance of candidate gene prioritiza-

tion. In the next section, we show that a combined

scoring strategy did improve the performance of prior-

itizing candidate disease genes.

Figure 3 A performance of prioritization methods tested on whole genome scans. The performance of different methods is assessed by

using PIN (A) and FAN (B), respectively.

Figure 4 Venn diagram of successfully predicted cases among different prioritization methods. The cases which are successfully ranked

the known disease genes as top 1 candidate are compared among ICN, RW, and PR by using PIN (A) and FAN (B), respectively.
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Improving the performance using a combined scoring

strategy

Since each method may have its own favorite cases, we

tried to improve the performance of prioritization by

combining the results generated by different methods.

To preserve the unique advantage of each method, we

did not change any algorithmic approaches in them.

Instead, we used a combined scoring strategy by multi-

plying together the ranks generated by different methods

(for details see section Materials and Methods). The

performance of this new approach was also evaluated

using the leave-one-out procedure under a test scenario

of either simulated linkage analysis and whole-genome

scan.

Table 2 lists the performances of respective methods

and different combined scoring schemes tested in the

simulated linkage scenario. Here, we denote the scoring

scheme of combining the ranking results of ICN and PR

as the ICN-PR method, and so forth. Interestingly, all

combined scoring schemes achieved higher success rates

than respective methods. When PIN was used, the ICN-

PR method showed the best performance (success rate

48.9%). Besides, the ICN-RW method also showed a bet-

ter success rate (46.9%) than respective methods. On the

other hand, when FAN was used, the RW-PR method

outperformed the other individual and combined meth-

ods (success rate 73.7%). The ICN-PR method achieved

a success rate (72. 7%) close to the best one. All the

combined scoring schemes made substantial perfor-

mance improvement compared to respective methods

(ICN: 64.1%, RW: 71.3%, PR: 66.4%). Finally, when these

combined scoring schemes were tested in the whole

genome scan scenario, no performance improvement

could be found (data not shown). It is not surprising

since we expect that there could be missing parts in

currently available biological networks and more genes

are yet to be identified to fill in the networks.

Here we further explored if the cases failed when

respective methods were used could be recovered using

the combined scoring schemes. The result is listed in

Table 3. When PIN was used, 11 and 25 cases (out of

911 cases failed using respective methods) could be

recovered by the ICN-RW and the ICN-PR methods,

respectively, but no cases could be recovered by the

RW-PR method or the ICN-RW-PR method. We also

tested if it could make a difference if FAN was used. It

turned out that the ICN-RW method and the ICN-PR

method rescued 27 and 22 cases (out of 543 cases failed

using respective methods), respectively. The RW-PR

method could rescue only one case, and the ICN-RW

-PR method did not really show a much better perfor-

mance (4 cases rescued).

Figure 5 Analysis of network topological properties on disease causing genes. The topological properties of disease genes in unique cases

which were successfully ranked the known disease genes as top 1 candidate by a specific method in PIN (Figure 3A) were compared in degree

(A) and average shortest-path distance between other disease-associated genes which are in the same disease family(B).

Table 2 Success rates of ranking known disease genes as

the best candidate

Success rate
(%)

ICN RW PR ICN-
RW

ICN-
PR

RW-
PR

ICN-RW-
PR

PIN 43.7 43.3 43.4 46.9 48.9 46.8 44.5

FAN 64.1 71.3 66.4 72.7 73.3 73.7 72.4
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All in all, combining the results of different network-

based methods indeed enhances the performance of

prioritizing candidate disease genes. In particular, sub-

stantial performance improvement was made when

combining ICN with other methods.

Using ICN and combined scoring schemes to find

spinocerebellar ataxia genes

To demonstrate the ability of ICN and the combined

scoring schemes in finding novel disease genes, we pre-

sent a case study for spinocerebellar ataxia type 22

(SCA22) [39]. Autosomal dominant spinocerebellar atax-

ias (SCAs) are a group of progressive neurodegenerative

disorders characterized by the loss of balance and motor

coordination due to dysfunction of the cerebellum [40].

SCAs are genetically heterogeneous. To date, more than

30 genomic loci have been linked to different subtypes

of SCA; however, only 18 causative genes have been

determined [41,42]. Interestingly, these genes share

common interacting partners [43], suggesting that net-

work-based methods could be suitable for finding novel

SCA-causing genes. SCA22 has been found to link to

the locus on chromosome 1q21-23 [39], where 541 pro-

tein-coding genes were annotated (Ensembl release 58,

http://www.ensembl.org). Our aim was to prioritize

these 541 candidate disease genes.

The confirmed SCA-causing genes in Table 4 were

regarded as known disease genes for the SCA disease

family. There were 15 and 17 of them in PIN and FAN,

respectively. Table 5 and 6 present the top 10 candidate

genes (i.e. k = 10) prioritized using PIN and FAN,

respectively. Firstly, we tested individual methods. We

noticed that ICN, RW, and PR generated very different

results. No identical top one gene could be consistently

determined by different methods. In addition, when PIN

was used, only 2 genes, SPTA1 and GNAT2, were com-

monly identified by all methods (k = 10, Table 5). Simi-

larly when FAN was used, only 3 genes (KCNN3,

SPTA1, and KCNC4) commonly identified by all meth-

ods (k = 10, Table 6).

Secondly, we tested combined scoring schemes and

they appeared to generate more consistent results. When

PIN and FAN were used respectively, there were corre-

spondingly three (SPTA1, GNAT2, and NRAS) and

seven (KCNN3, SPTA1, CCT3, KCNC4, KCNA2,

KCND3, and KCNA3) common genes identified by all

combined scoring schemes (k = 10, Table 5 and 6).

Furthermore, SPTA1 and KCNN3 were consistently

picked out as the best candidates by all combined scoring

schemes using PIN and FAN, respectively. SPTA1 was

also ranked in the top 3 candidate genes by combined

scoring schemes when FAN was used. KCNN3 was not

included in the candidate list when PIN was used because

there was no interaction information for KCNN3.

From protein function and literature survey, we found

that SPTA1 and KCNN3 are very likely to associate

with SCA22. SPTA1 is a member of spectrin family,

functioning in actin crosslinking and as the molecular

scaffold proteins to determine cell shapes and to arrange

the transmembrane proteins. An in-frame deletion in

Table 3 Failed prediction cases recovered by combined

methods

# failed prediction cases& # cases re-ranked as top 1 candidate

ICN-RW ICN-PR RW-PR ICN-RW-PR

PIN 911 11 25 0 0

FAN 543 27 22 1 4

& a failed prediction case indicates that no prioritization method can rank the

true disease gene as top 1 candidate.

Table 4 List of SCA-causing genes

SCA subtype Gene PIN& FAN&

SCA1 ATXN1 Y Y

SCA2 ATXN2 Y Y

SCA3 ATXN3 Y Y

SCA5 SPTBN2 Y Y

SCA6 CACNA1A Y Y

SCA7 ATXN7 Y Y

SCA8 ATXN8 N N

SCA10 ATXN10 Y Y

SCA11 TTBK2 Y Y

SCA12 PPP2R2B Y Y

SCA13 KCNC3 N Y

SCA14 PRKCG Y Y

SCA15 ITPR1 Y Y

SCA17 TBP Y Y

SCA27 FGF14 N Y

SCA28 AFG3L2 Y Y

SCA31 PLEKHG4 Y Y

DRPLA ATN1 Y Y

& whether the disease genes are in the given network. DRPLA: dentatorubral-

pallidoluysian atrophy

Table 5 Top 10 candidate genes for SCA22 by using PIN

Rank ICN RW PR ICN-RW ICN-PR RW-PR ICN-RW-
PR

1 SPTA1 NRAS YY1AP1 SPTA1 SPTA1 SPTA1 SPTA1

2 GNAT2 SPTA1 ECM1 GNAT2 YY1AP1 AHCYL1 GNAT2

3 TAF13 GNAT2 AHCYL1 NRAS GNAT2 NRAS NRAS

4 ISG20L2 GNAI3 FDPS ISG20L2 TAF13 ECM1 YY1AP1

5 FCGR2C AHCY1 SPTA1 FCGR2C ECM1 YY1AP1 ECM1

6 YY1AP1 STXBP3 STXBP3 TAF13 NRAS GNAT2 TAF13

7 PSMD4 ECM1 S100A7 PSMD4 STXBP3 STXBP3 STXBP3

8 NRAS CCT3 POLR3C GNAI3 PSMD4 GNAI3 AHCYL1

9 NGF RPS27 UBAP2L NGF POLR3C S100A7 GNAI3

10 NTRK1 S100A7 GNAT2 NTRK1 NGF FDPS PSMD4
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SPTBN2, which is also a member of the spectrin family,

can cause SCA5 [44]. Recent studies have shown that

the mutant SPTBN2 disrupts fundamental intracellular

transport processes in synapses [45-47]. This is likely to

contribute to progressive neurodegenerative disease,

such as SCA. Therefore, SPTA1 may cause SCA22 in a

similar mechanism. Besides, KCNN3 is a member of the

gene family encoding the small conductance calcium-

activated potassium channels. A CAG repeat poly-

morphism has been annotated in the amino-terminal

coding region of KCNN3 [48]. Many studies revealed

that such repeat polymorphisms associate with psychia-

tric diseases, such as schizophrenia [49] and bipolar dis-

eases [50].

To further validate these two candidates experimen-

tally, an exome sequencing experiment was performed,

and several novel gene variations have been found on

SPTA1 in two SCA22 patients (Chung, M.-Y. et al.,

unpublished data). This preliminary result we present

here suggests that ICN and the combined scoring

schemes are able to identify the novel disease genes.

Conclusions
The InterConnectedNess-based method (ICN) is a bio-

logically intuitive and parameter-free approach for prior-

itizing candidate disease genes. There is no need for

users to train the parameters every time when biological

networks to be used are updated. ICN not only was

comparable to other well-known methods, such the ran-

dom walk method (RW) and the PRINCE algorithm

(PR), but also outperformed these methods when candi-

date disease genes are located more distantly to known

disease genes in a network. Furthermore, combined

ICN-RW or ICN-PR scoring schemes showed an

impressive performance improvement in prioritizing

candidate disease genes, suggesting that different net-

work-based methods may complement the weakness of

each other.

In this study, we created a very simple combined scor-

ing strategy by multiplying the ranks generated by

different methods. The success of this strategy implies

that there might still be a chance to further improve the

performance of network-based methods in prioritizing

candidate disease genes. To achieve this, we plan to try

other strategies. In addition to combining method-speci-

fic ranking results, combining network-specific ranking

results appears to be another promising strategy. In fact,

two algorithms, N-dimensional order statistics (NDOS)

[51] and discounted rating system (DRS) [52], have been

employed in some prioritization methods to combine

ranking results generated respectively by using different

network data sets. It would be interesting to find out if

the performances of ICN or other network-based meth-

ods can still be advanced when more heterogeneous

approaches are integrated together.

Materials and methods
Biological networks

Two kinds of biological networks were employed to

test the performance of network-based methods in this

study: protein-protein interaction network (PIN) and

functional association network (FAN). PIN was con-

structed by integrating protein-protein interaction data

from nine databases, including DIP [26], BIND [27],

IntAct [28], MIPS [29], MINT [30], HPRD [31], Bio-

GRID [32], Reactome [33], and Pathway Commons

[34]. Another dataset, FAN, was obtained from

STRING v8.2, which was a comprehensive gene asso-

ciation dataset containing directly physical interactions

and functional links from experimental evidence and

computational methods [35]. In both networks, the

identifier for each gene was mapped to Entrez Gene

ID, and self-interacting pairs were removed. Finally,

PIN consists with 140,382 interactions and 12,164

genes, and FAN consists of 1,217,908 interactions and

16,648 genes (Table 1). Each connection in FAN was

assigned a confidence scores from STRING, which

reflects the confidence of each gene-gene association.

PIN and FAN were regarded as unweighted and

weighted networks, respectively.

Table 6 Top 10 candidate genes for SCA22 by using FAN

Rank ICN RW PR ICN-RW ICN-PR RW-PR ICN-RW-PR

1 S100A6 SPTA1 KCNN3 KCNN3 KCNN3 KCNN3 KCNN3

2 KCNN3 CCT3 HCN3 SPTA1 S100A6 SPTA1 SPTA1

3 NGF KCNN3 SPTA1 S100A6 SPTA1 CCT3 S100A6

4 KCNA2 S100A11 PPM1J KCNA2 KCNC4 HCN3 CCT3

5 KCNC4 KCNA2 RHBG CCT3 PPM1J KCNC4 KCNC4

6 KCND3 KCNA3 KCNC4 KCNC4 KCNA2 KCNA2 KCNA2

7 KCNA3 KCND3 AHCYL1 KCND3 KCND3 S100A11 KCND3

8 SPTA1 KCNC4 CCT3 KCNA3 CCT3 PPM1J KCNA3

9 HIST2H2BE ARHGEF11 PYGO2 NGF KCNA3 KCNA3 PPM1J

10 SHC1 CD5L F11R F11R F11R KCND3 F11R
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Disease-gene associations

The disease-gene associations were retrieved from the

Morbid Map in OMIM [37]. If the causative genes were

not included in the networks, their associations to dis-

eases were removed. Because the prioritizing methods

require related disease genes for prediction, the related

causative genes were manually grouped into a disease

family based on their given disorder name [53], and dis-

ease families that have only one causative gene were fil-

tered out. In total, 1,993 disease-gene associations

implicated with 344 disease families were recruited in

PIN and 2,616 disease-gene associations implicated with

509 disease families were recruited in FAN (Table 1).

Interconnectedness (ICN) between genes

The closeness between genes in a network was quanti-

fied by considering not only direct interaction of two

genes but also the number of connectors between genes.

As illustrated in Figure 6, the interconnectedness score

ICNi,j between two genes i and j was defined as:

ICN
k k

i j

i j i u j u

u N N

i j

i j

,

, , ,

( )
=

∗ +

∈ ∩

∑2 w w w

(1)

where N is the neighboring genes of a given gene, and

u is the gene linked to both gene i and j. ω is a weight

of the connection between two genes, e.g. ωi,j corre-

sponds to the weight between gene i and j. In FAN, the

value of ω is within the interval between 0 and 1. In

PIN, however, ω is either 1 or 0, i.e. connected or

unconnected. Because the number of connectors may be

associated with the number of neighbors of each node,

the number of connectors between two genes is normal-

ized by the expected number of connectors between

these genes. ki is the sum of weights of gene i’s neigh-

boring connections and is defined as:

ki i j

j N i

=

∈

∑w , (2)

Figure 6 Illustration of interconnectedness between genes. This illustrates the interconnectedness (ICN) between gene i and j. Each node

represents a gene and each edge represents a either physical interaction or functional association. ω is the weight of each connection. u is the

set of connectors, which interact with both gene i and j.
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In an unweighted network, ki corresponds directly to

the degree, namely the number of neighbors of a given

gene [38].

Prioritizing candidate genes by interconnectedness scores

Candidate genes are then prioritized based on the ICN

scores calculated using equation 1. For a given disease

d, each candidate gene was scored by summing up the

closeness to the seed genes Sd, i.e. the genes in the same

disease family. The score of a given candidate gene i

was calculated as:

score
S

ICNi
d

i j

j Sd

=

∈

∑
1

| |
, (3)

where ICNi,j is the connection score between gene i

and j. All candidate genes are then ranked based on

these scores.

Implement of random walk (RW) and PRINCE (PR)

methods

Both the random walk (RW) method [17] and the

PRINE (PR) algorithm [18] apply an iterative procedure

to find candidate disease genes in a network. When the

difference between results of the previous and current

steps (measured by L1-norm) fell below 10-10, the itera-

tion was halted, and candidate genes were ranked based

on the scores in the final step.

The precise behaviors employed by the two methods

to reach candidate genes in a network differ. RW [17]

simulates a random walker that starts from one or a set

of source nodes, and moves forward to neighboring

nodes with a probability proportional to the weight of

the connecting edge. RW also allows the walker to

move back to the source node with probability r in each

step. r controls how far the random walker could get

away from the source node. PR [18], a propagation-

based algorithm, exploits prior information on causative

genes for the same disease or similar ones and infers a

strength-of-association function to smooth over the net-

work (i.e. adjacent nodes are assigned similar values).

The parameter a in PR controls the relative importance

of prior information. Using the tuning procedure

described in [18], we set r = 0.5 and a = 0.9, which

make corresponding methods achieve the optimal per-

formance when the two network data sets described in

this study are used.

Experiment design and performance measurement

Two test scenarios were designed to evaluate the perfor-

mance of all methods: simulated linkage analyses and

whole genome scan. In the simulated linkage analysis, a

total of 100 genes flanking a test disease gene were

taken as the candidate genes. In the whole genome scan,

a test disease gene and all the genes in a biological net-

work excluding other members from the corresponding

disease gene family constitute the candidate gene list.

A leave-one-out procedure is used to assess the per-

formance of the different methods. In each trial, a dis-

ease-gene association was removed and remaining genes

in the same disease family were taken as seed genes to

reconstruct the association. We used the “success rate”

to represent the performance of a method. If the

removed disease-gene association was ranked in top k of

a candidate gene list, this trial was regarded as a suc-

cessful prediction. The “success rate” of a method is

defined as the fraction of successful predictions in all

cases tested given a particular combination of a network

data set and a test scenario.

Combing the prioritization results given by different

methods

For each candidate gene i, a combined score CSi was

calculated as:

CS Ri i j

j

n

=

=

∏ ,

1

(4)

where Ri,j indicates the rank of gene i in method j.

The candidate genes were re-ranked using the combined

scores in an ascending order, i.e. the lower combined

score, the higher priority.

Additional material

Additional file 1: List of related algorithms and tools for prioritizing

disease candidate genes

Additional file 2: Analysis of network topological properties on

disease causing genes The topological properties of disease genes in

unique cases which were successfully ranked the known disease genes

as top 1 candidate by a specific method in FAN (Figure 3B) were

compared in degree (A) and average shortest-path distance between

other disease-associated genes which are in the same disease family(B).

List of abbreviations used

FAN: functional association network; ICN: interconnectedness; OMIM: Online

Mendelian Inheritance in Man; RW: random work method; PIN: protein-

protein interaction network; PR: PRINCE algorithm.
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