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Abstract

Background: To support the development of early warning and surveillance systems of emerging zoonoses, we present a
general method to prioritize pathogens using a quantitative, stochastic multi-criteria model, parameterized for the
Netherlands.

Methodology/Principal Findings: A risk score was based on seven criteria, reflecting assessments of the epidemiology and
impact of these pathogens on society. Criteria were weighed, based on the preferences of a panel of judges with a
background in infectious disease control.

Conclusions/Significance: Pathogens with the highest risk for the Netherlands included pathogens in the livestock reservoir
with a high actual human disease burden (e.g. Campylobacter spp., Toxoplasma gondii, Coxiella burnetii) or a low current but
higher historic burden (e.g. Mycobacterium bovis), rare zoonotic pathogens in domestic animals with severe disease
manifestations in humans (e.g. BSE prion, Capnocytophaga canimorsus) as well as arthropod-borne and wildlife associated
pathogens which may pose a severe risk in future (e.g. Japanese encephalitis virus and West-Nile virus). These agents are
key targets for development of early warning and surveillance.
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Introduction

Human health is threatened by a wide variety of pathogens

transmitted from animals to humans. In the Netherlands, a

systematic approach for early warning and surveillance of

emerging zoonoses and a blueprint for an efficient network of

collaborators from the medical and veterinary professions to

prevent and control emerging zoonoses are being developed by a

consortium of national institutes for human and animal health (the

EmZoo consortium). To support this task, a prioritized list of

emerging zoonotic pathogens of relevance for the Netherlands was

needed. The HAIRS Group in the UK [1] has developed

qualitative decision trees to assess the zoonotic potential of

emerging diseases [2] and to classify the risk to public health,

based on probability and impact of infection [3].

Priority setting is a multi-dimensional problem, in which

technical information is often intertwined with value judgments.

Traditionally, a priority setting procedure entails asking a limited

number of experts to reach consensus. An example of this

approach in the domain of emerging zoonoses has been published

in France [4]. This method is relatively straightforward, but not

very transparent and the repeatability is low. Currently, semi-

quantitative methods are frequently used in which criteria are

divided into a limited number of classes (e.g. low, medium and

high). Criteria may also be scored on arbitrary scales (e.g. 0, 1, …,

5), while scores for all criteria are aggregated to produce an overall

score. An example of this approach was published in Belgium [5],

and a similar approach was taken for animal diseases by

McKenzie et al. [6] in New Zealand. Here, the transparency and

the repeatability are improved, but the classes are chosen rather

arbitrarily. Linear relations between the different classes of a

criterion or between criteria are often assumed but are not

supported by data. For the current project, the aim was to develop

a quantitative method to rank emerging zoonoses using clearly

interpretable criteria, expressed on natural numerical scales.

Furthermore, weights were incorporated for these criteria, elicited

by a systematic procedure from a panel of judges, independent

from the authors or scientific experts in the project. The method

was designed to simultaneously be the basis of a web-based

knowledge management system.

The quantitative method is based on the well-established multi-

criteria analysis (MCA) method. This method has been used in

many decision making contexts including animal health [7]. MCA

offer methods and techniques to structure complex decision-

making. After completing the different phases, information can be

introduced or modified without the necessity to completely redo
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the analyses. This is especially valuable in the priority setting of

emerging zoonoses, where information changes constantly. In our

approach to MCA, we combined objective information on the

epidemiology and societal impact of zoonotic pathogens with

subjective information on the relative weights of different criteria.

The objective information was based on scientific evidence, while

for the subjective information the values of individuals involved in

the control of infectious diseases were sought.

Methods

Selection of pathogens
Zoonoses are defined as diseases that can be transmitted

between vertebrate animals and man under natural conditions. An

emerging zoonoses is a zoonosis that is newly recognized or newly

evolved, or that has occurred previously but shows an increase in

incidence or expansion in geographic, host, or vector range [8]. Of

1415 known species of human pathogens, there are 868 zoonotic

pathogens [9], but only a limited number of them is considered

relevant as emerging zoonoses for the Netherlands.

Information from recent published studies on emerging

zoonoses in the Netherlands [10] and from other European

countries [4,11,12,13,14,15] was taken into account. Furthermore,

relevant information was gathered from signals of emerging

zoonoses from internet sources of public health and veterinary

organizations including the WHO, OIE, HPA and CDC and

ProMED-mail. In addition, expert members of the Emzoo

consortium were invited to suggest additional pathogens. This

process resulted in a long-list, including all pathogens (174)

mentioned as emerging zoonoses in one of the sources mentioned

above. Only pathogens with a proven zoonotic potential [2] were

included in our final list. To condense the resulting long-list to a

more manageable short-list, five additional decision rules were

applied. A zoonotic pathogen was excluded from the list if:

N non-human primate species form its only known reservoir.

These reservoir species are not likely to occur as free ranging

species in Europe and the pathogens have little public health

significance other than very specific occupational risks, e.g.

Simian foamy virus;

N its specific only known reservoir species is absent in Europe,

e.g. Sin nombre virus;

N its vector (in case of a vector-borne zoonotic pathogen) family

(not vector species) is absent in Europe, e.g. Trypanosoma spp.;

N the zoonotic aspects involved a single species jump, after which

the pathogens further evolved and became effectively and

essentially transmissible from human to human e.g. new

influenza H1N1 or HIV.

This analysis finally resulted in a short-list of 86 emerging

zoonotic pathogens of relevance for the Netherlands (see database

in Annex S2), which are evaluated by the risk-ranking method.

Listing and structuring of criteria
We quantified the risk to public health of emerging zoonoses by

applying seven criteria that covered the complete pathway from

introduction to societal impact (Figure 1). All criteria were scored

on a natural scale, and were divided into 4-5 levels; often covering

several orders of magnitude in terms of effects (see Table 1 and

Annex S1). For subsequent analysis, each class was represented by

a point estimate, representing a central value in the range.

Evaluating pathogens on the selected criteria
Where possible, levels were assigned to pathogens based on

published literature. Values were to reflect the current situation in

the Netherlands, given the existing level of prevention and health

care including vaccination and infrastructure (water supply,

sewerage, food safety controls) et cetera. We, therefore, mainly used

data from industrialized countries. For many pathogens currently

Figure 1. Flow chart of the pathway from introduction of a zoonotic pathogen to public health impact, represented by 7 criteria
(C1–C7) from which the risk to public health of emerging zoonoses was derived.
doi:10.1371/journal.pone.0013965.g001
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available data were insufficient, and in those cases we tried to

evaluate criteria using simple decision rules. In the absence of both

sufficient data and decision rules, expert opinion was employed

and related uncertainty was expressed by assigning a pathogen to

more than one level. All assignments were made from the societal

perspective, i.e. the impact on all affected parties and sectors of

economy was considered.

Determining the weight of each criterion
Weights were based on panel sessions with different groups of

participants, representing different professional groups involved in

infectious disease control:

(i) Risk managers from the Dutch Ministries of Agriculture and

Public Health (n = 7);

(ii) Infectious disease specialists from medical microbiological

laboratories and from regional public health services (n = 11)

(iii) Students in the medical and veterinary faculties of Utrecht

University (n = 11).

Each panel session started with an explanation of the

objectives and approaches of the project. Panel members were

invited to comment on the approach and ask questions about

any aspect. Discussion was specifically stimulated on the criteria

and their scores, as ranking these was the core task of the panel

members.

For the ranking exercise, five groups of seven scenarios were

generated. Each scenario (designated by a two letter code, e.g. QJ)

represented a hypothetical zoonotic agent, by randomly choosing a

level for each criterion, subject to certain constraints: scenarios were

chosen as not to ‘majorize’ each other (i.e. no scenario should have a

higher risk level on all criteria than any other in the same set), and

implausible scenarios (i.e. with low animal prevalence yet very high

costs) were omitted. Each scenario was presented to the panel

members on a small card (Figure 2). Panel members were asked to

place the scenario that they considered to represent the lowest risk to

the left of their table and the highest risk scenario to the right. They

were then asked to arrange the remaining five scenarios in between

these two extremes, in order of increasing risk. To alleviate potential

effects of training and fatigue, the five groups of seven scenarios

(denoted by G1, …., G5) were offered to one half of the panel

members in the order G1, G3, G5, G4, G2 and to the other half in

the order G3, G2, G4, G1, G5. Data were entered in a Microsoft

Excel spreadsheet independently by two analysts, and any

discordance was resolved by referring to the original data sheets.

Panel rankings were checked for consistency in two ways. Firstly,

scenario group G2 included two scenarios that also occurred in G1,

G3 contained two scenarios from G2 and so on. Consistency was

evaluated by calculating the number of pairs that were ranked

differently (with a maximum of 4). Secondly, all panel members

received G2 again by (e-)mail two weeks after the session and were

asked to re-rank the scenarios. Results were considered inconsistent

Table 1. Quantifying criteria to assess risk of emerging pathogens.

Criterion Description Unit Levels Value (x) Scaled value (x9)* Transformed value (X)*

C1 Probability of introduction
into the Netherlands

% / year ,1
1–9
10–99
100

0.5
5
50
100

0.005
0.05
0.5
1

0.000
0.435
0.869
1.000

C2 Transmission in animal
reservoirs

Prevalence per
100,000 animals

,1
1–100
100–1,000
1,000–10,000
.10,000

0
50
500
5,000
50,000

0.0000001
0.00005
0.0005
0.005
0.1

0.000
0.386
0.528
0.671
0.857

C3 Economic damage in animal
reservoirs

Million euro per year ,1
1–10
10–100
.100

0.5
5
50
500

0.0005
0.005
0.05
0.5

0.000
0.303
0.606
0.909

C4 Animal-human transmission Prevalence per
100,000 humans

1–100
100–1,000
1,000–10,000
.10,000

50
500
5,000
50,000

0.00005
0.0005
0.005
0.1

0.000
0.233
0.465
0.767

C5 Transmission between humans Prevalence per
100,000 humans

,1
1–100
100–1,000
1,000–10,000
.10,000

0
50
500
5,000
50,000

0.0000001
0.00005
0.0005
0.005
0.1

0.000
0.386
0.528
0.671
0.857

C6 Morbidity (disability weight) None ,0.03
0.03–0.1
0.1–0.3
.0.3

0.02
0.06
0.2
0.6

0.02
0.06
0.2
0.6

0.000
0.281
0.589
0.869

C7 Mortality (case-fatality ratio) % 0
0–0.1
0.1–1
1–10
10–100

0
0.05
0.5
5
50

0.0000001
0.0005
0.005
0.05
0.5

0.000
0.528
0.671
0.814
0.957

*Point estimates x were first scaled (x9) between 0 (best possible option) and 1 (worst possible option). C1, C6 and C7 are naturally bounded between 0 and 1; for C2, C4
and C5 a worst possible option of the prevalence of 100,000 per 100,000 was used. For C3, a worst possible option of 1,000 MJ was used. Best possible options of 0
were replaced by 0.0000001. Subsequently, transformed scores were calculated as X = 12log(x9)/log(x9ref), where x9ref is the scaled score for the best possible option.
doi:10.1371/journal.pone.0013965.t001
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if the rank of a scenario shifted two or more positions, and the

number of inconsistencies (with a maximum of 30) were counted.

Data-analysis was carried out by probabilistic inversion, as

described by Kurowicka et al. [16]. Further technical details on

probabilistic analysis as a method to model stakeholder prefer-

ences can be found in Nesloo and Cooke [18]. Detailed results and

software code used for this particular project can be obtained from

one of the authors (d.kurowicka@ewi.tudelft.nl). Probabilistic

inversion consisted of the following steps:

N Evaluation of randomness.

N Transformation of values (Table 1).

N Optimization of constraints.

N Main analysis (probabilistic inversion)

A simpler method to prioritize infectious diseases for surveil-

lance was proposed by Krause et al. [17]. To compare with our

approach to elicit preference-based weights, panel members were

also asked to directly assign a rank order to the seven criteria and

mean ranks were calculated.

Aggregation of data
A linear model was applied, which combined the mean weights

from the panel session with transformed values for all 86 zoonotic

agents. The model calculates the score Si of a pathogen as:

Si~
X7

j~1

BjXij ,

where Xij is the (transformed) value assigned to pathogen i on

criterion j and Bj is the weight of criterion j.

These results were then normalized to a value between 0 and 1

by calculating the scores for the pathogen with the highest and

lowest theoretical risk (i.e. for which the values on all criteria were

at the highest or the lowest level).

Uncertainty in the transformed scores was included as discrete

distributions with equal weights, and quantified by Monte Carlo

simulation in @RISK Professional Version 5.0 (Palisade Corpo-

ration, Ithaca, NY USA), an add-in to Microsoft Excel.

Sensitivity analysis
To assess the impact of different model assumptions on the

outcomes, several alternative scenarios were evaluated. These

included:

N Equal weights. Instead of using the preference-based weights

from the panel sessions, each criterion was assigned an equal

weight.

N Semi-quantitative method. Instead of assigning a transformed

value to each level as shown in Table 1, values of 1 … 5 were

assigned to all criteria. Scores were calculated using equal

weights.

N Deterministic model. An interactive website (Emerging

Zoonoses Information and Priority system (EZIPs; http://

ezips.rivm.nl) was developed that allows the user to change

scores for any pathogen on each criterion to evaluate the

possible impact of uncertain or modified information. It is also

possible to exclude one or more criteria from the ranking, to

compute scores with equal weights or to introduce a new

pathogen and compare it with pathogens already in the

database. For technical reasons, a stochastic model could not

be implemented in the website and, therefore, uncertain values

were replaced by single estimates. Single estimates were chosen

so that the score was as close to the mean score from the

stochastic model as possible. However, as there are only few

levels per criterion, deviations could not be avoided. In

addition to the results of the MCA, the website also contains

descriptive information on all pathogens in 5 categories:

Taxonomy, Human and Animal Disease, Reservoirs, Trans-

mission, and Geographical distribution.

Cluster analysis
Policy makers may to better grasp a categorization of diseases

when expressed in qualitative terms (low, middle and high

importance), than when expressed as a continuous number. We

therefore implemented a cluster analysis. Based on an adapted

version of the methodology used in Cardoen et al. [5], groups of

different importance were identified by Classification and

Regression Tree analysis (CART Version 6.0, Salford Systems,

San Diego, California, USA [19]). As the normalized score is a

continuous variable, we aim to obtain subgroups with minimal

within group variance (grouping zoonoses with similar impor-

tance). Starting with all the pathogens the method will in first

instance obtain a binary split into two groups (nodes) that are most

homogeneous with respect to the normalized score. The two

subgroups will then be further split so that the ‘‘purest’’ subgroups

Figure 2. Example of card of a randomly generated scenario
(QJ) used in the panel session to determine the relative
weights of criteria. The numbers 1–7 represent the criteria C1–C7 (for
details see Table 1).
doi:10.1371/journal.pone.0013965.g002
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are obtained. The process is then continued until the nodes can

not be further ‘‘purified’’ using a technique called cross-validation

[20]. In contrast with [5], we did not use the mean total scores per

disease (i.e. one value per disease) as input, but the output of the

Monte Carlo simulations. This accounts for the existing uncer-

tainty in the normalized scores. The categorical variable

comprising the names of the pathogens was used as a

discrimination variable. In this way, Monte Carlo samples of the

same pathogen were kept together in the different clusters of

pathogens.

Results

Listing and structuring of criteria
Details of criteria are given in Table 1, a full description can be

found in Annex S1, including decision rules for assigning levels in

absence of data.

Evaluating pathogens on the selected criteria
A full table of scores of criteria of each of the 86 pathogens is

presented in Annex S2.

Determining the weight of each criterion
An example of a group of randomly generated scenarios that

were ranked in panel sessions is presented in Table 2. The

consistency between ranking in the panel session and the repetition

after two weeks was good: 11 panel members did rank the scenarios

in the same order in both sessions, and 10 provided only one answer

that was not consistent with the previous ranking. 6% of scores

resulting from ranking the same group after two weeks were

considered inconsistent, and no panel member scored more than

20% inconsistencies. It was concluded that scores were sufficiently

consistent to warrant further analysis. The results for group 1 (G1)

are given in Table 3 as an example. Scenarios GF and WL represent

the highest risk by the panel’s opinion, while NW and QJ are

considered to represent the lowest risk. Scenario VG is ranked as of

medium risk, and there is considerable disagreement between the

panel members on the risk of scenarios JR and ZC.

Including all signals in the model in which four or more panel

members ranked the scenario at a particular position in the

analysis (as indicated in Table 3 for G1) resulted in 51 constraints

to be taken into account from the combined dataset of G1, G2 and

G5. The scores of two out of five groups were not significantly

different from random ordering and these groups were excluded

from further analysis. The linear model was sufficient to reproduce

the panel members’ preferences.

Table 4 shows, for each criterion, the weights obtained and their

standard deviation. Based on rankings by panel members,

probabilistic inversion identified the human case-fatality ratio

and animal-human transmission the most important criteria,

whereas they considered transmission between animals, human

morbidity and economic damage in animals least important. The

coefficient of variation (standard deviation / mean) varied between

14 and 28%, reflecting deviating opinions between panel members

about the relative importance of criteria.

Table 4 compares the weights derived by probabilistic inversion

with the simple ranking method as proposed by Krause et al. The

participants consider C5, C7 and C4 as the more important criteria

when they rank them directly but the probabilistic inversion

excludes C5 as important criterion. There is no significant

correlation between both methods (p = 0.29, linear regression).

Aggregation of data
Figure 3 shows the results of combining in the linear model the

levels per pathogen with the mean weights as described above.

The confidence intervals reflect the valuations of a random

stakeholder, given uncertainty on criteria levels of the zoonoses.

The model appears to have good discriminative power. Within the

possible range for normalized scores of 1 to 0, there is a rather

continuous decrease in normalized scores from 0.68 for the

Table 2. Example of randomly generated scenarios (Group 1).

Code QJ VG GF JR ZC WL NW

C1 5 50 50 0.5 50 50 50

C2 10 0.5 10 0.05 0.5 0.5 0.5

C3 50 50 5 50 50 50 50

C4 0.5 0.05 0.5 0.5 0.05 10 0.05

C5 0.5 10 0.5 10 0.05 0 0.05

C6 0.2 0.6 0.02 0.2 0.6 0.06 0.2

C7 5 0.5 50 50 5 50 0.5

The Table shows the code names of the seven randomly generated scenarios
(QJ, VG, …) and the values assigned to each of the seven criteria (C1–C7, for
details see Table 1).
doi:10.1371/journal.pone.0013965.t002

Table 3. Example of results of ranking random scenarios
within Group 1.

Rank 1st 2nd 3rd 4th 5th 6th 7th

QJ 2 9 11 4 2 0 1

VG 0 0 5 7 11 3 3

GF 0 0 0 6 5 9 9

JR 7 1 1 4 4 7 5

ZC 1 10 8 6 3 1 0

WL 2 1 1 1 4 9 11

NW 17 8 3 1 0 0 0

QJ-NW represent scenarios in Group 1 (see Table 2). 1st rank represents the
scenarios with the lowest risk while 7th rank represents the scenarios with the
highest risk. For example, scenario QJ was ranked as the lowest risk by 2 panel
members. All rows and columns add up to 29, the total number of participants.
Results in bold (greater than 4) remain after elimination of weak signals to
reduce the number of constraints for probabilistic inversion; hence the number
of constraints is reduced from 49 to 16.
doi:10.1371/journal.pone.0013965.t003

Table 4. Comparison between preference-based weights
(this paper) and direct ranking [17].

Preference-based weights Direct ranking

Mean weight SD Mean rank

C1 0.418 0.100 4.14

C2 0.292 0.040 2.41

C3 0.337 0.069 1.41

C4 0.626 0.103 5.22

C5 0.339 0.096 5.29

C6 0.181 0.028 4.45

C7 0.643 0.113 5.24

doi:10.1371/journal.pone.0013965.t004
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pathogen with the highest risk (Influenza A virus (avian) H5N1) to

0.15 for the pathogens with the lowest risk (Dhori virus). The error

bars around the normalized scores reflect uncertainty about the

epidemiological characteristics of the pathogens, which is

particularly large for many exotic viruses. Note however that the

uncertainty tends to be greater for pathogens with lower

normalized scores. Inspection of Annex S2 shows that the greatest

uncertainty was associated with criteria relating to transmission in

the animal reservoir (C2) and from animals to humans (C4). There

was little uncertainty in the transmission between humans (C5).

Sensitivity analysis
Figure 4 shows relatively good correlation between scores

obtained with the baseline model using preference-based weights

and an alternative model in which each criterion is given equal

weight. Yet, even relatively small differences in scores may

significantly affect the ranking of pathogens.

A comparison between the quantitative method proposed in this

paper and the semi-quantitative method currently used by many

authors (both models with equal weights) showed that despite a

general tendency for ranks to increase in parallel, the discrimina-

tive power of the quantitative method was much larger. The semi-

quantitative method can only assign a discrete number of scores,

whereas the quantitative method uses the full scale in a continuous

manner. Rankings according to both methods may also be quite

different (Figure 5). Most pathogens were ranked from five places

lower to 15 places higher, but extremes from 16 places lower to 25

places higher did occur.

Cluster analysis
Three statistically different groups of importance were identified

by CART and are indicated by (dashed) lines in Figure 3. The

optimal number of subgroups was 29, but for the sake of practical

use of the results, we report the three main clusters only. The

clusters comprise 18, 28 and 40 pathogens, respectively. Splitting

the tree further in e.g. five clusters subdivided the cluster with the

lowest normalized scores and hence is not very informative for risk

management purposes.

Among the first cluster including 18 pathogens with the highest

normalized scores, there are one prion, 7 viruses, 9 bacteria and

one protozoan parasite. 8 are already present in the Netherlands

while 10 are not. Helminths are not represented in this group. The

obtained grouping is not very sensitive to the number of Monte

Carlo simulations. Indeed, the grouping obtained with 400 and

200 Monte Carlo simulations only differed by one pathogen

shifting from one group to another. No difference was noted

between 400 and 600 Monte Carlo simulations, indicating that

600 simulations were more than sufficient for a robust grouping.

Discussion

We describe a quantitative, stochastic method to rank the risk of

emerging zoonotic pathogens for the Netherlands. The approach

differs from several previously published methods. We decided to

restrict the number of criteria. With higher numbers, it becomes

increasingly complex to develop validated databases in which

pathogens are assigned to multiple possible values. Furthermore,

choosing between different scenarios as in our panel studies

Figure 3. Emerging zoonotic pathogens relevant for the Netherlands (x-axis), prioritized according normalized scores (y-axis,
means and 90% confidence intervals based on Monte Carlo simulation). Three groups of statistically different importance were identified
by Classification and Regression Tree analysis and are represented by dashed lines. Mean (standard deviation) of the full dataset: 0.423 (0.124). Mean
(standard deviation) of the three clusters: 0.577 (0.047); 0.476 (0.044); 0.317 (0.083).
doi:10.1371/journal.pone.0013965.g003
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becomes less meaningful as respondents will only use a limited

number of criteria to base their judgment on. By choosing criteria at

a high level of integration, we do, however account for many criteria

that are used in similar exercises, either explicitly by incorporating

them in decision rules or implicitly in the transmission criteria.

In contrast to most current approaches, we scored our criteria

using associated numerical scales, rather than non-informative ad-

hoc scales. This forces explicit consideration of the available

scientific evidence and we suggest that our quantitative approach

is less arbitrary in assigning values to possible levels that a criterion

can take, and is therefore more realistic than a semi-quantitative

approach. Our comparison with currently used semi-quantitative

methods (Figure 5) shows that there are considerable differences

between the quantitative and semi-quantitative approach. We also

introduce preference-based weights in the calculation of the

pathogen scores. The weights are reflecting the preferences of a

panel of decision makers, in our case professionals involved in

infectious disease control. Our comparative analysis shows that

using weights does affect ranking, but to a lesser extent than

introducing numerical scales. We also found that our elaborate

method of establishing weights through choice experiments

provided weights that were very different from those obtained

with a simple ranking exercise.

Assigning levels to the 86 pathogens on the short-list was found

to be a difficult process that required several iterations involving

literature studies and evaluation by pathogen-specific experts.

Nevertheless, considerable uncertainty remains, part of which was

expressed in uncertainty ranges around the normalized scores. By

identifying the factors that contribute most to the uncertainty in

quantified risk for pathogens with high normalized scores, these

results can be used to prioritize additional data collection and

analysis. The current method can easily be updated to incorporate

new data in a transparent way. Furthermore, the web tool allows

all users of the system to explore the impact of different value

assignments in an interactive mode.

The pathogens with the highest score according to the baseline

model would be proposed as priorities for risk management

activities. Subdivision into smaller groups with different implica-

tions for risk management is suggested. This is illustrated by

considering the 18 pathogens in the cluster with the highest

normalized scores. A major subdivision is between pathogens

already established in the Netherlands and pathogens that are not.

Surveillance and risk management strategies are likely to be

different for these categories. As a next step in the EmZoo project,

all pathogens were evaluated for the availability of hum and and

veterinary diagnostic methods, and surveillance systems. Results

showed that many gaps in diagnostics and surveillance exist, also

for the zoonoses in the first cluster. It was suggested that many of

these gaps can be complemented by developing generic surveil-

lance systems, which, in an efficient way, monitor for more than

one pathogen at a time. Thus, the development of mosquito

monitoring, tick monitoring, rodent monitoring, and syndromic

surveillance in humans and horses was recommended.

Instead of using expert panels, the same method could also be

used to identify issues that are important for the general public

(citizens) as their weighing of criteria could be different. These

results might offer opportunities to improve risk communication to

the general public. Moreover, the method could also be used in

another context (e.g. in developing countries) in order to prioritize

pathogens that should be addressed in developmental aid

programmes.

The model for priority setting presented here is based on criteria

reflecting the epidemiology and societal impact of zoonotic

diseases. Risk perception by the general public is not included in

this model, but may pose additional challenges to policy makers.

Further work to include risk perception as a second dimension in

the priority model is recommended.

In summary, the EmZoo project has resulted in:

N the development of a cross-disciplinary network to deal with

zoonoses threats;

N the development of systematic, explicit and quantitative

estimates of risk; and

N a web-based knowledge management system.

Figure 4. Comparison of normalized scores using preference-based weights and equal weights.
doi:10.1371/journal.pone.0013965.g004
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