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Abstract

Kernel machine learning methods, such as the SNP-set kernel association test (SKAT), have been 

widely used to test associations between traits and genetic polymorphisms. In contrast to 

traditional single-SNP analysis methods, these methods are designed to examine the joint effect of 

a set of related SNPs (such as a group of SNPs within a gene or a pathway) and are able to identify 

sets of SNPs that are associated with the trait of interest. However, as with many multi-SNP testing 

approaches, kernel machine testing can draw conclusion only at the SNP-set level, and do not 

directly inform on which one(s) of the identified SNP set is actually driving the associations. A 

recently proposed procedure, KerNel Iterative Feature Extraction (KNIFE), provides a general 

framework for incorporating variable selection into kernel machine methods. In this article, we 

focus on quantitative traits and relatively common SNPs, and adapt the KNIFE procedure to 

genetic association studies and propose an approach to identify driver SNPs after the application 

of SKAT to gene set analysis. Our approach accommodates several kernels that are widely used in 

SNP analysis, such as the linear kernel and the Identity By State (IBS) kernel. The proposed 

approach provides practically useful utilities to prioritize SNPs, and fills the gap between SNP set 

analysis and biological functional studies. Both simulation studies and real data application are 

used to demonstrate the proposed approach.
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INTRODUCTION

Gene, region, and pathway-based analyses have emerged as powerful strategies for 

analyzing genetic association studies (Wang et al., 2007; Yan et al., 2015). Under these 

strategies (collectively called set-based analysis), multiple, related genetic variants are 

grouped together into a set of variants (called a SNP-set) and then jointly tested for 

association with a complex trait or disease of interest. Set-based analysis can often offer 

improved power over standard analysis of genetic association studies which focuses on 

assessing the effect of each individual SNP, one-by-one. In particular, set-based analysis can 

improve power by reducing multiple testing burden, by enabling capture of multi-SNP 

effects, by harnessing linkage disequilibrium (LD) between SNPs, and even by possibly 

capturing epistatic or nonlinear effects (Wu et al., 2010).

Kernel machine testing approaches, such as the SNP-set or Sequence Kernel Association 

Test (SKAT) (Wu et al., 2011), are a particular class of approaches for conducting set-based 

analysis of both common and rare variants. The kernel machine testing framework operates 

by modeling the effect of a SNP-set on the outcome through a generally specified, possibly 

non-parametric function, which is defined based on a kernel function. Testing then proceeds 

by exploiting the connection between kernel machines and mixed models which enables 

utilization of a variance component score test (Lin, 1997). Operationally, the kernel function 

is a measure of similarity between two subjects based on the SNPs in the SNP-set, and the 

kernel machine test operates by comparing pair-wise similarity between subjects based on 

the SNP-set to pairwise similarity between subjects based on the trait. If similarity in SNP-

set profiles corresponds to similarity in the trait, then this suggests association between the 

SNPs and the trait. This class of approaches have been successfully applied to identify 

associations between genetic variants and a wide range of complex traits and diseases, such 

as fasting insulin (Cornes et al., 2013), hematological traits (Auer et al., 2014), and others. 

The approach has been extended to accommodate a wide range of types of traits and study 

designs (Lin et al., 2011; Ionita-Laza et al., 2013).

Despite the popularity and successful application of kernel methods across a wide range of 

settings, a key limitation of the approach lies in the interpretation of significant results. More 

specifically, as a global test, kernel machine testing only provides an overall p-value for the 

association between a group of variants and the trait. Thus, significance indicates that one or 

more variants are associated with the outcome, but there is no indication of which variant(s) 

are driving the apparent association. Fine mapping and identification of individual SNPs that 

are driving associations is of prime importance in order to hypothesize mechanisms by 

which inherited variability influences complex traits (Edwards et al., 2013). Practically, for 

functional studies, experimental investigations require focusing on a modest number of 

candidate SNPs. However, despite the importance, it is currently unclear as to how to 

identify individual genetic variants driving significant associations for a number of reasons. 
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First, by using a score test, the kernel machine test operates by estimating parameters under 

the null (which does not contain any genetic effects). Second, even if one does choose to do 

estimation under the kernel machine framework, as a non-parametric approach, the kernel 

machine framework only estimates the overall function of all of the SNPs. In other words, 

one can estimate the cumulative effect of all of the SNPs in the SNP set, but does not 

provide any information on the effect of any particular variant.

To overcome this difficulty and to facilitate the ongoing research efforts on functional 

studies of SNPs, we propose to apply variable selection, post-hoc, to identify individual 

variants that are driving the observed genetic associations when kernel machine methods are 

applied. This is closely related to fine mapping. In particular, for a SNP-set that has been 

found to be associated with a quantitative trait of interest, we propose to subsequently adapt 

the KerNel Iterative Feature Extraction (KNIFE) (Allen, 2013) method to select the 

individual SNPs that are driving the association. KNIFE is a recently developed approach 

that conducts variable selection within the kernel machine framework by imposing weights 

on different features while constructing the kernel. By shrinking some of these weights to be 

exactly zero, the corresponding features are no longer used to estimate similarity and are 

therefore dropped from the model, enabling variable selection. We tailor the KNIFE method 

to conduct selection of genetic variables by applying KNIFE within the context of 

genetically relevant kernels and also making algorithmic adjustments to allow for covariate 

adjustment and reduce computational burden. Specifically, we (1) consider the linear, 

identity-by-state (IBS) and quadratic kernels which are powerful kernels for genetic 

association testing, (2) incorporate individual SNP specific weights, and (3) finally, design a 

two-step procedure for implementing the KNIFE approach for genetic data, which can 

sometimes offer improved behavior over multi-iteration procedures. We focus on 

quantitative traits and relatively common SNPs. When applied to a set of SNPs within a gene 

or a pathway, our approach removes noise SNPs from the gene set and yields a small subset 

of candidate SNPs that can serve as candidate SNPs for functional studies. Extensive 

simulation studies and a real data illustration are used to evaluate the performance of the 

proposed approach.

Beyond the KNIFE approach, a wide range of other penalized variable selection procedures 

have been developed in recent years, such as the LASSO (Tibshirani, 1996) and elastic net 

methods (Zou, 2005). With an eye towards fine mapping, other penalized approaches have 

also been developed within the context of genetic association studies to identify genetic 

variants related to complex traits (Ayers and Cordell, 2010; Zhou et al., 2010; He and Lin, 

2011). However, a commonality of these approaches is that they are all generally designed 

for selecting variables within classical parametric linear or generalized linear regression 

models, and are not applicable to the kernel machine settings, where the effect of each 

individual covariate is not directly specified except under simple linear kernels. The 

Component Selection and Smoothing (COSSO) method (Lin and Zhang, 2006) is designed 

for variable selection in non-parametric kernel models, but was proposed in the context of 

smoothing spline ANOVA and requires the use of univariate kernels which does not allow 

sufficient flexibility in terms of accommodating some of the most popular kernels that are 

used in genetic analysis.
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METHODS

In this section, we first review the kernel machine testing framework with emphasis on both 

testing as well as estimation of the effects of a group of common variants on a quantitative 

trait. We then present the proposed variable selection procedure which is an adaptation of the 

KNIFE approach specifically targeted towards analysis of genetic variants. For simplicity, 

throughout this article, we restrict attention to quantitative traits and to common genetic 

variants.

Kernel Machine Testing and Modeling Framework

Focusing on just a single SNP-set, let yi denote the trait value for the ith person in the 

sample, Xi be a set of covariates for which we would like to control (including the intercept), 

and Zi = [Zi1, Zi2,…, Zip]′ be the genotypes for the SNPs in a SNP-set. Specifically, each Zij 

is a trinary variable equal to 0, 1, or 2 for non-carriers, heterozygotes, and homozygous 

carriers of the rarer allele. Under the kernel machine regression framework, quantitative 

(continuous) outcomes can be related to the genotypes and any additional covariates through 

the semiparametric model:

where εi is an error term with mean zero and variance σ2, and β are the regression 

coefficients for the covariates. In this model h(·) is a generally specified function that lies 

within a functional space ℋK generated by a positive semi-definite kernel function K(·,·). 
K(Zi, Zi′) is a measure of the similarity between subjects i and i′ based on the values of the 

SNPs in the gene set, and importantly, the kernel function fully specifies the relationship 

between the trait and the SNPs in the gene set, and vice versa. For example, it can be shown 

that if  called the linear kernel, then this implies that h(Zi) = α′Zi for 

some vector of constants α, i.e. h(Zi) is a linear function of the SNPs in the gene set. The 

converse is also true: setting h(Zi) = α′Zi also implies that the kernel function is equal to the 

linear kernel. Some examples of commonly used kernel functions for genotype data include:

• Linear Kernel: 

• Weighted Linear Kernel: 

• IBS Kernel: 

•
Quadratic Kernel: 

Other kernels are possible with the sole condition that they need to satisfy Mercer’s theorem. 

Typically, under the testing framework, estimation of the function h(Zi) is unnecessary since 

the test is score test. However, in contrast to the testing framework, in order to do variable 

selection, we are now conducting estimation instead of testing. Standard estimation of the 

nonparametric h(Zi) proceeds by minimizing of the empirical loss function
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(1)

Note that for simplicity of notation we omit the covariates Xi, but will include them when we 

discuss the algorithm later. Let Z be the n × p genotype matrix. By the representer theorem, 

the solution to equation (1) can be expressed as  for 

some constants γ = [γ1,…, γn]′ and a kernel matrix K. This leads to the alternative dual 

objective function:

(2)

which is minimized at  such that , where y is the vector of the 

trait.

Modified KNIFE Procedure for Selecting Variants Driving Significance

Kernel machine tests are based on score tests which requires estimation under only the null. 

While this leads to improved computational efficiency and offers some attractive statistical 

properties, when a particular group of variants are called significant, it is difficult to identify 

the individual variants that are driving the significant result. Therefore, by adapting to the 

KNIFE approach, we propose to apply variable selection methods to identify the variants 

driving the association. In this section, as with the original KNIFE procedure, we will first 

introduce weighting terms for individual genetic variants, but we specifically focus on 

genetically relevant kernels. We then describe modest departure from the original KNIFE 

and present a 2-step algorithm for estimating some of the weights as exactly zero (enabling 

variable selection).

Introduction of Individual SNP Weighting Terms—The fundamental idea underlying 

the KNIFE method is the introduction of a variable specific weight which can be shrunken to 

zero. Following this idea, we introduce the weighting term, cj, for each SNP j which we can 

then shrink to zero in some instances. However, whereas the KNIFE work focused on 

generic kernels, we restrict attention to some of the kernels that are most genetically 

relevant. Specifically, we can define the following new kernels:

•
Linear: 

•
Weighted Linear: 

• IBS: 
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•

dth degree polynomial: 

Note that the relationship between the variants and the trait is fully defined based on kernel 

function. Consequently, if some cj is exactly zero such that the jth SNP is not used to 

calculate the similarity between individuals, then the relationship between the trait and the 

genetic variants does not at all depend on the jth SNP. In this way, SNPs can be dropped 

from the model allowing for variable selection.

Two-Step KNIFE Estimation Procedure—Although the general KNIFE procedure 

could be used, here, we propose to use a simplified two-step procedure to do variable 

selection. We further allow for covariate adjustment which is imperative for genetic studies. 

In particular, letting KG be the kernel matrix induced by KG(·,·), we propose to use the 

following procedure:

Step 1: Initialize ĉj = 1 for j = 1,…, p. Fix c = ĉ, then minimize

The solution is known to be  and 

 (Liu et al., 2007), where X is the covariate matrix 

(including the column of 1 for intercept).

Step 2: Fix  and , and solve

Here, s is used to encourage sparsity on cj. When s is small, then some of the cj are 

estimated as exactly zero. We note that for fixed λ and s there are closed form solutions for 

all of the parameters in step 1. For step 2, some constrained optimization needs to be done 

and this requires some tailoring towards the particular kernel being used; we will describe 

computation algorithm for conducting the optimization via cyclic coordinate descent. In 

principle, λ and s can be selected by performing a 2-dimensional grid search and 

minimizing a generalized cross validation (GCV) or k-fold CV prediction error. However, 

the searching of two tuning parameters can be extremely time-consuming and results are 

often relatively robust to particular values of λ. Thus, in line with Wu et al. (2009), we 

suggest fixing  and using CV to choose s.

This procedure is similar to the original KNIFE approach, but while the original KNIFE 

procedure essentially iterates between the two steps until convergence, we choose to stop 

after the second step. In addition to reducing computational expense, the two-step procedure 

can often offer improved performance over multi-iteration procedures. This is due to the fact 
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that the model is slightly over-parameterized and is in line with other two-step variable 

selection procedures. By using just two-steps, our work becomes closely related to the well 

established non-negative garrote procedure (Breiman, 1995) (and by extension the adaptive 

LASSO) which we demonstrate in the next section. Further note that the original KNIFE 

procedure does not explicitly consider covariate adjustment which is a requisite to control 

for potential confounders and population stratification.

Computational Procedure

As noted the constrained optimization in step 2 requires some tailoring depending on the 

particular kernel under consideration. In this section, we describe the details of the 

computational algorithm for estimating some of the weights as exactly zero, focusing on 

several kernels that are widely used in SNP analysis, i.e., the linear (and weighted linear) 

kernel, the IBS kernel, and the polynomial kernel.

Linear and Weighted Linear Kernels—By definition KG = ZCZ′ where C = diag{c1,
…, cp}. Then in the first step, by initializing all ĉj = 1, we estimate

where  and Kl = ZZ′

In step 2: to find ĉ, we minimize:

If we substitute in KG and , then

We solve the above objective function (with the linear inequality constraints) by 

implementing the cyclic coordinate descent algorithm (Friedman et al., 2007).

Now we show that our objective function is closely connected with the non-negative garrote 

objective function (Breiman, 1995). Assume that there are no adjusting covariates. Note that 

if  are the linear ridge regression estimates, then  and 

. Then we see that the dual objective 

function for the second stage is given as:
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The estimate for h is given as  in this case.

At the same time, the nonnegative garrote estimates c (Breiman, 1995) are found by 

minimizing an objective function:

subject to the constraints on c, where  are some regression coefficient estimates for 

genotype matrix Z. If  are taken to be the ridge estimates, then we can see that the 

nonnegative garrote estimates are the same as the estimate for h in our proposed model. The 

equivalence between the nonnegative garrote and our two-step procedure provides some 

additional justification (beyond the simulations presented later) that our proposed 

modifications to the original KNIFE procedure are reasonable.

IBS Kernel—The IBS kernel is generally used to model complicated effects among SNPs. 

The ‘similarity’ between two subjects induced by the IBS kernel lies in the absolute value of 

the difference for a set of SNPs. Similar to the linear kernel, we first obtain the  and 

which have closed form solutions. For the second step, we need to minimize

subject the constraint on c. The complicated form of IBS kernel creates challenges for 

optimization. However, we show in the Appendix that this objective function can be 

transformed into a nonnegative garrote problem with a new design matrix. Then, the newly 

formed objective function can be solved by an algorithm similar to the linear kernel.

Quadratic Kernel—The quadratic kernel involves interaction terms between SNPs, and 

the corresponding objective function can not be directly cast as a non-negative garrote 

problem. However, as shown in the KNIFE method, polynomial kernels can be linearized by 

a first-order Taylor expansion. Let wii′ = (Zi1Zi′1,…, ZipZi′p)′. The quadratic kernel 

 can be approximated by
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where  is some initial estimate of c. Thus, given  and  can be 

approximated by , which is a linear kernel problem. Then, we can iteratively solve 

the objective function by updating  in each iteration.

RESULTS

Simulation Studies

We conducted simulation studies to examine the performance of the proposed approach. We 

first simulated 10,000 sequence haplotypes using cosi (Schaffner et al., 2005) on a 1 

megabase region, with parameters set to mimic sequence data consistent with a population 

with European ancestry. We then excluded SNPs with minor allele frequency (MAF) less 

than 0.05, and pruned off highly correlated SNPs (with correlation coefficient |ρ| > 0.95). We 

considered a SNP-set with 10 SNPs. We randomly picked 10 consecutive SNPs from the 

simulated haplotypes, and then fixed these 10 SNPs for the following simulation studies. 

Haplotypes were randomly drawn from the pool of 10,000 haplotypes to form genotypes.

We first simulated the trait under the linear model, yi = 1+0.5×Xi +0.5×Zi1 +0.5×Zi3+εi, 

where Xi ~ N(0,1), Zi1 and Zi3 represent the driver SNPs, and εi ~ N(0,1). That is, only the 

first and the third SNPs contribute to the trait (i.e., driver SNPs), while all the other 8 SNPs 

are noise SNPs. We name this model set-up as Model Structure I. We are interested to know 

whether the proposed approach can identify the driver SNPs out of the noise SNPs. We 

tested three kernels that are widely used in SNP studies, the linear kernel, the quadratic 

kernel, and the IBS kernel. We considered sample size of 500 and 1000, and the number of 

Monte Carlo experiments is 100. The LASSO, Elastic Net, and MCP (Zhang, 2010), which 

are penalized regression methods that can be used for fine mapping, were included for 

comparison as potential competitors. We calculated several quantities to measure the 

performance of the compared approaches, described as follows. Let (ĉ1,…, ĉp) be the final 

estimates of (c1,…,cp), and I(·) be the indicator function. We calculate (1) the number of 

SNPs being selected, i.e., , (2) the proportion of driver SNPs being 

selected (Capture rate), which is defined as 

, (3) the false positive rate (FPR), i.e., 

, and (4) the proportion of experiments in 

which the selected SNPs cover all the driver SNPs (Coverage probability), 

, where  is the estimate of cj in the mth 

experiment, and M is the total number of experiments. We also calculated the rank-sum of 

the estimated coefficients for the driver SNPs with respect to the noise SNPs, 

, where ℜ(·) is the rank function defined on ℜĉ1,…,ĉp}; this metric 

measures how often an approach yields higher ranks for the driver SNPs than the noise 

SNPs. The results are shown in Table I. As can be seen, the linear kernel has a higher 

capture rate and lower FPR than the quadratic and IBS kernels. In each experiment, the 

linear kernel also tends to cover all the driver SNPs, as shown by its high coverage 

probability. The LASSO, Elastic Net and MCP also have high coverage probability, but their 
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empirical FPRs appear to be higher than the linear kernel. The linear kernel approach tends 

to assign higher ranks to the driver SNPs compared to the other two kernel approaches. This 

indicates that when the true model is a linear model, the linear kernel outperforms the other 

two kernels in prioritizing SNPs that are of importance.

Next, we introduced interaction terms into the model to simulate the trait. We let yi = 1 + 0.5 

× Xi + 0.8 × Zi2 + 0.8 × Zi7 − 1.0 × Zi2 × Zi7 + εi. That is, the trait is influenced by the 

interaction effect between SNPs 2 and 7. Under this set up, because the interaction term has 

opposite sign with respect to the main effects, cor(y, Z2) and cor(y, Z7) tend to be small in 

magnitude, and this makes it challenging to tease out driver SNPs from noise SNPs. We 

wish to test whether the three approaches can still identify SNPs 2 and 7 as the driver SNPs. 

As shown in Table II, the quadratic kernel has high probability to pick up the driver SNPs. 

The other approaches show high FPR, and tend to have low power to capture the driver 

SNPs. This example shows that the quadratic kernel can perform much better than the other 

two kernels when the true model contains interaction effects.

Finally, we simulated the trait under a non-linear model: yi = 0.5 × Xi + 0.3 × I(Zi2 = 0) 

+ 1.0 × I(Zi2 = 1) + 0.1 × I(Zi2 = 2) + εi. In other words, the heterozygote has higher effect 

on the trait than the two types of homozygotes. In the biology literature, this type of model is 

known as the Heterozygote Advantage model, and an example can be seen in Penn et al. 

(2002). Through basic calculations, we show in the Appendix that (1) when there are no 

adjusting covariates, the covariance between y and Z2 is solely dependent upon the MAF of 

Z2 and the effect sizes of the three genotypes of Z2, and (2) the correlation between y and Z2 

tends to be small under this Heterozygote Advantage model. In fact, the marginal association 

between y and Z2 can be nearly zero. Under such a nonlinear situation, the linear kernel is 

expected to have low power to detect Z2, the driver SNP. On the other hand, it is 

straightforward to show that the Heterozygote Advantage model considered herein can be 

characterized by a model that contains both linear and quadratic effects for Z2. Thus, we 

anticipate that the quadratic kernel should perform well in identifying the driver SNP. As 

shown in Table III, the linear kernel, LASSO, Elastic Net and MCP tend to miss the driver 

SNP, while the quadratic kernel captures the driver SNP with high probability. The IBS 

kernel also seems to have good performance under this model. This is likely due to the fact 

that the IBS kernel has complicated basis functions and can accommodate certain non-linear 

effects.

In addition to these simulations, we further considered scenarios in which effect sizes were 

smaller with larger number of variants. Results (see Supplement) were qualitatively similar 

and also support our method, though when signal is too weak, no method can perform well. 

Further simulations considering rare variants and alternative implementations of our 

procedure (under multiple iterations and with two-dimensional grid search to select tuning 

parameters) are also presented as Supplemental Material.

Application to Birth-weight Studies

We illustrate our approach via application to a real dataset, examining the association 

between birth outcomes and genetic variants at a candidate gene. In particular, we 

considered a study in which 20 SNPs within the EDN1 (Endothelin 1) gene were genotyped 
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in a sample of 853 singleton, live births from women of European Ancestry in the 

Pregnancy, Infection and Nutrition Cohort (Savitz et al., 2001). Our overall objective in this 

analysis was to examine the association between the SNPs in EDN1 and birth-weight, which 

is an important determinant of many subsequent health conditions (Hack et al. 2002).

The particular objectives of our analysis here were to, first, assess the overall association 

between the EDN1 SNPs and birth-weight, and second, to identify any SNPs which may be 

driving potential associations. Of the 20 SNPs in EDN1, two SNPs have correlation 

coefficient equal to 1, and we removed one of them from our analysis. We first applied the 

SKAT test with the linear kernel to EDN1 while adjusting for gender, preterm birth status, 

maternal smoking status, and parity. The resulting SKAT p-value is 0.028, indicating that 

there is potential association between EDN1 and birth weight. However, SKAT does not 

allow for identification of individual driving variants. Thus, it is unclear whether the result is 

due to one very strongly associated SNP or whether there are multiple, modestly associated 

SNPs.

To identify SNPs that are driving the observed association, we applied our approach with the 

linear kernel to EDN1. Among the 19 SNPs, only the ĉj for rs6931867 is nonzero. The 

LASSO, Elastic Net, and MCP selected 2, 5, and 3 SNPs, respectively, and they all included 

rs6931867. We then applied SKAT to the post-selection SNPs for each model, and the p-

values for linear kernel, LASSO, Elastic Net and MCP are 0.004, 0.009, 0.007 and 0.009, 

respectively. To quantify the effect size of rs6931867 on birth weight, we then fitted an 

unregularized linear regression model for rs6931867, along with other adjusting covariates 

such as the gender and preterm birth. The results are shown in Table IV. Perhaps not 

surprising, the preterm birth status has the largest effect (−492.78) on birth weight among all 

the considered covariates. On the other hand, rs6931867 also shows a strong effect (111.79) 

on birth weight, even stronger than the ‘gender’ (−86.41) and ‘smoking’ (−86.06). We next 

examined rs6931867 using the UCSC Genome Brower. We plotted rs6931867 along with its 

neighbor SNPs using the SNAP software (Broad Institute), and it can be seen that this SNP 

is located in the 5′UTR of the EDN1 gene (Figure 1). According to the UCSC genome 

brower, rs6931867 falls into a DNase I Hypersensitivity Cluster, indicating that this SNP is 

possibly engaged in gene regulation. These findings suggest that rs6931867 is an intriguing 

SNP for further study; the evaluation of its function role may shed light on the regulation 

mechanism of EDN1 expression.

Application to Grady Trauma Project Data

We also applied our method to analyze the genetic regulation of gene expression using data 

collected from the Grady Trauma Project (Gillespie et al., 2009), a study investigating the 

genetic factors in response to stressful life events. 337 study subjects were recruited from the 

waiting rooms of primary care and obstetrics-gynecology clinics of Grady Memorial 

Hospital in Atlanta, Georgia. Gene expression and genotypes were both measured using the 

whole blood samples. The expression data are available at GEO (Gene Expression Omnibus) 

under the accession GSE58137. In this manuscript, we are interested in the cis-regulation, 

i.e., whether the genotype of the gene can influence the expression of the same gene.
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We considered gene MTHFR (methylenetetrahydrofolate reductase), a key regulator in 

folate, thiol, homocysteine, methylation and thymidine metabolism. MTHFR has been 

shown to play an important role in inflammation and oxidative stress (Faraci and Lentz, 

2004), as well as in the development of many diseases, including heart diseases, cancers, and 

mental disorders (Odin et al., 2006). We first applied the SKAT method to evaluate the 

association between the 22 SNPs in the gene and the expression of MTHFR. Under the 

linear kernel, the p-value for association is 2.61e-07; and under the IBS kernel, the p-value is 

5.10e-11, indicating a possible non-linear relationship between the genotype and the 

expression. Using the IBS kernel, the proposed variable selection method identified six 

important SNPs (SNP number: 2, 6, 13, 17, 18, 19), which overlap largely with the 12 SNPs 

(SNP number: 2, 5, 6, 7, 10, 11, 13, 16, 17, 19, 21, 22) that were selected using the linear 

kernel, with only one exception (SNP 18). The SKAT model using the six selected SNPs 

generated a p-value of 1.08e-14, which is considerably more significant than using the 12 

SNPs that were selected using the linear kernel (p-value = 4.98E-08).

To further examine the effects of the selected SNPs, we fitted an unregularized linear 

regression model using the six SNPs that were selected from the IBS model. In order to 

assess the potential nonlinear effect, we coded each SNP (except SNPs 2 and 13 which have 

only values 0 and 1) by two dummy variables using the genotype of 0 as the reference, i.e. 

using a co-dominant coding. This allows every genotype to have a different and nonadditive 

effect. Table V shows the effect size and p-values obtained from this unregularized linear 

regression model. Noteworthy, SNP 18 (rs2066470) showed a strong non-linear effect in 

regulating the gene expression. The effect estimates for a heterozygous change and a 

homozygous change in this SNP are in the opposite direction, which is different from the 

additive assumption that the linear kernel assumes. This example shows that the variable 

selection using nonlinear kernels can be more effective in identifying important SNPs in a 

SNP-set.

DISCUSSION

Set-based approaches have become a powerful approaches for genetic association studies. 

However, the major limitation of set-based approaches is that they provide little information 

on which SNPs may be (or closely related to) the driver SNPs. Yet fine mapping of the 

individual driver variants is imperative for development of further functional studies and 

facilitating interpretation of identified signals. The proposed approach conducts post-SKAT 

variable selection to identify important SNPs, and hence well complements the SKAT for 

SNP-set analysis. The selected SNPs will help to narrow down candidate regions for 

biological functional studies, which have recently attracted considerable attention from the 

biomedical research community (Wang et al., 2015).

In this article, we have focused on relatively common SNPs, with the understanding that the 

kernel machine testing is often used for analysis of common genetic variants. That said, 

SKAT is perhaps even more popular for the analysis of rare genetic variants. We have 

conducted some initial simulations examining the possibility of applying our approach for 

rare variants with initially promising results. We emphasize, however, that these results are 

not meant to serve as a comprehensive examination of the topic and merely demonstrate that 
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our approach is potentially applicable under the important setting of rare variants. Rare 

variant analysis is made challenging by a range of unique features. Because of the low MAF, 

the data effectively become binary such that issues of non-linearity are generally moot and 

while interactive effects are still important, when individual MAFs are low then the 

interaction will become exceedingly uncommon. Further consideration of this and related 

issues, such as the need to accommodate extrinsic information (e.g. functionality) and 

limited ability to observe the causal variants, deserves dedicated attention which is beyond 

the scope of this article.

Although our approach is powerful for enabling prioritization of individual variants, a 

limitation of the approach is that when the SNP density of the studied gene is not very high, 

the driver SNP is likely to be a tagging SNP, and more refined mapping will be necessary to 

track down the likely functional SNPs (Yao et al., 2014). With the rise of sequencing 

technology and improved imputation, however, it is increasingly likely that the true causal 

variant will be genotyped. Related to this point is the fact that many SNPs are often in high 

LD. Even in our data illustration, two SNPs were perfectly correlated. In this scenario, it is 

impossible for any computational technique to identify the causal variant without external 

information and/or additional experiments. Nonetheless, the proposed method can allow for 

identification of a restricted set of putative SNPs that drive the associations and aid in the 

design of down-stream experiments.

While our approach can be used to prioritize individual variants, a limitation is that it is 

difficult to conduct formal inference on the individual selected variants. Due to the selection 

procedure, subsequently obtaining p-values for the individual selected variants (without 

consideration of unselected variants) will yield optimistic p-values. Similarly, as observed in 

the real data analysis, re-testing just the selected variants tends to yield more significant 

results. Accordingly, we recommend caution in conducting or interpreting any post-hoc 

inference.

An assumption underlying our approach is that a particular kernel has already been chosen. 

In general, our approach is primarily designed as a follow-up to testing, and we suggest 

directly using the same kernel that was used to obtain the significant testing results. 

However, we acknowledge that it is not always the case that a single kernel is obvious and 

the best kernel may actually be a weighted average of multiple kernels (Wu et al., 2013). We 

can extend our approach to simultaneously consider the problem of kernel choice by jointly 

considering multiple kernels together as a composite kernel. Then the weights for the 

composite kernel can also be shrunken such that we are conducting joint kernel and 

individual SNP selection. This approach would not only allow for selection of driving 

variants but also provide clues as to how the variants are influencing the outcome.

Currently, the proposed approach does not use any external information, yet there is 

considerable interest in the field in accommodating prior knowledge into analyses, both to 

improve power and to improve interpretation. SNP annotation tools, such as the PolyPhen-2 

(Adzhubei, 2013), can also be used to assign a functional score to each SNP, which can then 

be transformed into weights representing prior expectation that each SNP influences the 

trait. A simple modification can be made to allow for incorporation of prior biological 
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information on SNP function or likely effects by adjusting the threshold s to be different for 

each variant (this would be equivalent to simply re-scaling the SNP values based on prior 

knowledge). How to best translate prior knowledge into weights remains a topic of future 

research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX I: TRANSFORM THE IBS KERNEL OBJECTIVE FUNCTION INTO 

A NONNEGATIVE GARROTE PROBLEM

For the IBS kernel,

Now, define , then the objective function becomes

subject to . Given fixed , this is equivalent to a nonnegative 

garrote problem and can be solved accordingly.

APPENDIX II: Quantify the covariance between y and Z2 under the 

Heterozygote Advantage Model

The Heterozygote Advantage model specifies that yi = β1 × I(Zi2 = 0) + β2 × I(Zi2 = 1) + β3 

× I(Zi2 = 2) + εi, where β2 > β1 and β2 > β3. Assume that the MAF of Z2 is p and that Z2 is 

under the Hardy-Weinberg Equilibrium. Let q = 1 − p. We wish to evaluate Cov(y, Z2) = 

E(yZ2) − E(y) E(Z2).
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First, it can be shown that E(Z2) = 2p. Next, we notice that E(y) = E(E(y|Z2)) = Σjℰ(0,1,2) 

E(y|Z2 = j) × P(Z2 = j) = β1q2 + 2β2pq + β3p2. We also note that E(yZ2) = E(E(yZ2|Z2)) = 

E(Z2 E(y|Z2)) = Σjℰ(0,1,2)j × E(y|Z2) × P(Z2 = j) = 2β2pq + 2β3p2.

It follows that Cov(y, Z2) = 2pq (q(β2 − β1) + p(β3 − β2)), which is solely dependent upon 

the MAF of Z2 and the three genetic effects. Hence, when β2 > β1 and β2 > β3, the term 

(q(β2 − β1) + p(β3 − β2)) tends to be small due to the opposite effect of (β2 − β1) and (β3 − 

β2). In particular, when q(β2 − β1) + p(β3 − β2) = 0, we have Cov(y, Z2) = 0.
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Figure 1. 
rs6931867 and other SNPs near the EDN1 region (Plot is based on the 1000 Genomes Pilot 

1 CEU data; diamond represents SNP, and blue line shows the recombination rate.)
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