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Although ultra-high-field fMRI at field strengths of 7T or above provides substantial

gains in BOLD contrast-to-noise ratio, when very high-resolution fMRI is required such

gains are inevitably reduced. The improvement in sensitivity provided by multivariate

analysis techniques, as compared with univariate methods, then becomes especially

welcome. Information mapping approaches are commonly used, such as the searchlight

technique, which take into account the spatially distributed patterns of activation in order

to predict stimulus conditions. However, the popular searchlight decoding technique, in

particular, has been found to be prone to spatial inaccuracies. For instance, the spatial

extent of informative areas is generally exaggerated, and their spatial configuration

is distorted. We propose the combination of a non-parametric and permutation-based

statistical framework with linear classifiers. We term this new combined method

Feature Weight Mapping (FWM). The main goal of the proposed method is to map

the specific contribution of each voxel to the classification decision while including a

correction for the multiple comparisons problem. Next, we compare this new method

to the searchlight approach using a simulation and ultra-high-field 7T experimental data.

We found that the searchlight method led to spatial inaccuracies that are especially

noticeable in high-resolution fMRI data. In contrast, FWM was more spatially precise,

revealing both informative anatomical structures as well as the direction by which voxels

contribute to the classification. By maximizing the spatial accuracy of ultra-high-field fMRI

results, global multivariate methods provide a substantial improvement for characterizing

structure-function relationships.
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INTRODUCTION

The advent of functional magnetic resonance imaging (fMRI)

at ultra-high-field strengths allows an impressively fine-grained

insight into human cortical function. Modern scanners at 7T or

higher allow researchers to resolve functional data at ever finer

spatial scales, even to the point of resolving individual gray matter

layers (Polimeni et al., 2010; Trampel et al., 2011). The bene-

fits of improved resolution are accompanied by new challenges,

however, particularly with regard to data analysis, as it is not

obvious which analysis technique may best take advantage of the

richer data. For instance, classical activation-based approaches

such as the general linear model (Poline and Brett, 2012) generally

rely on spatial smoothing for statistical correction for multi-

ple comparisons, and hence are unable to make appropriate use

of the high resolutions. While a more sophisticated approach

has been proposed (Harrison et al., 2008) this is computation-

ally laborious and does not have face validity in terms of actual

neuroanatomy. A more promising means of exploiting higher

resolution is multivariate pattern recognition analysis (MVPA),

which enables fine-grained components of the brain activity sig-

nal to contribute relevantly (Norman et al., 2006). It is often

desirable to map the spatial location of discriminating patterns,

or in other words, where in the brain information about the

experimental condition is present.

For this, “information mapping” methods, such as the “search-

light” approach are often employed (Kriegeskorte et al., 2006).

The searchlight method attempts to extract the predictive power

of a small neighborhood of voxels (the searchlight) with regards

to the stimulus condition, and maps the result of the anal-

ysis back to the center voxel of the searchlight. Repeating

this procedure over all locations yields an information map

charting the presence and location of information relating to

stimulus condition. It should be noted that the searchlight

method is essentially a local multivariate pattern recognition tech-

nique that fails to take into account globally distributed voxel

patterns.
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Alternatively, global information maps can be computed

without such spatial preselection of voxels using multivariate

classifiers with support for high dimensional data or by using

dimensionality-reduced brain data (e.g., by first performing a

principal component analysis). Appropriate classifiers provide

information on the contribution of individual features (i.e., voxels

or principal components) to the classification decision. Mapping

this influence back onto the voxel space allows generation of a

whole-brain information map (Mourão-Miranda et al., 2005),

which delineates the discriminative volume.

Previously, the searchlight method has been reviewed critically

on the grounds of interpretability and with regard to spatial inac-

curacies in the searchlight information maps which obscure the

true local information content (Viswanathan et al., 2012; Etzel

et al., 2013). These shortcomings form the greatest concern with

very high spatial resolution fMRI data, such as that obtainable at

ultra-high-field, as they may well negate the gain in higher spa-

tial resolution. In particular, the lower voxel-wise signal-to-noise

ratio at very high resolutions requires larger searchlight diameters

to obtain significant results, exacerbating spatial inaccuracies.

In the present work, we investigate the quality of the search-

light method as a tool for the analysis of ultra-high-field fMRI

data. As an alternative to the searchlight approach, we present

a global multivariate method adapted from previous work

(Mourão-Miranda et al., 2005), which we combine with a non-

parametric solution for the multiple comparison problem (Stelzer

et al., 2013). To our knowledge, this is the first implementa-

tion fully accounting for the multiple comparisons problem,

tailored for this widely used multivariate framework for brain

mapping. We compare these two information-mapping methods

as a means for analyzing ultra-high resolution fMRI and sim-

ulated data. Noteworthy, while both methods (searchlight and

global information maps) incorporate different assumptions and

implementations, in research practice the results ultimately are

interpreted in a very similar fashion: Both approaches provide

voxel maps, which delineate voxels containing stimulus-relevant

information.

MATERIALS AND METHODS

7T TAPPING DATA SET

The ultra-high field fMRI study comprised ten healthy subjects

(age range 23–28, right-handed). The study was carried out in

accordance with the ethics approval from the University of Leipzig

and written informed consent was obtained before each study.

One single subject was selected as representative for visualization.

Per experimental condition, we conducted 15 trials (26.4 s

each) from four experimental conditions. Trials were presented

subsequently (not randomized) in a block design. The basic task

was self-paced sequential tapping of four fingers of the right hand

to the thumb at a frequency of about 2 Hz. The first experimental

condition was rest (no movement, no imagination, i.e., base-line

condition), followed by the imagined finger movement condition.

The third and fourth conditions were finger tapping (tapping of

four fingers of the right hand to the thumb) and movement of

four fingers as in the previous condition but without thumb con-

tact. Due to limitations in scan time there was no rest period in

between subsequent trials. Performance compliance with this easy

task was confirmed using video monitoring. For the analysis in

our present work, only two conditions were used: Resting (no

task, no hand movement, no motor imagination) and sequen-

tial tapping with four fingers of the right hand to the thumb of

the right hand. (The conditions omitted were: Imagined finger

tapping without actual finger movement and finger movement

without touching the thumb).

The experiment was performed with a MAGNETOM 7T

scanner (Siemens Healthcare, Erlangen, Germany), using a 24-

channel head coil (NOVA Medical Inc., Wilmington MA, USA).

The functional scans contained 17–31 axial slices (depending

on the subject) covering the left motor cortex (TR = 3300 ms,

TE = 25 ms, slice thickness 0.75 mm, in plane resolution 0.75 ×

0.75 mm2) using a novel acceleration technique (Heidemann

et al., 2012).

Head motion correction was carried out using SPM8

(Wellcome Department of Imaging Neuroscience, Institute of

Neurology, London, UK). Low frequency drifts were removed

using a temporal high-pass filter (fhighpass = 1/80 s−1) with

LIPSIA (Lohmann et al., 2001). Using LIPSIA, a GLM was fitted

to each trial to estimate its β-parameters. We used a gamma-

function as hemodynamic response function (Glover, 1999).

The GLM yielded 15 three-dimensional β-maps per experimen-

tal condition. The β-parameters were estimated on the z-scored

fMRI time series data (default settings in LIPSIA) and represent

the degree of fit between the trial data and the model.

DATA GENERATION FOR SIMULATION

A simulated data set of 30 scans (15 each for class A and B) of one

“virtual” subject was generated. Each volume (size 66 × 22 × 22

voxels) was filled with Gaussian noise [∼ N(0, 1)] and smoothed

slightly with a Gaussian smoothing kernel (FWHM = 1 voxel).

An offset size of 0.5 was added at six locations (three in class A

and B, respectively), shaping six half-cubes positioned above and

below the centerline of the volume (Figure 3A). Upper half-cubes

were class A, lower half-cubes were class B.

The size of the half-cubes varied. The leftmost half-cube had

a dimension of 6 × 6 × 1 voxels (fine information spread), the

second one had a dimension of 6 × 6 × 2 voxels (medium infor-

mation spread) and the rightmost half-cube 6 × 6 × 3 voxels

(coarse information spread). There was a 4-voxel gap between the

leftmost, a 2-voxel gap between the middle, and no gap between

the two rightmost half-cubes (see Figure 3A).

SEARCHLIGHT DECODING

Each voxel of the brain was first scaled to the range [−1, +1].

Around every voxel (center voxel), we constructed a spherical

searchlight that contained every neighbor voxel within a given

radius r (Kriegeskorte et al., 2006; Stelzer et al., 2013). For every

searchlight, we trained and cross-validated (“leave 2 out” method)

a linear support vector machine (Chang and Lin, 2011). The

center voxel was then associated with the mean cross-validation

accuracy (i.e., the percentage of correctly predicted labels) and

later used for brain visualization.

FEATURE WEIGHT MAPPING

In FWM, the whole brain data was first reduced in dimensional-

ity with PCA [dim = df = #samples-1 = 29 (Abdi and Williams,
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2010)]. The PCA procedure obtained a new representation X∗

of the data matrix X by orthogonally transforming the columns

(features) of X into linearly uncorrelated components (principal

components). The principal components were sorted in decreasing

order by the variance they explain in the data (Abdi and Williams,

2010). The maximal number of principal components was the

maximum of the number of observations and features (more

precisely the rank of X, dim = 30). In our data sets, the last com-

ponent contained no substantial variance and was left out. Hence

we always employed every PCA component with the exception of

the last one, corresponding to the number of maximal degrees

of freedom from the matrix decomposition. The PCA projec-

tion was calculated by performing a singular value decomposition

of X.

The resulting features were scaled to be within the range

[−1, +1]. A linear support vector machine was then trained using

the entire data set (Chang and Lin, 2011), without the applica-

tion of further cross-validation procedures. Linear support vector

machines divide data samples into their classes by constructing a

maximally separating hyperplane between the high-dimensional

data points. The hyperplane is established by a set of points
−→x and the normal vector −→w to the hyperplane in the formula
−→w ·

−→x − b = 0. The optimal vector w is calculated by minimiz-

ing
∥

∥

−→w
∥

∥ in the formula yi · (wi · xi − b) ≥ 1 with i ǫ {1, ..,n}

and xi being the sample vectors from X∗. The values wi are the

weights given to each feature dimension, (i.e., the principal com-

ponents), and signify the importance of the component in making

the classification decision. We transform the weights of principal

components back to weights of individual voxels by reversing the

PCA transformation. Note that this procedure solely resulted in

weights and not in decoding accuracies.

NON-PARAMETRIC STATISTICS

We employed permutation tests for assessing statistical signifi-

cance (Golland et al., 2005; Mourão-Miranda et al., 2005; Stelzer

et al., 2013). No spatial smoothing was applied, however due to

interpolations (motion correction etc.) and the biophysical prop-

erties of the BOLD signal, a certain level of intrinsic smoothness

was present in the data. Permutation tests were carried out by ran-

domly shuffling the order of samples within a data set. For SLD,

permutations were assigned before splitting the data into train-

ing or test sets to ensure no bias due to uneven class distribution.

Each permutation was held fixed for all locations of the search-

light, preserving spatial correlations. For FWM, permutations

were assigned on the principal component level.

For each permutation, an accuracy map (SLD) or weights

map (FWM) was computed (cf. two previous sections). The

empirical p-value of each voxel was then the probability of

the original accuracy/weight of this voxel in the empirical

distribution function given all permutations.

Using the per-voxel p-value as a threshold map, we binarized

the original and permuted accuracy or weight-maps. For SLD,

we employed a one-sided (lower than p-value) statistic, for FWM

we employed a two-sided [lower than p/2 or higher than (1-p/2)]

statistic.

Counting the cluster sizes (six connectivity scheme) in the per-

muted binarized maps, we calculated an empirical distribution

function (edf) of cluster sizes. Using this edf, we calculated the

probability of each cluster in the original binarized maps. In the

case of FWM, positive and negative clusters were recovered sepa-

rately. The final assessment of cluster p-values was corrected with

FDR (Benjamini, 1999; using a cluster p-value of 0.05).

ANALYSIS OF SIMULATION DATA

The analysis was carried out with and without multiple compar-

ison correction. Without multiple comparisons correction, only

p-value maps were binarized and no further cluster statistics were

computed. The remaining voxels were deemed significant.

With multiple comparison correction, the entire cluster-based

analysis (including the empirical cluster-size distribution derived

from permuted binarized maps) was repeated for different levels

of voxel-wise p-value thresholds. Voxels in the remaining clusters

were deemed significant.

Precision is defined as the proportion of true positives and all

positives:

Precision =
true positives

true positives + false positives

Sensitivity is defined as the proportion of voxels in informative

regions that were discovered significant:

Sensitivity =
true positives

true positives + false negatives

RESULTS

7T DATA SET

The ultra-high resolution 7T finger tapping experiment was

analyzed using both the Feature Weight Mapping (FWM) and

Searchlight Decoding (SLD) method on a single-subject level.

Three axial slices of the results for the analysis are shown in

Figures 1A,B respectively using two different thresholds (the

appropriate threshold for the respective method was chosen based

on simulations in the next section). The searchlight radius was set

to 3 mm.

The SLD method found the hand knob part of the motor

cortex to be significantly discriminative regarding the stimulus

condition (resting vs. finger tapping). Similarly, this region was

also labeled as discriminative using the FWM method.

Furthermore, while the SLD method identified the existence

and degree of discriminative value of voxels, the FWM method

also revealed the particular class toward which the voxel influ-

enced the classification decision. As shown in Figure 1B, regions

that discriminate toward resting state (blue) and toward tapping

state (yellow/red) are distinguishable. Effectively, FWM revealed

a finer delineation of smaller cortical structures than SLD. The

FWM method identifies additional regions in the parietal and

frontal cortex as discriminative, while in contrast these regions

remain undetected with the SLD method. Furthermore, the FWM

method specifically identifies the cortical sheet, while the SLD

method labels spatially more extended regions reaching deeper

than the cortex, and thus including some white matter.

The spatial precision of the SLD method critically depends

on the chosen searchlight radius. Larger searchlight radii return
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FIGURE 1 | Results of the high resolution 7T finger tapping data

set, classifying resting vs. finger tapping with touch. The

non-parametric framework (including multiple comparison correction) had

been applied to the searchlight decoding (SLD) and feature weight

mapping (FWM) methods. (A) SLD method (diameter = 3.75 mm) with

a voxel-wise threshold of p vox = 0.001 (one-sided). (B) FWM method,

using a (two-sided) threshold of p vox = 0.05.

accuracy maps where a substantially larger volume is labeled as

informative. We depicted three searchlight radii (3, 5, and 7 mil-

limeter) in Figure 2 and contrasted the results with our proposed

FWM method. As the two largest searchlight radii failed to reach

significance when including multiple comparisons correction, we

only show uncorrected accuracy and weight maps. Furthermore,

for illustrating the degree of voxels labeled informative within

white matter, we applied a gray matter mask: the accuracy or

weight of voxels within white matter is displayed in false colors

(by shifting the color hue by 180◦). We found that for the larger

searchlight radii in Figures 2B,C, a substantial number of white

matter voxels is indicated with the highest accuracies. In con-

trast, most highly weighted voxels of the FWM method are found

within gray matter.

FIGURE 2 | Results of the high resolution 7T finger tapping data set

without multiple comparisons correction, using three searchlight

radii and the feature weight mapping method. White matter voxels are

displayed in false colors (by shifting the color hue by 180◦). Hence the

blue tones indicate false positivity. Dark blue tones indicate high decoding

accuracies or high feature weights. (A) SLD with a radius of 3 mm.

Already at this radius, substantial false positivity is visible on the surface

of the cortex on the right side. On the left side, out-of-plane false

positivity is visible, as searchlights centered in the selected slice pick up

information from the slices below or above. (B) SLD with a radius of

5 mm. The levels of false positivity have increased throughout the entire

volume. (C) With a radius of 7 mm, the SLD method results in

substantially inaccurate depictions of true information content. (D) Feature

weight mapping, to enhance the clarity of the representation only the

absolute value of the weights is considered here. The highest (absolute)

weights are found within gray matter, while the weights found in white

matter are on a low level.

SIMULATED DATA

Using simulations, we aimed to target how SLD and FWM meth-

ods specifically depend on the underlying spatial distribution of

information. In total, we created three different levels of coarse-

ness by structuring information in a specific geometry. The

searchlight radius was set to three voxels.

The information distribution is depicted in Figure 3A, the vio-

let areas represent informative regions of condition A, while the

blue areas represent informative regions of condition B.

Qualitative comparison of FWM and SLD

Figure 3 depicts the results of applying SLD and FWM on the

prepared simulation data.

The SLD method labels most informative regions as

significant, while also labeling a considerable number of voxels

outside the informative regions significant (Figure 3B).

The tendency for false-positive labeling was especially promi-

nent in the fine and medium distributions, depicted in the left and

middle pictures of Figure 3B. Here, the SLD method appeared to

overestimate the local information content.

In contrast, the FWM method delineated the informative

regions with a high precision (see Figure 3C), and did not label

voxels outside of the informative regions as discriminative. The

number of true positives, however, was smaller compared to
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FIGURE 3 | Analysis of the data simulation (A) Distribution of

information, the three violet half-cubes contained class information for

condition A, the three blue half-cubes contained class information for

class B. In total, three distinct levels of geometry of information

distribution were simulated, the leftmost half-cubes represented a fine

information spread, the middle ones an intermediate level and the

rightmost half-cubes a coarse information spread. (B) Results of SLD

method corrected with the non-parametric framework (including multiple

comparison correction), using a voxel-wise threshold of p vox = 0.001

(one-sided). (C) Results of FWM method corrected with the

non-parametric framework (including multiple comparison correction) using

a voxel-wise threshold of p vox = 0.05 (two-sided). The blue-green colors

represent influence toward class B, the red colors for influence toward

class A.

the SLD method, as not all informative voxels were declared

discriminative here.

Precision and sensitivity

We assessed the statistical performance of the SLD and FWM

method by calculating precision and sensitivity curves for each

of the three coarseness levels separately. The analysis was carried

out with and without application of the multiple comparisons

correction.

The three coarseness simulations are depicted separately in

Figure 4A (fine information spread), Figure 4B (intermediate)

and Figure 4C (coarse information spread). The left charts in

Figure 4 depict the analysis without multiple comparison correc-

tion while the right charts depict the analysis including multiple

comparisons correction.

In the case of the uncorrected charts (left) and for both

methods, the sensitivity increased for less stringent (i.e., higher)

p-values, while the precision declined. For fine and intermediate

information spread the FWM method had a higher precision for

any given level of sensitivity. Only in the case of coarse informa-

tion spread and low thresholds (corresponding to high sensitivity)

did the SLD method yield a higher precision.

For any given p-value threshold, the FWM method and SLD

method showed vastly different sensitivity and precision values.

While the FWM method performed very well (i.e., high sensitivity

and precision) for relatively high p-values (e.g., pvox = 0.05), the

SLD method performed better in the regime of low p-values

(e.g., pvox = 0.001). This difference in optimal choices for p-value

thresholds was the motivation for the parameters used for the

voxel-wise threshold for the fMRI data.

When including the multiple comparison correction, the

precision increased substantially for FWM, achieving almost

100% for most cases. Conversely, this precision gain was not

found with SLD (right charts of Figure 4. At the same time,

FWM never achieved higher than 90% sensitivity, while SLD

achieved up to 100% sensitivity, but at considerable loss of pre-

cision, in particular for the fine and intermediate information

spreads.

DISCUSSION

Multivariate analysis techniques are commonly regarded as

promising candidates for analyzing ultra-high-resolution data

acquired with fMRI. In our study we compared two types of

multivariate information mapping techniques; the SLD method

and our newly proposed FWM method. Both methods (SLD

and FWM) aim to determine the local information content in

the brain responses elicited by different experimental conditions

(hence often termed “information mapping”) and use the same

underlying non-parametric framework for statistical analysis,

thus both methods are fully comparable.

Using ultra-high-field fMRI data and simulations, we found

that our new proposed method (FWM) achieves a consider-

ably higher spatial specificity, (that is to say, a higher accuracy

in localization and geometry of information) as compared to

SLD. We additionally observed that the results of the searchlight

approach were systematically inflated and inaccurate. Notably,

SLD mapped information to non-surface cortex regions con-

sisting of white matter. FWM, on the other hand, specifi-

cally mapped out the cortical surface. As increasing higher

resolution fMRI data become the basis for brain mapping stud-

ies, this methodological attention to anatomical specificity is a

necessity.

In the following we discuss the peculiarities and differences of

both information mapping methods in detail.

SEARCHLIGHT DECODING

Given that activity-based information in the BOLD fMRI sig-

nal is known to be distributed in quite specific types of loca-

tion in the brain (i.e., within the cortex, small pial veins and

subcortical gray matter locations), it should not be surprising that
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FIGURE 4 | Precision-sensitivity curves for the three different levels of

information distribution of the data simulation. The red dots represent

the FWM method, and the blue dots the SLD method. (A) Precision-

Sensitivity for a fine information spread. The left chart is based on

uncorrected voxel p-values (derived from the permutation distribution), the

right chart depicts results for the full non-parametric multiple comparison

correction (B) Precision-Sensitivity for an intermediate distribution of

information. The left and right charts are as above. (C) Precision-Sensitivity

curve for a coarse information spread. The left and right charts are as above.

searchlight information maps may be spatially exaggerated and

distorted.

Let us consider for example an image containing no signal

except one center voxel containing a large amount of class infor-

mation. The resulting searchlight information map (depicted in

Figures 5A,B) will label every searchlight location which con-

tains this center voxel as “informative,” effectively grossly inflating

the actual informative regions—thus giving many false positive

attributions. In a recent study, this effect has been termed a “nee-

dle in the haystack effect” (Viswanathan et al., 2012). Another

FIGURE 5 | Schematic illustration of the searchlight induced inflations

and spatial inaccuracies. (A) Searchlight shape (down-projection to 2D)

with a 5-voxel diameter. The violet shaded voxels are located within the

searchlight. (B) No voxels carry class information, except the center voxel

featuring the green sphere labeled with the letter “i”: this voxel is the sole

voxel carrying class information. As a result of the SLD procedure using

searchlight decoding (A), many voxels are being labeled as informative

(these voxels are depicted in orange). The inflating effect has previously

been termed as “needle in the haystack effect” (Viswanathan et al., 2012).

(C) Here, no voxels except the two voxels with the green sphere labeled

with “i” carry class information. The information carried by one voxel,

however, is sufficiently small so that a searchlight has to include both

informative voxels in order to be labeled significant. Hence only the voxels

in the middle, where the searchlight contains both informative voxels, are

labeled informative, resulting in inaccurate and distorted information maps.

effect can also be considered in an image containing only two

low-informative voxels. The direct area around each voxel will

be mapped uninformative by the searchlight approach, and will

thus appear as false negative, while those searchlights that con-

tain both informative voxels will be labeled informative (depicted

in Figure 5C). Thus a distorted picture of the geometry of infor-

mation is provided by SLD. Appropriately, this effect had been

given the name “haystack in the needle” (Viswanathan et al.,

2012).

It is easy to see that the latter effect depends on the search-

light diameter, as the number of informative voxels monotonically

depends on the diameter of the searchlight. However, the effect

also depends on the distribution of information and overall

geometry. Lastly, the (multivariate) signal to noise ratio presum-

ably also plays an important role.

Because one main benefit of ultra-high-field fMRI is that it

allows the study of activations at fine spatial scales (and so help to

establish structure-function relationships), it thus appears ques-

tionable whether the searchlight is the optimal method of choice

(Kriegeskorte and Bandettini, 2007).

The results of our case study and simulations fully supported

the above considerations with regard to exaggeration of spatial

extent and other spatial inaccuracies. The searchlight method

indeed yielded inflated estimates of information distribution

in both the simulated and ultra-high-field fMRI data set. SLD

labeled a high fraction of voxels as informative outside gray

matter areas, obscuring the actual distribution of information

in the cortex (Figure 2A). This issue becomes especially pre-

dominant for larger searchlight radii, such as five and seven

millimeters (Figures 2B,C). It should be noted that searchlights

of such dimensions are common practice, or even exceeding

seven millimeters (Soon et al., 2008; Stelzer et al., 2013). The

simulations reflected the same spatial inaccuracies of the search-

light method as found previously in our fMRI data. In here,

we were able to modify the underlying spatial geometry of the
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true information distribution. We found that the spatial inac-

curacies of the resulting information maps were especially vis-

ible in areas of information distributed on small spatial scales

(Figure 3B).

The effect was especially pronounced in cases where adja-

cent informative regions were separated by a small uninformative

layer (middle column of Figure 3B). Here, the searchlight method

labeled the uninformative border region as highly informative.

The issue of exaggeration of spatial extent (“inflation”) may be

mitigated by limiting the searchlight only to gray matter voxels

or even directly applying it on the cortical surface (Chen et al.,

2011). However, for the surface-based methods, inflation is only

reduced in one of three spatial dimensions; while the spatial accu-

racy in the direction normal to the cortical surface is improved,

the two in-plane dimensions (along the cortical sheet) remain

inflated and distorted.

Another issue that needs to be addressed is the claim that the

searchlight method is only sensitive to local patterns, because

it analyzes only a small neighborhood of voxels at a time. The

searchlight method is often considered advantageous when it

comes to fine-grained local representations, where the infor-

mation is contained in a small region including only few

voxels. While this argument may hold for a single search-

light location in isolation, the argument does not necessarily

carry over to a searchlight map consisting of many search-

light locations. Due to the inflationary nature of the search-

light’s information maps, small informative regions will be

contained in many searchlight locations. Ultimately, the rep-

resentation of the information content is hence inflated to a

degree where small representations either fall under the statisti-

cal threshold (when including a whole-brain correction) or are

grossly overestimated in their spatial extent (see Figures 1, 4).

Furthermore, the intrinsic “smoothing” effect of the search-

light method may be severely exacerbated by the inclusion of

spatial smoothing as a post-processing step (e.g., group-level

comparisons).

From a conceptual point of view it can be argued that the

searchlight’s exclusive sensitivity to local patterns may provoke an

unrealistic impression of brain function, given that the brain is

a large and massively interconnected network. It is most likely

that the fingerprint of distinct brain states does not solely exist

at small spatial scales. Instead, the brain processes information

on larger spatial dimensions across wide-spread networks. For

instance, remote brain areas have been observed to jointly exhibit

patterns of activation governed by long-range neural communica-

tion (e.g., Laughlin, 2003). Evidently, such large-scale interactions

cannot be captured by the searchlight method. Although some-

times a strictly local investigation at small spatial scales is desired,

for example in (Diedrichsen et al., 2013), it is not clear that

the searchlight method is even suitable for such studies, given

its potential for false positive and false negative attributions of

informative voxels.

FEATURE WEIGHT MAPPING

The FWM method is a global multivariate information mapping

technique based on dimensionality reduction, which comprises a

support vector machine classifier and subsequent non-parametric

statistical analysis. Ultimately this allows computation of fea-

ture importance and includes multiple comparison correction.

The FWM method is tailored for the analysis of extremely high-

dimensional data such as that produced by high-field fMRI while

yielding spatially precise information maps.

We found that FWM consistently yielded fine-structured

information maps. In 7T fMRI data FWM revealed informative

regions precisely within the thickness of the cortex. Compared

to SLD, FWM labeled uninformative regions (e.g., within white

matter) much less often as significant.

In simulations, it delineated the informative regions precisely.

Precision and sensitivity curves were generally better for FWM

than for SLD, when the spatial distribution of information was

within the fine and intermediate information spread range. For

any given value of sensitivity (detected informative volume),

FWM was more precise than SLD (less false positivity). In the

simulations, FWM never reached the highest sensitivity levels

(>90%), which were accompanied by an extreme loss in spatial

precision in the SLD method.

Another advantage of FWM over SLD is the sign of the

mapping, which reveals the particular class to which the voxel

influences the classifier. For instance, if a voxel activates con-

sistently when in class A but does not activate when in class

B, the resulting weight component would be positive. On the

other hand, if the voxel activates consistently when in class A but

does not activate when in class B, the weight component would

be determined negative. Hence, the individual weight mapping

reveals how the corresponding voxel influences the classification

decision depending on the level of activation found in the fea-

ture. In an area with positive weights, a high activity level would

influence the classifier to decide on class A, while a low level of

activity would indicate class B. For negative weights, an analogous

argument can be made: Here a high level of activity would influ-

ence the classifier to decide on class B and a low level of activity

would indicate class A. In contrast, the SLD method is unable to

deliver such information about the direction of influence for any

given features, as it only determines whether class information is

present or not.

In contrast to SLD, FWM is a truly global multivariate

approach, that is, it considers all voxels simultaneously. Since the

classification has to be computed only once on a relatively small

data set (for each permutation), the computational resources nec-

essary for the non-parametric statistical framework are drastically

lower compared to those needed for SLD. Depending on the size

of the data set in terms of voxels (resolution) and experimental

trials, we found that the computation of the permutations in the

FWM method was between 5,000 and 30,000 times faster than the

SLD method.

Because the potential for Type I and Type II errors is vastly

reduced, the interpretability of FWM-generated information

maps is much improved as compared with SLD. With FWM, the

influence attributed to a given voxel is solely its influence on the

classification of that particular voxel.

Contrastingly, in the SLD method the accuracy at a voxel char-

acterizes the aggregate decodability of a neighborhood of voxels

around it. In other words, for the SLD analysis technique, voxels

with high accuracies are not necessarily informative themselves;
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the informative voxels may be located elsewhere in the voxel’s

neighborhood. This aspect is problematic, as this important dis-

tinction is commonly ignored in neuroscience research where

searchlight-based analysis is employed (Etzel et al., 2012).

Until now, to our knowledge no method information-

mapping method based on multivariate statistic and adapted

to ultra-high-field fMRI including a correction for the multi-

ple comparisons problem has been made available to researchers

as part of an easy-to-use software package. The proposed FWM

method will be made available as part of LIPSIA (Lohmann et al.,

2001) for free use.

REFERENCES
Abdi, H., and Williams, L. J. (2010). Principal component analysis. Wiley

Interdiscip. Rev. Comput. Stat. 2, 433–459. doi: 10.1002/wics.101

Benjamini, Y. (1999). A step-down multiple hypotheses testing procedure that

controls the false discovery rate under independence. J. Stat. Plan. Infer. 82,

163–170. doi: 10.1016/S0378-3758(99)00040-3

Chang, C.-C., and Lin, C.-J. (2011). LIBSVM. ACM Trans. Intell. Syst. Technol. 2,

1–27. doi: 10.1145/1961189.1961199

Chen, Y., Namburi, P., Elliott, L. T., Heinzle, J., Soon, C.-S., Chee, M. W. L., et al.

(2011). Cortical surface-based searchlight decoding. Neuroimage 56, 582–592.

doi: 10.1016/j.neuroimage.2010.07.035

Diedrichsen, J., Wiestler, T., and Krakauer, J. W. (2013). Two distinct ipsilateral

cortical representations for individuated finger movements. Cereb. Cortex 23,

1362–1377. doi: 10.1093/cercor/bhs120

Etzel, J., Cole, M., and Braver, T. (2012). “Looking outside the searchlight,” in

Machine Learning and Interpretation in Neuroimaging, Vol. 7263, eds G. Langs,

I. Rish, M. Grosse-Wentrup, and B. Murphy (Berlin; Heidelberg: Springer),

26–33. doi: 10.1007/978-3-642-34713-9_4

Etzel, J. A., Gazzola, V., and Keysers, C. (2009). An introduction to anatom-

ical ROI-based fMRI classification analysis. Brain Res. 1282, 114–125. doi:

10.1016/j.brainres.2009.05.090

Etzel, J. A., Zacks, J. M., and Braver, T. S. (2013). Searchlight analysis: promise, pit-

falls, and potential. Neuroimage 78, 1–9. doi: 10.1016/j.neuroimage.2013.03.041

Glover, G. H. (1999). Deconvolution of impulse response in event-

related BOLD fMRI1. Neuroimage 9, 416–429. doi: 10.1006/nimg.1998.

0419

Golland, P., Liang, F., Mukherjee, S., and Panchenko, D. (2005). “Permutation tests

for classification,” in Information Processing in Medical Imaging, Vol. 3559, eds

P. Auer and R. Meir (Berlin; Heidelberg: Springer), 330–341. doi: 10.1007/1150

3415_34

Harrison, L. M., Penny, W., Daunizeau, J., and Friston, K. J. (2008). Diffusion-

based spatial priors for functional magnetic resonance images. Neuroimage 41,

408–423. doi: 10.1016/j.neuroimage.2008.02.005

Heidemann, R. M., Anwander, A., Feiweier, T., Knösche, T. R., and Turner, R.

(2012). k-space and q-space: combining ultra-high spatial and angular reso-

lution in diffusion imaging using ZOOPPA at 7T. Curr. Opin. Neurobiol. 60,

967–978. doi: 10.1016/j.neuroimage.2011.12.081

Kriegeskorte, N., and Bandettini, P. (2007). Analyzing for information, not

activation, to exploit high-resolution fMRI. Neuroimage 38, 649–662. doi:

10.1016/j.neuroimage.2007.02.022

Kriegeskorte, N., Goebel, R., and Bandettini, P. (2006). Information-based func-

tional brain mapping. Proc. Natl. Acad. Sci. U.S.A. 103, 3863–3868. doi:

10.1073/pnas.0600244103

Laughlin, S. B. (2003). Communication in neuronal networks. Science 301,

1870–1874. doi: 10.1126/science.1089662

Lohmann, G., Müller, K., Bosch, V., Mentzel, H., Hessler, S., Chen, L., et al. (2001).

Lipsia—a new software system for the evaluation of functional magnetic reso-

nance images of the human brain. Comput. Med. Imag. Graph. 25, 449–457. doi:

10.1016/S0895-6111(01)00008-8

Mourão-Miranda, J., Bokde, A. L. W., Born, C., Hampel, H., and Stetter, M. (2005).

Classifying brain states and determining the discriminating activation patterns:

support vector machine on functional MRI data. Neuroimage 28, 980–995. doi:

10.1016/j.neuroimage.2005.06.070

Norman, K. A., Polyn, S. M., Detre, G. J., and Haxby, J. V. (2006). Beyond

mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci. 10,

424–430. doi: 10.1016/j.tics.2006.07.005

Polimeni, J. R., Fischl, B., Greve, D. N., and Wald, L. L. (2010). Laminar analysis of

7T BOLD using an imposed spatial activation pattern in human V1. Neuroimage

52, 1334–1346. doi: 10.1016/j.neuroimage.2010.05.005

Poline, J.-B., and Brett, M. (2012). The general linear model and fMRI: does love

last forever? Neuroimage 62, 1–10. doi: 10.1016/j.neuroimage.2012.01.133

Soon, C.-S., Brass, M., Heinze, H.-J., and Haynes, J.-D. (2008). Unconscious deter-

minants of free decisions in the human brain. Nat. Neurosci. 11, 543–545. doi:

10.1038/nn.2112

Stelzer, J., Chen, Y., and Turner, R. (2013). Statistical inference and multiple test-

ing correction in classification-based multi-voxel pattern analysis (MVPA):

random permutations and cluster size control. Neuroimage 65, 69–82. doi:

10.1016/j.neuroimage.2012.09.063

Trampel, R., Schäfer, A., Heidemann, R. M., Ivanov, D., Lohmann, G., Geyer, S.,

et al. (2011). “High resolution functional mapping of primary motor cortex

and primary somatosensory cortex in humans at 7 T,” in Proceedings of the 19th

Scientific Meeting ISMRM, Montral 2011, 3586. Available online at: http://cds.

ismrm.org/protected/11MProceedings/files/3586.pdf (Accessed November 26,

2013).

Viswanathan, S., Cieslak, M., and Grafton, S. T. (2012). On the geometric structure

of fMRI searchlight-based information maps. arXiv 1, 1. Available online at:

http://arxiv.org/abs/1210.6317

Conflict of Interest Statement: The authors declare that the research was con-

ducted in the absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Received: 10 December 2013; accepted: 21 March 2014; published online: 16 April

2014.

Citation: Stelzer J, Buschmann T, Lohmann G, Margulies DS, Trampel R and Turner

R (2014) Prioritizing spatial accuracy in high-resolution fMRI data using multivariate

feature weight mapping. Front. Neurosci. 8:66. doi: 10.3389/fnins.2014.00066

This article was submitted to Brain Imaging Methods, a section of the journal Frontiers

in Neuroscience.

Copyright © 2014 Stelzer, Buschmann, Lohmann, Margulies, Trampel and Turner.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums is

permitted, provided the original author(s) or licensor are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice. No

use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | Brain Imaging Methods April 2014 | Volume 8 | Article 66 | 8

http://cds.ismrm.org/protected/11MProceedings/files/3586.pdf
http://cds.ismrm.org/protected/11MProceedings/files/3586.pdf
http://arxiv.org/abs/1210.6317
http://dx.doi.org/10.3389/fnins.2014.00066
http://dx.doi.org/10.3389/fnins.2014.00066
http://dx.doi.org/10.3389/fnins.2014.00066
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods/archive

	Prioritizing spatial accuracy in high-resolution fMRI data using multivariate feature weight mapping
	Introduction
	Materials and Methods
	7T Tapping Data Set
	Data Generation for Simulation
	Searchlight Decoding
	Feature Weight Mapping
	Non-Parametric Statistics
	Analysis of Simulation Data

	Results
	7T Data Set
	Simulated Data
	Qualitative comparison of FWM and SLD
	Precision and sensitivity


	Discussion
	Searchlight Decoding
	Feature Weight Mapping

	References


