
Priority-Based Conflict Resolution

for Hardware Transactional Memory

Ryohei YAMADA∗, Koshiro HASHIMOTO∗ and Tomoaki TSUMURA∗

∗Nagoya Institute of Technology

Gokiso, Showa, Nagoya, Japan

Email: camp@matlab.nitech.ac.jp

Abstract—Lock-based thread synchronization techniques have
been commonly used in parallel programming on multi-core pro-
cessors. However, lock can cause deadlocks and poor scalabilites,
and Transactional Memory (TM) has been proposed and studied
for lock-free synchronization. On TMs, transactions are executed
speculatively as long as there is no conflict on shared variables.
On HTMs, which are the hardware implementations of TM, if
a speculative execution of a transaction fails, the re-execution
of the transaction should wait a period prescribed by a backoff
algorithm to avoid further conflicts. However, the performance
of HTM may be decreased drastically by wastefully long backoff
periods. To address this problem, in this paper, we propose a new
algorithm to set a value called Priority on each transaction, and
the transaction which should be aborted is selected according to
Priority instead of the initiated time of transactions. The result of
the experiment shows that the execution time of HTM is reduced
59.9% in maximum, and 11.2% in average with 16 threads.

I. INTRODUCTION

On multi-core processors, multiple threads run in parallel

for speed-up. In order that multiple threads may run in parallel

on shared memory systems, mutual exclusion is required, and

lock has been commonly used. However, lock-based methods

can cause deadlocks, and they lead to poor scalability. To

solve these problems, Transactional Memory (TM) [1] has

been proposed as a lock-free synchronization mechanism.

On TM, transactions are executed speculatively as long

as there is no conflict on shared variables. Furthermore, the

interim results of transactions may be discarded because trans-

actions are executed speculatively. Hence, when a transaction

modifies a value on memory, TM generally needs to save

both new and old values (version management). Moreover,

TM keeps track of memory accesses, checking whether each

requested datum has been accessed yet by another transaction

or not (conflict detection). On Hardware Transactional Memo-

ries (HTMs) [2], [3], which are the hardware implementations

of TM, mechanisms for version management and conflict

detection are implemented in hardware. Therefore, each of

version management and conflict detection costs only a small

delay overhead.

In general HTMs, when a conflict is detected, only a

logically elder transaction can continue its execution. Con-

sequently, if a younger transaction is aborted and re-executed

immediately, the transaction will mostly conflict with the elder

transaction again, and will result in another abort. Accordingly,

the thread which the aborted transaction is assigned waits a

backoff period using a backoff algorithm before re-executing

the transaction to avoid bringing a conflict again. In many

cases, TM systems adopt Exponential Backoff algorithm. This

algorithm defines backoff period as increasing exponentially

according to how many times the transaction is aborted

repeatedly. However, this algorithm may define a backoff

period much longer than necessary. If wasteful waiting time is

caused frequently, the performance of HTM will be decreased

drastically. To address this problem, in this paper, we propose

a new effective criterion for selecting the transaction which

should be aborted according to Priority by considering the

transaction execution time and the number of transactional

loads and stores.

II. RESEARCH BACKGROUND

In this section, we describe overviews of TM and HTM.

A. Transactional Memory

Transaction mechanism has been used for achieving data

consistency on database systems. TM is an implementation

of the transaction mechanism for shared memory synchro-

nization. On TM, a transaction is defined as an instruction

sequence which covers a critical section, and the transaction

needs to satisfy atomicity and serializability. To ensure atom-

icity and serializability, TM keeps track of memory accesses,

checking whether each requested datum on the shared memory

has been accessed by another transaction yet or not. Specif-

ically, when a transaction tries to access the same memory

address which has been accessed by another transaction,

TM detects it as a conflict between the transactions. If TM

detects a conflict, TM selects transactions among the conflicted

transactions and stalls the selected transactions. Then, if one

of the conflicted transaction is aborted to avoid deadlocks,

the aborted transaction will be re-executed later. On the other

hand, if there occurs no conflict through a transaction, TM

commits the transaction.

As far as there is no conflict among some transactions, the

transactions can concurrently run under the TM without any

blocking. Therefore, compared with lock-based methods, TM

provides generally better scalability. The mechanisms for ver-

sion management and conflict detection can be implemented in

hardware or software. Some TM systems operate completely in

tsumura
テキストボックス
This is the accepted manuscript of a paper published in
Proc. 2nd Int'l Symp. on Computing and Networking (CANDAR'14), pp.433-439
Copyright (C) 2014 IEEE



software (STMs) [4], [5]. However, STM has more overheads

than HTMs.

B. Conflict Detection

HTM generally uses signatures inspired by Bulk [6] to

summarize transactions’ load and store accesses, and detects

conflicts on coherence requests. Each processor core has two

signatures for Read and Write addresses. These signatures are

updated by using a logical sum of the present signature and a

decoded Read/Write address. Therefore, the updated signature

holds not only the currently accessed address, but also the

addresses accessed in the past. Then, if a logical product of the

current signature and a decoded Read/Write address requested

by another processor may be same as the decoded address, a

conflict is detected.

Two policies for conflict detection are defined as follows.

They differ in respect of when conflicts are detected.

Eager Conflict Detection: When a memory address

is accessed in a transaction, it is checked whether

other transactions already have accessed to the same

address or not.

Lazy Conflict Detection: When a transaction tries

to commit, it is checked whether other transactions

accessed to addresses which are accessed by the

transaction or not.

With Lazy conflict detection policy, it takes much time to

detect a conflict after the conflict is caused. Consequently,

more transactional execution time will be wasted than Eager

conflict detection. Hence, we adopt Eager Conflict Detection.

Here, we explain Eager conflict detection and its conflict

resolution. Fig. 1 shows an example where Thread1 executes

Tx.X and Thread2 executes Tx.Y, and Thread1 has issued

load A before Thread2 has issued load A. First, when

Thread1 tries to issue store A (t1), a conflict is detected

(t2) because Thread2 has already accessed to address A. In

this case, Thread1 receives NACK from Thread2, and stalls

Tx.X, waiting for Thread2 to commit (t3). Afterwards, when

Thread2 tries to issue store A (t4), another conflict is

detected because Thread1 has already accessed to the same

address. In this case, as Tx.X is elder than Tx.Y, Thread2 aborts

its Tx.Y (t5).

While Thread2 waits a backoff period, Thread1 receives

ACK and resumes Tx.X (t6). After that, Thread2 restarts Tx.Y

(t8). Incidentally, the backoff period is generally defined by an

algorithm called Exponential Backoff. This algorithm defines

backoff period as increasing exponentially according to how

many times the transaction is aborted repeatedly.

C. Version Management

On TM, interim results of transactions may be discarded

because transactions are executed speculatively. Hence, when

a transaction modifies a value on memory, HTM generally

needs to save both new and old values. Two policies for version

management are defined as follows;

Eager Version Management: Old values and kept in

the area called log which is in a virtual memory and

t4

Tx.X

Tx.Y

Core1

Thread1

Core2

Thread2

NACK

req A

load A

load A

store Areq A

NACK

store A

t5
Abort

tim
e

s
ta

ll
ACK

req A

t7
(store A)

Commit

t8

Wasteful Backoff

Restart

t1
t2

t3

t6
Backoff

Fig. 1. Eager Conflict Detection and Resolution

new values are stored into cache blocks. Therefore,

the time required for committing transactions is rela-

tively short. On the other hand, the time for aborting

transactions is relatively long because the old values

must be restored into cache blocks.

Lazy Version Management: New values are kept in

the area called write buffer which is in a virtual

memory and old values are kept in cache blocks.

Therefore, the time required for aborting transactions

is relatively short because the old values are kept

in cache blocks. On the other hand, the time for

committing transactions is relatively long because the

new values must be stored into cache blocks.

Every transaction definitely includes one commit and the

commit cannot be omitted. Therefore, there is almost no

room to reduce the overheads for commit on Lazy version

management. On the other hand, the number of aborts could be

reduced by improving transaction scheduling. Therefore, there

is room to reduce the overheads for abort on Eager version

management TMs. Hence, we adopt Log-based Transactional

Memory Signature Edition (LogTM-SE) [3] which uses Eager

Conflict Detection and Eager Version Management.

III. PRIORITY-BASED CONFLICT RESOLUTION

In this section, we point out a problem of the traditional

HTM, and propose a new criterion for selecting one of

conflicted transactions as the preferential transaction.

A. Problem of the Traditional Backoff Algorithm

We have proposed a transaction scheduling for relieving

specific conflict patterns [7]. This transaction scheduling can

prevent the performance deterioration caused by the specific



conflict patterns. However, this transaction scheduling cannot

suppress the performance deterioration caused by other con-

flict patterns. In this paper, for improving the performance of

HTM, we do not focus on the specific conflict patterns but

focus on the transaction execution time and the number of

transactional loads and stores.

As mentioned in section II-B, a conflict is resolved by

aborting a logically younger transaction. In this case, the re-

execution of the aborted transaction waits a backoff period

prescribed by Exponential Backoff algorithm. However, with

this algorithm, a transaction may continue to wait wastefully

long.

Here, Fig. 1 shows an example where such wasteful waiting

time is caused. In this figure, after Thread1 receives ACK,

Thread1 commits Tx.X (t7). Therefore, Thread2 can re-execute

Tx.Y without a conflict between itself and Thread1. However,

as Thread2 waits a backoff period, Tx.Y executed by Thread2

may be drastically delayed from the commit of Thread1 (t8).

In this case, Thread2 wastefully waits after Thread1 commits

Tx.X until the end of a backoff period. As a result, the

performance of HTM may severely decline.

B. Solution of Wasteful Waiting Time by using Priority

As the number of transactions which are executed in par-

allel increases, wasteful waiting time may be caused more

frequently. In this paper, we propose a new criterion for

selecting transactions which should be continued or aborted.

The criterion is called Priority, and calculated for each trans-

action. Priority is defined as proportional to a progress of

a transaction. When a conflict is detected, the Priorities of

both transactions which have conflicted are compared. At this

time, a transaction which has a higher Priority can continue

its execution preferentially. Thereby, the transaction which

has short remaining time until the transaction commits will

continue its execution preferentially.

Here, we define following parameters for calculating Prior-

ity.

Transaction age (T ): This represents how much time

has passed since the start of the transaction.

Issued load/store instructions (L, S): This is the

number of issued load/store instructions in the cur-

rent transaction.

Past load/store instructions (L0, S0): This is the

number of load/store instructions which are issued

in the transaction, when it is executed in the past.

Using these parameters, Priority (P ) is defined as follows;

P =
1

α/T + β(S0 − S) + γ(L0 − L)
(1)

where α, β and γ represent weight factors of parameters.

Here, (S0 − S) and (L0 − L) represent the predictive num-

ber of load/store instructions which will be issued hereafter

until the transaction is committed. Thus, a transaction which

has smaller the predictive number of load/store instructions

should be executed preferentially. Incidentally, if an earlier

transaction waits a commit of later one, the earlier one will

Fig. 2. Operation for the first time conflict

keep shared variables accessed. Hence, the earlier transaction

will conflict with other transactions. Therefore, an earlier

transaction should be committed preferentially for releasing

shared variables. Accordingly, Priority is defined as inversely

proportional to the predictive number of load/store instructions

which will be issued until the transaction is committed, and

proportional to transaction age. When a conflict is detected,

Priorities of both conflicted transactions are compared and

the transaction which has higher Priority is selected as the

preferential transaction.

C. Control for Selecting the Preferential Transaction by Using

Priority

In this section, we explain a control for selecting the

preferential transaction according to the proposed criterion. In

Fig. 2, Thread1 executes Tx.X and Thread2 executes Tx.Y, and

these threads have already issued load A. In this situation,

Thread1 tries to issue store A and req.A which piggybacks

Priority for comparing with an opponent transaction’s Priority

is sent from Thread1 (t1). After that, a conflict is detected

because Thread2 has already accessed to address ‘A.’ Then,

Thread1 receives NACK from Thread2, and stalls Tx.X (t2).

Afterwards, when Thread2 tries to issue store A, another

conflict is detected because Thread1 has already accessed to

the same address (t3). At this time, Thread1 which receives

req.A calculates Priority, and Priorities of Tx.X and Tx.Y are

compared. In this example, assume that Priority of Tx.X and

Tx.Y are calculated as 1/2 and 1/5. Accordingly, Tx.Y which

has lower Priority is aborted (t4), and Thread1 can continue

Tx.X (t5). At this time, Core2 which executes Thread2 stores

the pair of the opponent transaction ID ‘X’ and the conflicted



Fig. 3. Operation of the conflict with same transaction

address ‘A.’ When a thread receives a request, the thread

predicts whether a conflict will be caused or not. If the

transaction ID of the transaction executed by the request

sender and the address to which the sender tries to access

are the same as the stored pair of the transaction ID and the

address, the thread predicts that a conflict will be caused.

Depending on this prediction, the transaction which should

continue its execution preferentially is selected before the

conflict is caused. Thereby, aborts can be avoided. Here, after

Thread1 commits Tx.X, Thread2 needs to restart Tx.Y. Hence,

we define Wakeup message by extending coherence protocol,

and use this Wakeup message for prompting the opponents

to continue their execution. In this example, Thread1 sends

Wakeup message to Thread2 after Thread1 commits Tx.X (t6).

D. Control for Avoiding Further Conflicts Between the Same

Transactions

As mentioned above, each core stores conflicted transaction

IDs and conflicted addresses for selecting a preferential trans-

action. Fig. 3 shows a situation a little while after the situation

shown in Fig. 2. At the situation shown in Fig. 3, assume that

Core1 remembers that the thread which runs on Core1 has

conflicted with Tx.Y at address ‘A’ in the past. Incidentally,

Thread1 executes Tx.X and Thread2 executes Tx.Y.

First, Thread2 tries load A and sends req.A to Thread1

(t1), after Thread1 issues load A. At this time, Core1

find that a transaction which was executed by Thread1 has

conflicted with Tx.Y at address ‘A’ in the past. Then, it is

predicted that these threads may conflict with each other again

if Tx.Y continues. Accordingly, Priorities of Tx.X and Tx.Y are

compared after Thread1, which receives an access request,

calculates Priority, and one of the transactions is selected

as the preferential transaction. In this example, assume that

Timestamp

L-Counter 0

Core #1 

Pr-CoreID

Core #n 

Additional Hardware

Past-Access

Conflict-Addr

Processor

Core

S-Counter 0Po-CoreID

- -

Tx_ID load store

1 2 1

2 3 2

N

...

Tx_ID Addr

1 A

2 B

...

...

1 2 N

...

...

Fig. 4. Processor structure of proposed HTM

Priorities of Tx.X and Tx.Y are calculated as 1/2 and 1/5,

and Thread1 continues Tx.X which has higher Priority. Ac-

cordingly, Thread1 sends Wait request to Thread2. Here, Wait

request is defined by extending coherence protocol as same

as Wakeup message described in section III-C. When Thread2

receives Wait request, Thread2 waits for being allowed to issue

load A (t2). Hence, when Thread1 tries store A, Thread1

does not conflict with Thread2 and can continue Tx.X. After

that, when Thread1 commits Tx.X, Thread1 sends Wakeup

message to Thread2. Then, Thread2 can resume the execution

of Tx.Y (t3). In this way, as transactions can wait the minimum

required time, wasteful waiting is avoided.

IV. IMPLEMENTATION

In this section, we describe additional hardwares for im-

plementing the proposed HTM and the execution flow of the

HTM.

A. Additional Hardware

To implement the proposed HTM, we have installed follow-

ing hardware units in each core.

Load Counter（L-Counter）: This counter records

the number of load instructions which are issued in

the current transaction.

Store Counter (S-Counter): This counter records the

number of store instructions which are issued in the

current transaction.

Prior Core ID (Pr-CoreID): This register stores the

core ID of the core from which Wait request is sent.

Posterior Core ID bits (Po-CoreID): This bitmap

records the core IDs of the cores to which the own

core sends Wait requests. When the total number

of cores is n, this bitmap has n-bit width. When

the thread which runs on the own core commits its



Fig. 5. Execution flow at the first conflict

transaction, Wakeup messages are sent to the cores

whose core IDs are recorded on this bitmap.

Past Access Table (Past-Access): This table stores

the total number of load/store instructions which are

issued in the past.

Conflict Address Table (Conflict-Addr): This table

stores pairs of conflicted transaction IDs and con-

flicted addresses. When the thread which runs on the

own core conflicts with other threads and aborts its

transaction, the core stores the opponent transaction

ID and the conflicted address.

Here, transaction age can be calculated by using Timestamp

of each core on traditional LogTM-SE.

B. Execution Flow

We describe an execution flow on the proposed HTM, using

Fig. 5 and Fig. 6. In Fig. 5, when Thread1 and Thread2

issue load A, L-Counters are incremented for recording the

number of the load accesses (t1, t2). After that, when Thread2

tries store A, Priority is calculated using the number of

counts stored in L-Counter, S-Counter and Past-Access. Then,

Thread2 sends a request which piggybacks Priority to Thread1

(t3). Afterwards, the pair of conflicted transaction ID ‘X’ and

conflicted address ‘A’ is stored in Conflict-Addr, and the core

ID of Core1 whose thread executes Tx.X is stored in Pr-

CoreID (t4). Simultaneously, Core1 sets a bit of Core2 in Po-

CoreID because Thread1 on Core1 is responsible for making

Thread2 on Core2 resume. After Thread1 commits Tx.X, the

values of L-Counter and S-Counter are stored in Past-Access.

Now, if a transaction includes branch instructions, the count

of load/store instructions may drastically change according to

the selected execution path. Accordingly, when the number of

load/store instructions has already stored in Past-Access, Past-

Access is updated by the arithmetic average of the present

value of Past-Access and the values in L-Counter/S-Counter.

In this way, deterioration of prediction accuracy for load/store

instruction counts can be restrained. After the number of

load/store instructions is stored, the committing thread sends

Wakeup messages to the cores whose core IDs are stored in

Fig. 6. Execution flow after the first conflict

Po-CoreID, and clears Po-CoreID. In this example, Thread1

sends Wakeup message to Core2 (t5). Receiving this message,

Thread2 restarts Tx.Y and clears L-Counter, S-Counter and

Pr-CoreID (t6).

Fig. 6 shows a situation a little while after the situation

shown in Fig. 5. In Fig. 6, assume that Core1 has already

stored an entry for the pair of conflicted transaction ID

‘Y’ and conflicted address ‘A’ on Conflict-Addr. At first,

Thread2 tries load A after Thread1 issues load A. At this

time, as transaction ID ‘Y’ and address ‘A’ match the entry

on Conflict-Addr of Core1, Thread1 sends Wait request to

Thread2 and sets Po-CoreID (t1). On the other hand, Thread2

which receives Wait request waits for being allowed to issue

load A, and the core ID of Core1 is stored in Pr-CoreID

(t2). After that, the committing thread sends Wakeup messages

to the cores whose core IDs are stored in Po-CoreID. In this

example, when Thread1 commits Tx.X, Thread1 sends Wakeup

messages to Core2 (t3).

V. PERFORMANCE EVALUATION

In this section, we describe the evaluation results, and

estimate the additional hardware cost.

A. Evaluation Environment

We used a full-system execution-driven functional simulator

Wind River Simics[8] in conjunction with customized memory

simulators built on Wisconsin GEMS [9] for evaluation. Simics

provides a SPARC-V9 architecture and boots Solaris 10, and

GEMS provides a detailed timing simulation for the mem-

ory subsystem. The detailed configuration of the simulated

processor is shown in TABLE I. We have evaluated the

execution cycles of four workloads from GEMS microbench

and two workloads from SPLASH-2[10] with 8 and 16 threads.

Incidentally, each of weight factors (α, β, γ) in equation (1)

described in section III-B is equally defined as “1.”



0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
R

a
ti

o
 o

f 
cy

c
le

s 
Wait

Barrier

Stall

Backoff

Aborting

Bad-trans

Good-trans

Non-trans

16thr

ContentionBtree

8thr 8thr 16thr 8thr 16thr

Deque

8thr 16thr 8thr8thr 16thr16thr

Prioqueue Cholesky Raytrace

GEMS MicroBench SPLASH-2

(B) LogTM-SE (Baseline)

(P) Proposed HTM

Fig. 7. Execution cycles ratio

TABLE I
EVALUATION ENVIRONMENT

Processor SPARC V9
#cores 32 cores
clock 4 GHz
issue width single
issue order in-order
non-memory IPC 1

D1 cache 32 KBytes
ways 4 ways
latency 3 cycles

D2 cache 8 MBytes
ways 8 ways
latency 20 cycles

Memory 4 GBytes
latency 450 cycles

Interconnect network latency 14 cycles

B. Evaluation Results

The evaluation results with following two HTMs are shown

in Fig. 7.

(B) LogTM-SE (baseline)

(P) Proposed HTM

Fig. 7 shows the execution cycles of each HTM. Each bar

is normalized to the total execution cycles of the baseline

LogTM-SE (B). The legend shows the breakdown items of

the total cycles. They represent the executed cycles out of

transactions (Non-trans), the executed cycles in the transac-

tions which are committed/aborted (Good-trans/Bad-trans),

the aborting overheads (Aborting), the exponential backoff cy-

cles (Backoff ), the stall cycles (Stall), the barrier synchroniza-

tion cycles (Barrier), and the waiting cycles for the proposed

HTM (Wait). For the simulation of multi-threading on a full-

system simulator, the variability performance [11] must be

considered. Hence, we tried 10 times on each benchmark, and

measured 95% confidence interval. The confidence intervals

are illustrated as error bars in this figure.

As shown in Fig. 7, the performance is improved with the

proposed HTM (P) in many programs, as we expect. The

proposed HTM (P) reduces the execution cycles 59.9% in

maximum, and 11.2% in average with 16 threads. Next, we go

to the detailed examination of these results in the following.

C. Detailed Examination

First, the performance with Deque and Prioqueue are im-

proved by the decrease of Backoff cycles. To consider this

reason, we examined these two programs and found that these

two programs have transactions which cause aborts repeatedly

with LogTM-SE (B). However, with the proposed algorithm,

when a transaction is aborted, the opponent transaction ID and

the conflicted address are stored. Hence, repetitive aborts can

be avoided because a transaction which has already accessed

to shared variables is selected as the preferential transaction

before other transactions access to the same variables. Be-

sides, the number of Wait cycles with the proposed HTM

(P) are smaller than Backoff cycles with LogTM-SE (B).

Consequently, it is confirmed that wasteful waiting is avoided

because transactions can wait the minimum required time.

On the other hand, the performance with Btree declines as

the number of thread increases. We examined this program,

and found that Btree has two noteworthy transactions. The

one (Tx.A) includes both load and store instructions, and

the other (Tx.B) includes only load instructions. Therefore,

with the proposed HTM (P), when Tx.A which has a lower

Priority is aborted by Tx.B which has a higher Priority, the



core whose thread executes Tx.A remembers the conflict with

Tx.B. Afterwards, if some Tx.B’s are executed in parallel, these

transactions which do not conflict essentially are executed se-

quentially because the entry for Tx.B is stored in Conflict-Addr

until the program terminates. Here, assume that Tx.B has a

higher Priority than Tx.A, and Tx.B tries to load from a shared

variable which has already overwritten by Tx.A. In this case,

Tx.A will be aborted. Such situations were caused frequently in

this program. Hence, Wait cycles and Aborting cycles increase,

and the performance of Btree declines. Therefore, one of our

future work is considering a algorithm which can take account

of the contexts of transactions. Specifically, if a transaction has

only load instructions, the entry for this transaction should be

cleared from Conflict-Addr.

The performance with Cholesky and Raytrace (8thr) is not

improved. This is because Non-trans occupies most of the total

cycles in these programs. Therefore, with the proposed HTM

(P), the ratio of the performance improvement is smaller than

the other programs. In contrast, with Contention, Stall cycles

are decreased with the proposed HTM (P), but Wait cycles

are increased almost the same as the amount of decreased

cycles. With LogTM-SE (B), when a conflict is detected,

the transaction is stalled. On the other hand, with the pro-

posed HTM (P), the transaction waits before conflicts are

caused. Therefore, Stall cycles are decreased. Incidentally, a

transaction in Contention has great amount of instructions in

the transaction. Hence, when transactions conflict, one of the

conflicted transaction which has lower Priority will wait a

long time. Consequently, Wait cycles are increased with the

proposed HTM (P).

D. Additional Hardware Cost

In the proposed HTM, each of L-Counter and S-Counter

should has an enough bit width for counting as many as the

maximum number of load/store instructions in transactions.

Then, we have measured how many instructions are executed

in the benchmark programs. As a result, if L-Counter can

count to 470 and S-Counter can count to 944, these counter

do not overflow with all programs. Hence, 10-bit width is

enough for each of L-Counter and S-Counter. Moreover, for

a 16-core processor which can executes 16 threads, the size

of Pr-CoreID is 4-bit and Po-CoreID is 16-bit. Next, we have

measured how many transactions are included in each program

for investigating the size of Past-Access. As a result, 19

transactions are included in maximum. Besides, Past-Access

needs 25-bit width because transaction ID field should have

5-bit width and each of past load/store instructions field should

have 10-bit width. Therefore, Past-Access can be implemented

with 25-bit width and 19 rows. On the other hand, the depth of

Conflict-Addr should be as many as the number of conflicted

addresses. As the result of the measurement, if Conflict-Addr

has 36 entries, this table does not overflow with all programs.

Furthermore, the width of Conflict-Addr is 37-bit, and Conflict-

Addr can be implemented with 37-bit width and 36 rows.

Hence, the total additional hardware cost is only about 3.7
Kbytes, and it is confirmed that the additional hardware cost

is very small.

VI. CONCLUSION

In this paper, we propose a new criterion called Priority for

avoiding wasteful waiting. One of conflicted transactions is

selected as the preferential transaction according to Priority

instead of the initiated time of transactions. As a result,

wasteful waiting time becomes shorter than using Exponential

Backoff algorithm. We have evaluated the proposed HTM

by comparing with LogTM-SE, through experiments with

GEMS microbench and SPLASH-2 benchmark suites. The

evaluation results show that the proposed HTM decreases

the total execution cycles 59.9% in maximum, and 11.2%

in average with 16 threads. However, with the proposed

HTM, transactions may wait even if they can run in parallel.

Incidentally, if a transaction tries to load from a shared variable

and another transaction has already stored to the same variable,

the transaction which has already stored and has lower Priority

than the other is aborted. Such situation was caused frequently

in the proposed HTM. Therefore, one of our future works

is considering an algorithm which can take account of the

contexts of transactions.

REFERENCES

[1] M. Herlihy et al., “Transactional Memory: Architectural Support for
Lock-Free Data Structures,” in Proc. 20th Int’l Symp. on Computer

Architecture (ISCA’93), May. 1993, pp. 289–300.
[2] L. Hammond et al., “Transactional Memory Coherence and Con-

sistency,” in Proc. 31st Annual Int’l Symp. Computer Architecture

(ISCA’04), Mar. 2004, pp. 102–.
[3] L. Yen et al., “LogTM-SE: Decoupling Hardware Transactional Memory

from Caches,” in Proc. IEEE 13th Int’l Symp. on High Performance

Computer Architecture (HPCA’07), 2007, pp. 261–272.
[4] N. Shavit et al., “Software Transactional Memory,” in Proc. 14th ACM

Symposium on Principles of Distributed Computing, 1995, pp. 204–213.
[5] M. Herlihy et al., “Software Transactional Memory for Dynamic-

Sized Data Structures,” in Proc. 22nd Annual Symp. on Principles of

Distributed Computing (PODC’03), 2003, pp. 92–101.
[6] L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval, “Bulk Disambiguation

of Speculative Threads in Multiprocessors,” in Proc. 33th Annual Int’l

Symp. on Computer Architecture (ISCA’06), Jun. 2006, pp. 227–238.
[7] K. Hashimoto, M. Eto, S. Horiba, T. Tsumura, and H. Matsuo, “Reduc-

ing Wasteful Recurrence of Aborts and Stalls in Hardware Transactional
Memory,” in Proc. 2013 High Performance Computing & Simulation

Conference (HPCS2013), Jul. 2013, pp. 374–381.
[8] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hållberg,

J. Högberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A Full
System Simulation Platform,” Computer, vol. 35, no. 2, pp. 50–58, Feb.
2002.

[9] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood., “Mul-
tifacet’s General Execution-driven Multiprocessor Simulator (GEMS)
Toolset,” ACM SIGARCH Computer Architecture News, vol. 33, no. 4,
pp. 92–99, Sep. 2005.

[10] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 Programs: Characterization and Methodological Consider-
ations,” in Proc. 22nd Annual Int’l. Symp. on Computer Architecture

(ISCA’95), 1995, pp. 24–36.
[11] A. R. Alameldeen and D. A. Wood, “Variability in Architectural

Simulations of Multi-Threaded Workloads,” in Proc. 9th Int’l Symp. on

High-Performance Computer Architecture (HPCA’03), Feb. 2003, pp.
7–18.


