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ABSTRACT For heterogeneous demands in fifth-generation (5G) new radio (NR), a massive machine type

communication (mMTC), enhanced mobile broadband (eMBB), and ultra-reliable and low-latency commu-

nication (URLLC) services have been introduced. To ensure these quality-of-service (QoS) requirements,

non-orthogonal multiple access (NOMA) has been introduced in which multiple devices can be served

from the same frequency by manipulating the power domain and successive interference cancellation (SIC)

technique. To maximize the efficiency of NOMA systems, an optimal resource allocation, such as power

allocation and channel assignment, is a key issue that needs to be solved. Although many researchers have

proposed multiple solutions, there have been no studies addressing the 5G QoS requirements and three ser-

vices that coexist in the same network. In this paper, we formulate an optimal power allocation scheme under

Karush–Kuhn–Tucker (KKT) optimality conditions incorporating different NOMA constraints to maximize

the channel sum-rate and system fairness. We then propose a priority-based channel assignment with a

deep Q-learning algorithm to maintain the 5G QoS requirements and increase the network performance.

Finally, We conduct extensive simulations with respect to different system parameters and can confirm that

the proposed scheme performs better than other existing schemes.

INDEX TERMS Deep Q-learning, Internet of Things, joint resource allocation, non-orthogonal multiple

access (NOMA).

I. INTRODUCTION

With the rapid increase in the popularity of the Internet of

Things (IoT) and cloud computing, the demand for highly

reliable data rates and massive connectivity is increasing day

by day for wireless communication networks [1]. IoT can

provide connections among many types of smart devices,

such as mobile devices, smart sensors, and all kind of robots,

using radio or wireless access networks to build a massive

Eco-system [2]. To fulfill these demands, the 3rd Generation

Partnership Project (3GPP) introduced the fifth generation

(5G) wireless network that provides three major services [3].

These major services include massive machine type commu-

nication (mMTC) that allows massive connectivity for IoT

devices, enhanced mobile broadband (eMBB) that provides

a high data rate for mobile platforms, and ultra-reliable and

The associate editor coordinating the review of this manuscript and
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low-latency communication (URLLC) that ensures reliability

and low latency for highly sensitive and crucial applica-

tions [4]–[6]. These services are categorized in terms of their

quality-of-service (QoS), where URLLC has a strict QoS

policy for high reliability and low latency, eMBB service

has a moderate QoS policy, and mMTC has no specific

QoS policy except for massive connectivity [7].

These types of QoS policies are extremely difficult to

fulfill with the traditional orthogonal multiple access (OMA)

due to limited spectrum resources, great transmission losses,

and long queuing delays [8], [9]. To maintain these diverse

QoS requirements many potential technologies have been

introduced into 5G communication network [10]. Among

them, non-orthogonal multiple access (NOMA) is gaining

popularity because it can support massive connectivity with

limited resources, highly reliable transmissions, low trans-

mission delays, and high spectral efficiency [11]–[13]. The

key feature of NOMA is that multiple devices can be served
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from the same radio resource block (RRB), such as time,

frequency, and codes, simultaneously utilizing the power

domain [14], [15]. NOMA applies superposition coding to

combine signals of multiple devices at the transmitter and

successive interference cancellation (SIC) at the receiver to

differentiate the signals of multiple devices manipulating the

power domain [16], [17]. This not only mitigates the multiple

access interference, but also increases the spectral efficiency

and device fairness [18]. Thus, NOMA can easily maintain

strict QoS policies for eMBB, mMTC, and URLLC services.

By contrast, with conventional OMA, only one device can

be served from each RRB at a time to avoid multiple access

interference which is insufficient to support high data rates

and massive connectivity [19].

However, there are some major challenges when it

comes to resource allocation in the NOMA system, which

includes power allocation and channel assignment. One

of the major challenges is that joint power allocation

and channel assignment involve a mixed-integer program

which is a non-deterministic polynomial-time hard (NP-hard)

problem [20]–[22]. For example, all possible combinations

of channel assignment and power allocation are required to

reach an optimal solutionwhichmake the system complicated

and requires extremely high computational power [23], [24].

When it comes to multi-carrier NOMA the system becomes

more complex.

Another problem in multi-carrier NOMA is the channel

sum-rate fairness as an increase in the system sum-rate, does

not necessarily increase the sum-rate of each channel. The

Poor sum-rate of any channel can decrease the performance

of the devices assigned to that channel [25].Moreover, perfect

signal decoding using SIC and fulfilling the QoS require-

ments of 5G services also depends on the power alloca-

tion and channel assignment [26]. An imperfect SIC and

an inappropriate channel assignment can easily decrease the

overall performance of the system. Therefore, in this paper,

we investigate the power allocation and channel assign-

ment jointly to overcome the challenges of the downlink

NOMA system under various criteria.

A. RELATED WORKS

Optimal resource allocation, such as power allocation and

channel assignment, is the key to increase the overall sys-

tem performance and fulfill the QoS requirements of the

5G network. Many researchers have proposed many

approaches to obtain optimal solutions with different perfor-

mance objectives [27], [28]. The most common objectives are

to maximize the overall sum-rate of the system and fulfill the

minimum data rate.

Ali et al. [27] proposed a power allocation technique with

a user grouping scheme for a single-carrier NOMA system

to maximize the sum-rate using Lagrange equations under

Karush–Kuhn–Tucker (KKT) conditions. The authors have

derived the Lagrange equations to obtain an optimal power

allocation scheme while considering total power limitation,

minimum data rate requirement, and SIC constraints under

Karush–Kuhn–Tucker (KKT) conditions. Shao et al. [29]

derived a dynamic device clustering technique and an optimal

power allocation solution using the Nash bargaining solu-

tion (NBS) for NOMAsystem based on the number of devices

and channel gains. However, only single-carrier NOMA sys-

tem for IoT devices is considered. In [7], Shahini et al.

proposed priority-based URLLC andmMTC device grouping

with fixed power allocation scheme. However, no authors

considered the presence of URLLC, eMBB, and mMTC ser-

vices in 5G networks. Parida and Das [30] solved only the

non-convex power allocation problem using the difference of

two convex functions (DC) programming to maximize the

sum-rate of orthogonal frequency division multiple access

(OFDMA)-based NOMA system. In another paper [31],

Hojeij et al. used the water-filling algorithm for resource

allocation to obtain the highest sum-rate possible. However,

no optimality was provided for the obtained solution.

Nevertheless, the system sum-rate increases when it comes

to multi-carrier NOMA. In [1], Zhu et al. derived an

near-optimal power allocation solution considering two users

per channel and iteratively assigned channel to the users.

They also considered the minimum data rate constraints

for each user while maximizing the sum-rate. However,

authors did not consider different services of the 5G network.

Choi [28] used convex optimization to approximate the max-

imization problem for the minimum data rate requirement of

users. Ning et al. [32] adopted a heuristic approach to solve

the power allocation and channel assignment problem of the

NOMA system for vehicular ad-hoc networks.

In addition to conventional convex optimization, many

researchers explored the machine learning and artificial intel-

ligence sectors to optimize the resource allocation prob-

lem of the NOMA system. In [33], Xiao et al. proposed

fast and dynamic reinforcement learning (RL) based power

allocation to maximize sum-rate and spectral efficiency of

a multiple-input multiple-output (MIMO) NOMA system

in presence of smart jamming. The authors initially for-

mulated the anti-jamming transmission game and derived

the Stackelberg equilibrium of the game. Q-learning-based

power allocation is then used to allocate power to users

against jamming attacks. He et al. [34] proposed a joint power

allocation and channel assignment for the NOMA system

using deep reinforcement learning (DRL). They used the

derived near-optimal power allocation from [1] considering

two users per channel and performed channel assignment

using DRL algorithm consisting an attention-based neural

network. The authors then used a DRL algorithm consisting

an attention-based neural network to perform channel assign-

ment while maximizing the overall sum-rate and minimum

data rate for user fairness. An actor-critic (A2C) RL algorithm

was used in [35] to obtain the optimal policy for resource allo-

cation and user scheduling in HetNets with a hybrid energy

supply. The actor parameterizes the policy using the Gaussian

distribution to take stochastic actions, and the critic evalu-

ates the value function and helps the actor learn the optimal

policy.
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FIGURE 1. Simple multi-carrier NOMA system.

In summary, many researchers found many optimal and

near-optimal power allocation solutions for a single-carrier

only. Most researchers focused on increasing the overall

sum-rate while maintaining a minimum data rate for fair-

ness. However, an increase in the overall sum-rate does not

ensure an increase in the sum-rate of each channel. Further-

more, the sum-rate of a device is directly connected with the

sum-rate of the channel. Some researchers have also found

the optimal and near-optimal solutions for both power allo-

cation and channel assignment problems while considering

only eMBB services of 5G network and have not done it for

more than two devices per channel. Nevertheless, achieving

optimal and near-optimal solutions using conventional meth-

ods are very computationally complex. Some researchers

have adopted neural networks (NN) to replace the complex

methods owing to their low complexity.

B. CONTRIBUTIONS

In this paper, we investigate resource allocation schemes to

maximize the performance of multi-carrier NOMA system

under multiple performance metrics. We propose a priority-

based joint resource allocation scheme with DQL for hetero-

geneous NOMA system considering the key constraints and

services of 5G networks. The contributions of this paper are

described as follows:

• We formulate an optimal power allocation scheme that

maximizes the overall system efficiency for any given

channel assignment using Lagrange multipliers under

KKT optimality conditions and incorporates different

constraints of NOMA.

• We propose a priority-based channel assignment scheme

using deep Q-learning (DQL) to maximize the perfor-

mance and fairness of multi-carrier NOMA. We pri-

oritize the devices present in the 5G network based

on the QoS requirement and categorize them based on

URLLC, eMBB, and mMTC services. The agent of the

DQL explores the 5G network environment and learns

the prioritization and channel assignment to achieve

an optimal policy. We use an autoencoder architecture

for the policy network, followed by a long short-term

memory (LSTM) network.

• We consider different constraints of the NOMA system,

including the total power budget of the base station

(BS), the minimum data rate requirement of each device,

the QoS policies of different services of the 5G network,

and the sum-rate maximization with channel fairness

constraints.

• We consider maximizing sum-rate (MSR), maximizing

channel sum-rate (MCSR), and maintaining the 5G QoS

policies as our main objectives.

• Finally, we analyze and compare the proposed

schemes in different scenarios with the conventional

OMA system.

The remainder of this paper is organized as follows.

Section II introduces the problem statement of the NOMA

system. The power allocation solution derivation and pro-

posed priority-based channel assignment scheme are dis-

cussed in Sections III, and IV, respectively. The simulation

results are then analyzed in Section V and some concluding

remarks are given in Section VI.

II. PROBLEM STATEMENT

In this section, we discuss the fundamentals of multi-carrier

NOMA.We also briefly describe the systemmodel and derive

different equations based on the constraints of NOMA system

and the objectives of our proposed solution.

A. MULTI-CARRIER NOMA

With NOMA, multiple devices can be served using the

same RRB utilizing the power domain for both uplink and

downlink transmissions. We consider a simple downlink

multi-carrier NOMA system where the BS serves different

types of devices at the same time over the wireless channels.

Fig. 1 shows, a scenario of 5G network consisting of three

different devices. The BS assigns one channel to every three

devices, where the signals of the three devices aremultiplexed

at different power levels. Therefore, the devices receive their

desire signals along with the signals of other two devices of

that channel as noise or interference. The unwanted signals

41470 VOLUME 9, 2021



S. Rezwan, W. Choi: Priority-Based Joint Resource Allocation With DQL for Heterogeneous NOMA Systems

will act as noise if the power level of the desired signal is

high; otherwise the unwanted signals will act as interference.

To decode the desired signal, each device uses SIC tech-

nology. SIC decodes the signal with the highest power and

subtracts that signal from the main signal until it decodes the

desire signal. The perfect SIC depends on the channel state

information (CSI) such as signal-to-noise and interference

ratio (SINR) [36], and the SINR depends on the channel

assignment and power allocation. In this case, the data rate

for each device for its channel can be calculated using (1).

Rki = log2

(

1+
Pki Ŵ

k
i

∑i−1
j=1 P

k
j Ŵ

k
i + 1

)

, k, i = 1, 2, 3, (1)

where Ŵ is the channel to noise ratio (CNR) for the assigned

channel k and P is the assigned power. The details of (1) are

given in Section II-B.

B. SYSTEM MODEL

We consider a micro-cell of a 5G network consisting of 5G

enabled devices with a base station (BS). We also con-

sider the downlink of single-input and single-output (SISO)

NOMA system as shown in Fig. 2, where the total number

of devices is N and the number of channels is K . There

are three types of devices that require three different ser-

vices of 5G network: eMBB devices UE1,UE2, . . . ,UEe;

URLLC devices UL1,UL2, . . . ,ULl ; and mMTC devices

MC1,MC2, . . . ,MCm. We also consider that the total avail-

able bandwidth (BWt ) is divided into all channels having

channel bandwidth (BWch) of 180 kHz. The maximum num-

ber of devices per channel is n, which ranges from 2 ≤ n ≤ N ,

and the total number of channels is K = ceil(N/n).

We consider perfect CSI to develop the proposed scheme.

However, for a practical wireless environment, we also con-

sider an imperfect CSI to evaluate the proposed scheme. Let

us assume that the k th channel is assigned to n devices, where

the power allocated to the nth device is Pn and the desired

signal of the nth device is xn. After combining the signals

of the n devices, the BS transmits them over the k th channel

which can be represented as follows:

X k =

n
∑

i=1

√

Pki xi, i = 1, 2, . . . , n (2)

At the device end, the transmitted signal reaches with path

loss component and additive white Gaussian noise (AWGN),

which can be represented as

yk =

n
∑

i=1

√

Pki h
k
i xi + w

k , i = 1, 2, . . . , n, (3)

where hki is the channel gain of the i
th device and wk denotes

the AWGN with thermal noise power variance, σk . After

receiving the signal, the receiver uses the SIC technique

to decode its signal. Perfect SIC depends on the SINR of

the device on the channel that it has been using for com-

munication. Let us consider the CNR of the nth device for

FIGURE 2. System architecture of multi-carrier SISO-NOMA system.

k th channel is

Ŵkn =
| hi |

2

σk
. (4)

We know from the earlier discussion that different power

levels are allocated to the devices of a channel. As per

NOMA, the highest power is allocated to the device with

the lowest CNR and vice versa. For example, for devices

having Ŵk1 > Ŵk2 > . . . > Ŵkn CNR are assigned with power

Pk1 < Pk2 < . . . < Pkn, respectively. Therefore, the SINR

and the data rate for each device of a specific channel can

represented as (5) and (1), respectively.

γ ki =
Pki Ŵ

k
i

∑i−1
j=1 P

k
j Ŵ

k
i + 1

, i = 1, 2, . . . , n. (5)

To perform perfect SIC, the BS allocate power to each device

above certain threshold level Pth as shown in (6). For exam-

ple, the device with low CNR must have higher power than

the sum of other high CNR devices’ power for perfect com-

pletion of the SIC technique.


Pki −





i−1
∑

j=1

Pkj







Ŵkd ≥ Pth,

i = 1, 2, . . . , (n− 1),

d = n, . . . , 2, 1,

k = 1, 2, . . . ,K . (6)

C. PROBLEM FORMULATION

We consider each device has a set of channels ŴN =

{Ŵ1
N , Ŵ

2
N , . . . , Ŵ

k
N } for channel assignment and range of

power from PN ∈ [0.01, 0.99] × PT where PT is the total

power budget per channel for power allocation. In this paper,

we focus on the sum-rate as the key performance indicator for

the optimization of channel assignment and power allocation

in the NOMA system which can be represented as

Rsum =

K
∑

1

n
∑

i=1

log2

(

1+
Pki Ŵ

k
i

∑i−1
j=1 P

k
j Ŵ

k
i + 1

)

,

i = 1, 2, . . . , n,

k = 1, 2, . . . ,K . (7)
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We also consider the minimum data rate requirement of all

devices which can be expressed as

log2

(

1+
Pki Ŵ

k
i

∑i−1
j=1 P

k
j Ŵ

k
i + 1

)

≥ Rki ,

i = 1, 2, . . . , n,

k = 1, 2, . . . ,K . (8)

The sum of the power per device in a channel must less or

equal than PT , and can be written as

n
∑

i=1

Pki ≤ PT, k = 1, 2, . . . ,K . (9)

In this paper, we derive an optimal power allocation

scheme and propose a priority-based channel assignment

with a deep Q-learning algorithm for maintaining the QoS

policies of the 5G services, MSR, and MCSR to ensure

fairness among the devices and the increase in system per-

formance. As DQL requires power allocation to evaluate the

channel assignment and train the DNN, we first derive a

power allocation solution for any given channels, and then we

build the DQL framework for priority-based channel assign-

ment to obtain an optimal solution for the NOMA system.

III. POWER ALLOCATION

In this section, we derive the optimal power allocation for

any given channel while considering different constraints

of NOMA to increase the maximum sum-rates and system

efficiency. The power allocation solution is derived based on

the power allocation solution in [27]. We consider sorting

the devices in descending order based on their distances

from BS. As our main target is to maximize the sum-rates,

we can represent (7) as a maximizing convex function for a

given channel k considering (6), (8), and (9), which can be

formulated as follows:

maximize
Pki

n
∑

i=1

log2

(

1+
Pki Ŵ

k
i

∑i−1
j=1 P

k
j Ŵ

k
i + 1

)

subject to log2

(

1+
Pki Ŵ

k
i

∑i−1
j=1 P

k
j Ŵ

k
i + 1

)

≥ Rki ,

n
∑

i=1

Pki ≤ PT,



Pki −





i−1
∑

j=1

Pkj







Ŵkd ≥ Pth,

∀i = 1, 2, . . . , n; d = n, . . . , 2, 1. (10)

The convex problem (10) can also be expressed in Lagrangian

form as

L (P, τ, ν, ψ)

=

n
∑

i=1

log2

(

1+
Pki Ŵ

k
i

∑i−1
j=1 P

k
j Ŵ

k
i + 1

)

= τ k

(

PT −

n
∑

i=1

Pki

)

+

n
∑

i=1

νki







Pki Ŵ
k
i −





i−1
∑

j=1

Pkj Ŵ
k
i − 1



×

(

φki − 1
)







+

n
∑

i=2

ψk
i

(

Pki Ŵ
k
d −

i
∑

l=1

Pkl Ŵ
k
d − PTh

)

, (11)

where τ , ν, and ψ are the Lagrange multipliers, ∀i =

1, 2, . . . , n, and φki = 2
Rk
i

KBWch . Taking the derivatives of (11)

with respect to Pi, τ, ν, and ψ , multiple KKT conditions

can be found. For n-device NOMA, there are 2n Lagrange

multipliers resulting in 22n combinations. For example,

for n = 2, 3, 4, . . . , 8, the number of combinations are

16, 64, 256, . . . , 65536, respectively. However, checking all

types of combinations is not computationally feasible. After

solving only n equations according to [37] for 2, 3, 4-device

NOMA, 2, 4, 8 combinations are found that satisfy the

KKT conditions, respectively. Therefore, the closed-form

solution of the power allocation for n-device NOMA for a

given channel k is near-optimal and can be written as

Px =
PT

2(n−1)
+

(x − 1)Pth

2(x−1)Ŵ(x−1)
−

(

n−1
∑

i=x

Pth

2iŴi

)

,

Pj =
PT

2(n−q−2)
+

Pth

2Ŵ(j−1)
−





n−1
∑

i=j

Pth

2Ŵi



 , (12)

where x = 1, 2, j = 3, 4, . . . , n, q = 0, 1, . . . , (n − 3),

and devices have Ŵk1 > Ŵk2 > . . . > Ŵkn CNR with power

Pk1 < Pk2 < . . . < Pkn, respectively.

IV. PRIORITY-BASED CHANNEL ASSIGNMENT

In this section, we propose a priority-based channel assign-

ment scheme using deep Q-learning. First, we formulate the

channel assignment problem based on the priority, MSR, and

MCSR, and then model the channel assignment problem as

a reinforcement task and introduce an autoencoder followed

by an LSTM network to create the DQL framework. Finally,

we use the near-optimal power allocation solution and train

the DNN for validation.

A. PRIORITY-BASED CHANNEL ASSIGNMENT

The 5G wireless network provides three different services

with different QoS requirements, such as URLLC service

has highest QoS requirements, eMBB service has average

QoS requirements, and mMTC service has least QoS require-

ments. We prioritize the devices in the network based on the

services they are using and their QoS requirements where the

URLLC devices have the highest priority, the eMBB devices

have the second-highest priority and the mMTC devices are

the least priority devices. The BS sorts the URLLC, eMBB,

and mMTC devices in descending order based on their

distances from BS. Subsequently, the BS assigns URLLC

41472 VOLUME 9, 2021



S. Rezwan, W. Choi: Priority-Based Joint Resource Allocation With DQL for Heterogeneous NOMA Systems

devices to the channels with highest gain first, then assigns

the eMBB devices and mMTC devices accordingly to the

channels available as shown in Fig. 3. This figure shows an

illustration of priority-based channel assignment for 3-device

NOMAwhere 4 URLLC, 5 eMBB, and 3 mMTC devices are

present. However, assigning channels is subject to the CNR

of each device with the BS.

FIGURE 3. Proposed priority-based sample channel assignment for
3-device NOMA system for 12 active devices.

Another main requirement of the optimization of the chan-

nel assignment is to maximize the channel and overall sum-

rates. The BS have
(

N
n

)

combinations for each channel k

to check for maximize the sum-rate. Therefore, the total

combination in general is
∑K

i=1

(

N−(n×i)
n

)

for MCSR.When it

comes to priority, the low priority devices cannot replace the

high priority devices in a channel. However, high or equal

priority devices can replace the equal or low priority devices

in any given channel. The maximization process incorpo-

rating with the priority scheme is computationally complex

since the BS has to check all the possible combinations of the

device. To reduce the computational complexity, we propose

a DQL framework to assign channels to the devices while

maintaining the priority and maximizing the sum-rates.

B. DEEP Q-LEARNING FRAMEWORK

In this subsection, we propose a DQL framework and train it

to optimize the priority-based channel assignment problem.

The deepQ-learning algorithm generally consists of an agent

with a deep neural network (DNN) and an environment.

The agent interacts with the environment and decides which

action to take. The BS acts as an agent and interacts with

the environment consisting of URLLC, eMBB, and mMTC

devices’ information. Initially, the agent starts exploring the

environment to collect the channel information of every

device. At each time step t , based on the present state st of

the agent in the environment, the agent predicts an action

at using the DNN to assign a channel. In return, the agent

receives an immediate reward rt and the next state st+1 from

the environment as shown in Fig. 4. The agent receives a

good reward rt if it performs a good channel assignment.

By predicting actions, the agent learns about the environ-

ment and achieves an optimal channel assignment policy πc.

FIGURE 4. Simple Q-learning.

This optimal policy is learned at each time step t by the DNN.

The agent updates and improves the policy πc by repeat-

ing the channel assignment process for multiple episodes.

One episode terminates when there are no channels left for

assignment.

We define the state, action, and reward for use in the

proposed DNN as follows:

• State: We consider the channel information for each

device as the states of the environment. There are

N devices having K channel preferences. Therefore,

the state space has N × K elements and can be repre-

sented as S = {Ŵ1
1, Ŵ

2
1, Ŵ

3
1, . . . , Ŵ

K
1 , Ŵ

K
2 , Ŵ

K
3 , . . . , Ŵ

K
N }.

• Action: The main action of the agent is to assign chan-

nels to the devices which belong to the action space A.

At each episode for a set of S, the agent has to takeN ∈ A

actions while maintaining one action per K elements

from S. For 2, 3, . . . , n-device NOMA, the agent can

take one action 2, 3, . . . , n-times, respectively.

• Reward: Whenever the agent completes taking N

actions, the agent gets a reward r lt for each action. For

each correct action, the agent gets a positive reward ri
and when the agent takes correct n actions, the agent gets

the sum-rate of that channel as a reward for the taken

actions. For example, let us assume a 3-device NOMA.

The agent has to assign 3 devices per channel. In this

case, when the agent successfully selects an appropriate

channel based on priority for a device, the agent gets

a positive reward ri (i.e., 10). If the agent can select

the same appropriate channel for 3 devices, the agent

gets the sum-rate calculated by (1) as a reward for its

3 actions. The reward function can be defined as

r lt =



















∑n
i=1 R

k
i if akp = n

0 < ri

<
∑n

i=1 R
k
i for each a

l
t if akp < n

0 if akp = 0

, (13)

where akp is the number of appropriate action alt taken per

channel k and ∀l = 1, 2, . . . ,N ∈ A. Here, we consider

maximizing the sum-rate for each channel which results

in increased performance and fairness of the whole

system.
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FIGURE 5. Proposed DNN structure.

With the state, action, and reward, we propose the deep

neural network (DNN) structure shown in Fig. 5 as the policy

controller for channel assignment. The DNN replaces the

Q-table and estimates the Q-values for each state-action pair

of the environment. Eventually, the DNN approximates the

optimal policy for channel assignment. The proposed DNN

has two parts, an autoencoder model and an LSTM model.

The main goal of the DNN is to derive probabilities for

each device-channel pair for each state space, which can be

expressed as Q(S,A). These probabilities are the Q-values

for DQL.

1) AUTOENCODER

An autoencoder is a feed-forward neural network where the

number of inputs is same as the number of output neurons.

It compresses the input into a lower-dimensional code and

then reconstructs the input data from the code at the output.

The autoencoder can easily handle raw input data without

any fancy processing or labeling. Therefore, the autoen-

coder is considered as a part of the unsupervised learning

technique [38] and can generate their labels from the training

data. The autoencoder has threemain parts named an encoder,

code, and decoder as shown in Fig. 6. Both the encoder and

decoder are fully connected neural networks. The encoder

starts with an input layer having 2n neurons followed by

multiple hidden layers having 2n−h neurons, where h is the

position of the layer. The number of neurons per hidden layer

continues to decrease till the code part of the autoencoder.

In this paper, we use 23 neurons for the code layer. The

decoder part is the mirror image of the encoder ending with

an output layer. This type of structure is known as stacked

autoencoder as the layers are stacked one after another, like a

sandwich. Moreover, we use ReLU as an activation function

for each layer in the autoencoder.

2) LONG SHORT-TERM MEMORY

Long short-term memory (LSTM) is an evolved form of

recurrent neural network (RNN). LSTMs are a special type

FIGURE 6. Autoencoder architecture.

of RNN that can learn long-term dependencies and remember

previous information for future usage. The LSTM network

has a chain structure composed of multiple LSTM cells.

We use three LSTM cells to build our LSTM network. The

structure of a single LSTM cell is shown in Fig. 7 [39].

An LSTM cell has three input and two output parameters. The

cell and hidden states are the common parameters between

inputs and outputs. The other parameter is the current input.

The LSTM cell also contains three sigmoid layers and two

tanh layers involving some linear transformations as shown

in Fig. 7. Initially, random cell and hidden states are given

along with the input for the first LSTM cell. Then the two

outputs (hidden state, cell state) become the three inputs of

the next cell as shown in Fig. 7.

In this paper, we use an autoencoder having input and

output size of 128 and code size 8 followed by an LSTM

network having 128 input size, 64 hidden state size, and

3 recurrent layers. Finally, the output of the LSTM is passed

through a linear layer and a sigmoid layer to obtain the prob-

abilities of the preferred channels for each device. The state

space S is given as the input of our policy network. Initially,

the input is first embedded with dimension 128. It then passes

through the policy network to generate the channel assigning

probabilities, as shown in Fig. 5.
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FIGURE 7. An LSTM cell.

C. TRAINING

The proposed DNN is trained gradually with a set of train-

ing data Tdata = {S
1, S2, . . . , S ins} per episode. For each

state space S, the device-channel pairs are selected using

ǫ-greedy policy according to the output probabilities from

the DNN. An episode terminates when all state spaces are

passed through the DNN. The policy to take action for each

device per state space can be expressed as

ali =

{

argmax Q(S i,Ali) if ǫ< ǫth; where ǫth∈ (0, 1]

random action [1,K ] otherwise
,

∀l = 1, 2, . . . ,N ∈ A,

∀i = 1, 2, . . . , ins. (14)

After taking the actions using (14), the agent gets the rewards

according to (13) and the next state space S i+1.

To train the DNN, we calculate the loss and optimize the

parameters of the DNN performing back-propagation. To

calculate the loss, we approximate the optimal Q∗-values for

each device-channel pair of S i+1 from a different DNN called

the target DNN [40]. The target DNN is identical to the policy

DNN and initialized by the parameters of the policy DNN.

The next state space S i+1 is given as an input to the target

DNN and from the outputs the optimal Q∗-values are chosen

greedily by the agent. Because assigning the channel is a

classification problem, we use the categorical cross-entropy

loss function to calculate the loss between the optimal

Q∗-values and normal Q-values [41]. After calculating

the loss, we optimize the policy DNN using the Adam

optimizer [42]. To estimate the optimal Q∗-values correctly,

we periodically update the target DNN with the parameters

of the policy DNN after certain episodes.

For a more stable convergence of the optimal policy,

we introduce the experience replay memory (ERM) to

the DQL [43]. Initially, the agent explores the environ-

ment and saves current states, actions, rewards, and next

states (S i,Ai, ri, S
i+1) as a tuple in the ERM. Subsequently,

the agent takes a mini-batch of tuples from the ERM and

trains the policy DNN. The ERM continues to be updated

for each training data. Fig. 8 and Algorithm 1 summarize the

proposed DQL framework and the working flow.

Algorithm 1 Proposed Deep Q-Learning Algorithm

1: Initialize policy and target DQL network with random

parameters (p and p′).

2: Initialize experience replay memory (ERM).

3: Initialize ǫ.

4: for each episode do

5: for each instance do

6: for each device do

7: Select an channel and add to action space Ai
for present state space S i based on ǫ.

8: end for

9: Observe the immediate rewards ri and next state

space S i+1.

10: Insert (S i,Ai, rt , S
i+1) in ERM.

11: Create a mini-batch with random sample of

(S i,Ai, rt , S
i+1) from ERM.

12: for each tuple in mini-batch do

13: Obtain Q-values using policy DNN.

14: Approximate Q∗-values using target DNN.

15: Calculate the loss using Q an Q∗-values.

16: Optimize the parameters p of the policy DNN

using Adam optimizer.

17: end for

18: end for

19: p′← p after certain number of episodes.

20: end for

V. SIMULATION ANALYSIS

In this section, we perform multiple simulations to ana-

lyze the performance of the proposed DQL algorithm for

priority-based channel assignment and compare the proposed

priority-based joint resource allocation (priority-JRA) with

the joint resource allocation (JRA) method and dynamic

power allocation with fixed channels (DPA-FC) method pro-

posed in [1] and [27], respectively. Moreover, we compare

the priority-JRA NOMA system with the conventional OMA

system. Finally, we also analyze the system complexity and

system convergence varying different parameters.

A. SIMULATION ENVIRONMENT

For the simulation environment, we consider a 5G micro-cell

where 24 devices are randomly and uniformly distributed.

We only consider three types of devices, URLLC, eMBB,

and mMTC devices. We model the channel gain hki of the k
th

channel for each device based on the Rayleigh fading model,

where the path loss exponent, η = 3. Then we calculate

the CNR of each channel for each device using (4) where

σk =
BWt×N0

k
for ∀k = 1, 2, . . . ,K with BWt = 5MHz and

N0 = −172 dBm/Hz.

To analyze the performance, simulation parameters similar

to [1], [27] are used as given in Table 1. The parameters

of proposed DNN such as weights and biases are initialized
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FIGURE 8. Proposed DQL framework.

TABLE 1. Simulation parameters.

randomly and uniformly. The input size of the DNN is N ×K

and the embedded size is 128. We generate 5000 instances

for training and 1000 instances for validation data-set ran-

domly for each episode. Each instance consists of N × K

user-channel information.

B. PERFORMANCE ANALYSIS

In this subsection, we compare the proposed priority-JRA

with JRA and DPA-FC in terms of system sum-rate, sum-rate

per channel, and energy-efficiency varying power, number of

users, and location.

Fig. 9 shows the sum-rate versus the BS power comparison

among priority-JRA, JRA, DPA-FC 3-device NOMA system.

It is also evident from the figure that the proposed scheme

outperforms the other two methods. In the JRA method,

the power allocation solution is derived first, and the channels

are then assigned using amatching algorithm [1]. By contrast,

in the DPA-FCmethod, power allocation is done dynamically

based on the channel response between the device and the BS

while assigning fixed channels to the devices [27]. Hence,

FIGURE 9. Sum-rate of 3-device NOMA system.

we can conclude that the priority-based channel assignment

technique is more efficient than the JRA, and DPA-FC meth-

ods. From Fig. 9, we can also observe that the sum-rate is

shown in bps/Hz which also reinforces the spectral efficiency

of the system. Moreover, due to the converging nature of (7),

the graph saturates when the BS power is extremely large.

Sum-rate for each channel comparison among priority-

JRA, JRA, and DPA-FC for 3-device NOMA is shown

in Fig. 10. It is evident from the figure that the proposed

priority-JRA achieves the highest sum-rate in most of the

channels while maintaining the proposed priority scheme.

In few channels, the sum-rate is low because of the trade-off

between the priority scheme and the maximum sum-rate.
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FIGURE 10. Sum-rate per channel of 3-device NOMA system where the
channel number, K = 8.

Our main target is to fulfill the QoS requirements of the

5G services while achieving the maximum possible sum-rate.

Fig. 11 shows the sum-rate achieved by the three schemes

for the 2, 3, 4-device NOMA system. For every NOMA sys-

tem, the proposed priority-JRA achieves the highest sum-rate

compared to the other methods. Moreover, we can also

observe that the sum-rate decreases when the number of

devices per channel increases. This is due to the increase in

system complexity and the division of the same amount of

power into more devices.

FIGURE 11. Sum-rate of 2, 3, 4-device NOMA systems.

In Fig. 12, we compare the conventional OMA systemwith

priority-JRA along with JRA and DPA-FC NOMA systems

in terms of the sum-rate with respect to power and number

of users, respectively for the 3-device NOMA system. The

sum-rate shown in the figure also represents the spectral

efficiency of the system. It is clear that all NOMA systems

outperform the traditional OMA system in terms of both

the sum-rate and spectral efficiency. Moreover, we can also

FIGURE 12. Sum-rate of 3-device NOMA system and OMA system with
respect to (a) power and (b) number of users.

conclude from the Fig. 12 that the proposed priority-JRA

outperforms all the other methods for any given power and

number of users.

In Fig. 13, we compare the energy-efficiency of the OMA

system with different methods of the NOMA system with

respect to number of users and power, respectively. Energy-

efficiency of a system represents the number of sent bits per

joule of energy. The graph shows that the energy-efficiency

decreases as the power increases because the energy effi-

ciency is inversely proportional to power. We can con-

clude from the figure that the NOMA system is more

energy-efficient than the conventional OMA system in any

scenario.Moreover, from Fig. 13, we can also observe that the

proposed priority-JRA is the most energy-efficient method

for channel assignment among all for any given power and

number of users. We calculated the energy efficiency graph

using the BS power and circuit power for each method [1].

Moreover, Fig. 14 shows the sum-rate comparison among

priority-JRA, JRA, DPA-FC 3-device NOMA system for
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FIGURE 13. Energy-efficiency of (a) 3-device NOMA system and OMA
system with respect to number of users and (b) 2, 3,and 4-device NOMA
systems and OMA system with respect to power.

different user-data instances considering perfect and imper-

fect CSI. As mentioned earlier, we generate 5000 and 1000

instances consisting of N × K user-channel information per

instance for training and testing the proposed priority-JRA

scheme, respectively. In every instance, the positions of the

users are randomly and uniformly generated within the trans-

mission range of the BS. From Fig. 14a, it is evident that the

proposed priority-JRA achieves the highest sum-rate for any

given positions of the users. By contrast, we consider ±30%

CSI error to evaluate the performance of the aforementioned

systems in Fig. 14b. It is noticeable from Fig. 14b that the

performance of the proposed priority-JRA remains almost

unchanged compared to the JRA, DPA-FC schemes.

C. COMPLEXITY AND PARAMETER ANALYSIS

The proposed priority-JRA scheme contains a DNN network.

To visualize the efficiency of the proposed DNN network,

we derive and analyze the time complexity. The proposed

DNN can be divided into three main elements for complexity

FIGURE 14. Sum-rate of 3-device NOMA systems for multiple validating
instances considering (a) perfect and (b) imperfect CSI.

FIGURE 15. Channel assignment policy convergence for different DNN
structures.

analysis, which are an auto-encoder, an LSTM, and two linear

layers as shown in Fig. 5.
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FIGURE 16. Channel assignment policy convergence for different
(a) learning rate, (b) batch sizes, and (c) number of user.

The proposed DNN has an input of (NK ) and two linear

layers of size de = 128. The time complexity can be writ-

ten as O(2Id2e (NK )), where I refers to the kernel size. The

auto-encoder has one code layer and two identical encoder

and decoder layers. According to [44], the time complexity

of the auto-encoder can be written as

O(2Id2e (1+
1

2
+

1

4
+

1

32
)(NK ))

= O(
55

16
Id2e (NK ))

≃ O(3Id2e (NK )) (15)

For the LSTM the time complexity can be calculated asO(I ).

Therefore, the overall time complexity of the proposed DNN

can be written as

O(3Id2e (NK ))+ O(2Id2e (NK ))+ O(I )

= O(5Id2e (NK ))+ O(I ) (16)

By contrast, for the JRA scheme, the time complexity

can be calculated as O(( I
2−I
2

)
(

N
n

)2
), which includes all

(

N
n

)

combinations for each channel k . Therefore, the complexity

of the priority-JRA ismuch lower. However, DPA-FC scheme

has the lowest complexity and it does not outperform the

priority-JRA scheme.

To justify our proposed DNN structure, we compare it with

multiple DNN structures such as standard fully-connected

DNN, only LSTM, and only autoencoder in Fig. 15 for

72-devices and at a learning rate 0.01 and batch size of 24.

It is evident from Fig. 15 that the proposed DNN structure

achieves maximum cumulative reward and converges faster

among all. Furthermore, Fig. 16a shows the effect of dif-

ferent learning rates on the proposed DNN for 24-devices

and a batch size of 24. As shown in Fig. 16a, the proposed

DNN cannot learn the optimal channel assignment policy for

learning rates of 0.5, 0.1, and 0.001. However, for learning

rates 0.01 and 0.001, the proposed DNN reached the optimal

solution quickly in the same episode. Therefore, we can use

any one of them. Fig. 16b shows the effect of different batch

sizes on the proposed DNN for 24-devices and a learning

rate of 0.01. As shown in Fig. 16b, the batch size should be

greater than or equal to 24 to achieve optimality. However,

a larger batch size refers to more room for exploration and

slow convergence. Lastly, Fig. 16c represents the conver-

gence of the proposed DNN for different number of users

at a learning rate of 0.01 and batch size 24. The converging

graphs of Fig. 16c signify the high scalability and stability of

the proposed DNN for increasing number of users under the

BS. Finally, we can ensure from the analysis that the proposed

scheme can achieve a near-optimal performance with low

complexity and high efficiency.

VI. CONCLUSION

In this paper, we propose a priority-based resource allo-

cation scheme with deep Q-learning to fulfill the QoS

requirements of the 5G services, such as URLLC, eMBB,

and mMTC services, while maximizing the system per-

formance and fairness of the multi-carrier NOMA system.

We consider SISO-NOMA system architecture to derived

the power allocation and the channel assignment prob-

lems into optimization problems. To resolve these problems,
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we first formulated a near-optimal power allocation solution

using Lagrange multipliers under KKT optimality condi-

tions while incorporating different constraints of the NOMA

system. Then with the derived power allocation solution,

we formulated priority-based channel assignment with deep

Q-learning utilizing an autoencoder and LSTM in the DNN

model. After that we compared the proposed scheme with

JRA and DPA-FC schemes and proved that the proposed

priority-JRA performs better than other schemes under dif-

ferent conditions. We plan to extend our proposed solu-

tions consideringMIMO-NOMAwith beamforming in future

works, where the BS with multiple antennas will assign each

channel to multiple devices using beamforming utilizing a

machine learning algorithm. Finally, we can conclude that

our proposed priority-JRA method is less complex than other

optimal exhaustive search based solutions while achieving

near-optimal solution.
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