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Abstract. This paper proposes a refinement of the PS-Merge merging
operator, which is an alternative merging approach that employs the no-
tion of partial satisfiability rather than the usual distance measures. Our
approach will add to PS-Merge a mechanism to deal with a kind of pri-
ority based on the quantity of information of the agents. We will refer to
the new operator as Pr-Merge. We will also analyze its logical properties
as well its complexity by conceiving an algorithm with a distinct strategy
from that presented for PS-Merge.

1 Introduction

Information fusion or merging consists in techniques of how to merge or combine
information provided by multiple sources, taking into account possible inconsis-
tencies and letting the result as reliable as possible. Different kinds of information
may be merged: knowledge, belief, preference, rule, etc; each one with its own
specificity and intuition [8].

Most of the works introduced in the literature focus especially on belief and
preference merging [1,3,8,13]. Belief (preference) merging is concerned with the
process of combining the information contained in a set of belief (preference)
bases obtained from different sources to produce a single consistent belief (pref-
erence) base. It is an important issue in Artificial Intelligence and Databases,
and its applications are many and diverse [2].

There is a slight difference between the approaches of belief and preference
merging. Beliefs are information held by human or artificial agents about the
world. Preferences represent human or artificial agents’ goals, desires and plans
about the world. They both can be false, uncertain, exhibit an elementary nature,
susceptible to changes or involve a complex logical structure. Syntactically, they
can be represented in the same way, but semantically, it is needed to consider
their own characteristics, inherited by the nature of its information.

Under this assumption, several merging operators have been defined and
characterized in a logical way. Among them, model-based merging operators [13]
obtain a belief/preference base from a set of interpretations with the help of a
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distance measure on interpretations and an aggregation function. Other merging
operators, syntax-based (or formula-based) ones [13], are based on the selection
of some consistent subsets of the set-theoretic union of the belief/preference
bases.

The major problem with distance-based merging operators is that evaluating
the closeness between interpretations as a number may lead to lose too much
information [7]. For example, the widely used Hamming distance [4] (also known
as Dalal distance) assumes not only that propositional symbols are equally rel-
evant to determining a distance between interpretations, but also that they are
independent from each other and that nothing else is relevant to the determina-
tion of the distance between interpretations. These assumptions are restrictive
and give the Hamming distance very little flexibility [14].

To overcome this issue, some characterizations of model-based merging oper-
ators were achieved by modifying the distance measure [6,7,10,14]. In addition,
merging operators without distance measures were also conceived. An alternative
method of merging was proposed in [16,17,18], which uses the notion of Partial
Satisfiability instead of a distance measure, to define PS-Merge, a model-based
merging operator which depends on the syntax of the belief bases [15].

In this paper, we will consider mainly the problem of preference merging
without distance measures, by refining the definition of PS-Merge (which is
characterized originally considering belief merging) through the weighting of the
information in the preference bases. We will name our approach of Pr-Merge. In-
tuitively, we are concerned in representing priority information among the agents,
that will be provided according of how the preference bases are organized.

The paper is organized as follows: in Section 2, we will introduce the Pr-
Merge. In Section 3, we will discuss about its logical properties. In Section 4, we
will exhibit its computational complexity results. Finally, in Section 5 we will
conclude the paper.

2 Priority-based Merging Operator

In this section we introduce the priority-based merging operator Pr-Merge. Ba-
sically, the idea of priority consists in ranking the importance of each outcome,
based on the preferences of each agent. In our work, we will measure the impor-
tance of an outcome by considering the number of propositions’ appearance in
the agents’ goal bases.

Example 1. The application of this merging is relevant in the following scenario:
suppose that three friends are going to share a meal in a restaurant, which
is constituted of a main dish and a drink. One person is very restrictive with
relation to his/her preferences, e.g., he/she prefers vegetarian food, while the
others two have more choices to make than the first one, since they are non-
vegetarian and there is a greater diversity of choices to make for both, and these
possible options are considered equally satisfactory for them. Since the choices
are more restricted and objective for the first person, it is natural that we need



to give more priority to his/her desires, but without forgetting completely the
desires of the other two people.

The merging operator introduced in this section will consider this aspect: it
will give more importance and priority to the agents which express their pref-
erences in a simplified, objective or restricted way. On the other hand, it is
extremely plausible to think in a context where we should give more priority
to the agents that express more preferences (this kind of view can be achieved
later by changing a definition in the merging operator). The details about this
approach will be explained during this section.

In the following lines, we will present some preliminary notions and the def-
inition of the Pr-Merge. As said previously, we considered the definitions and
intuitions of PS-Merge to define our approach. More details about PS-Merge can
be found in [16,17,18].

First, we will consider a propositional language L defined from a finite set
of propositional variables P and the usual connectives ¬,∧ and ∨. A literal is a
propositional variable from P or its negation.

Definition 1. A profile E = {K1, . . . ,Kn} represents sets of goal bases Ki, for
1 ≤ i ≤ n. For a goal base Ki = {c1, . . . , cm}, each cj, where 1 ≤ j ≤ m, denotes
the set of preferences of the agent i.

A goal base Ki is a finite and consistent set of propositional formulas. In
this work, we restrict each goal base Ki to a DNF (Disjunctive Normal Form)
formula, i.e., it can be viewed as Ki = (c1 ∨ · · · ∨ cm) and cl = (x1 ∧ · · · ∧ xk),
where x1, . . . , xk are literals. We chose the DNF format in order to represent the
agents’ preferences/choices of a simplified way.

Example 2 (Borrowed from [19]). Let us consider the academic example of a
teacher who asks his three students which among the following languages SQL
(denoted by s), O2 (denoted by o) and Datalog (denoted by d) they would
like to learn. The first student wants to only learn SQL or O2, that is, K1 =
(s ∨ o) ∧ ¬d. The second wants to learn either Datalog or O2 but not both, i.e.,
K2 = (¬s ∧ d ∧ ¬o) ∨ (¬s ∧ ¬d ∧ o). For the last, the third one wants to learn
the three languages: K3 = (s ∧ d ∧ o).

First of all, we need to convert these preferences to the DNF format. We
shall have K1 = (s ∧ ¬d) ∨ (o ∧ ¬d), and consequently, K1 = {c1, c2}, where
c1 = (s ∧ ¬d) and c2 = (o ∧ ¬d). For the goal bases K2 and K3, we shall have
K2 = {c3, c4} and K3 = {c5}, where c3 = (¬s ∧ d ∧ ¬o), c4 = (¬s ∧ ¬d ∧ o)
and c5 = (s ∧ d ∧ o). We can view in this example that the third agent has only
one preferable choice (s ∧ d ∧ o), while the first and second ones have both two
preferable choices (for K1, it is (s∧¬d) or (o∧¬d), and for K2, it is (¬s∧d∧¬o)
or (¬s ∧ ¬d ∧ o)). We can say that K3 is more certain/restricted about his/her
choices.

Definition 2. An outcome or interpretation is a function ω : P → {0, 1}. The
values 0 and 1 are identified with the classical truth values false and true, re-
spectively.



For instance, when ω(s) = 1, we say that the interpretation of the proposi-
tional variable s is true, whereas when ω(s) = 0, we say that its interpretation
is false. We have that ω(s) = 1 ⇔ ω(¬s) = 0.

Example 3. With respect to the previous example, we have three propositional
variables: s, d and o. The set of all possible outcomes/interpretations is Ω =
{ω1, . . . , ω8}, where: ω1 = ¬s¬d¬o, ω2 = ¬s¬do , ω3 = ¬sd¬o, ω4 = ¬sdo,
ω5 = s¬d¬o, ω6 = s¬do, ω7 = sd¬o and ω8 = sdo.

Slightly abusing the notation, the interpretation ω1 = ¬s¬d¬omay be viewed
as ω1(¬s) = 1, ω1(¬d) = 1 and ω1(¬o) = 1.

Before proceeding with the rest of the definitions, let us make a little detour
in the subject. As said previously, several merging operators have been defined
and characterized in a logical way. Among them, model-based merging opera-
tors [13] obtain a belief/preference base from a set of interpretations with the
help of a distance measure on interpretations and an aggregation function. For-
mally, a distance measure between an interpretation and a goal base is defined as
d(ω,K) = min

ω′|=K
d(ω, ω′), where d(ω, ω′) is the distance between interpretations.

In the first works on model-based merging, the distance used was the Hamming
distance between interpretations [4], but any other distance may be used as well.

To be considered a distance measure, a function needs to satisfy the following
conditions:

Definition 3 (Distance). A distance measure between interpretations is a total
function d from Ω ×Ω to N such that for every ω1, ω2 ∈ Ω,

– d(ω1, ω2) = d(ω2, ω1), and
– d(ω1, ω2) = 0 if and only if ω1 = ω2.

The Hamming distance between interpretations characterizes the number of
propositional variables that they differ. For example, the Hamming distance
(denoted dH) between ω1 = ¬s¬d¬o and ω6 = s¬do is dH(ω1, ω6) = 2 (i.e., they
differ in two propositional variables).

Basically, the distance gives the closeness between an interpretation and each
formula of a goal base. However, this measure between interpretations may lead
to lose information and not to discriminate them [6,7]. In order to try to avoid
this problem, merging operators without distance measures were conceived. An
alternative method of merging was proposed in [16,17,18], which uses the notion
of Partial Satisfiability instead of a distance measure. In this work, we will exploit
the notion of Partial Satisfiability for the purpose of describing the priority
preferences.

We can now begin with the notion of preference priority. In order to do this,
we will work in two levels: the partial satisfiability of a specific agent (to each
Ki ∈ E) and the preference priorities of a group of agents E (based on the
partial satisfiability of each agent). These definitions are inspired in the work of
the PS-Merge operator [16,17,18].



Definition 4 (Partial Satisfiability). Let K = {c1, . . . , cm} be a goal base.
The partial satisfiability of the interpretation ω w.r.t. K is given by:

ω(K) = max{ω(c1), . . . , ω(cm)},

where for each ci = (x1 ∧ · · · ∧ xk), 1 ≤ i ≤ k:

ω(ci) =

k∑

l=1

{
ω(xl)

k

}

.

The partial satisfiability of an interpretation in a clause indicates the rate of
the occurrences of its literals in the DNF formula. The higher an interpretation
appears in a clause the higher will be its partial satisfiability. We assume that
each literal in a clause must have the same weight in the evaluation, i.e., no
propositional variable has priority over another one. For example, in the clause
(s ∧ d ∧ o) of K3, the propositions s, d and o have the same weight of 1

3
, since

the sum of the weights of propositional variables needs to be equal to 1; and in
the clause (s∧¬d) of K1, the propositions s and ¬d have the same weight of 1

2
.

Example 4. From the Example 2, we have K1 = {(s ∧ ¬d), (o ∧ ¬d)}, K2 =
{(¬s ∧ d ∧ ¬o), (¬s ∧ ¬d ∧ o)} and K3 = {(s ∧ d ∧ o)}. The partial satisfiability
of each interpretation w.r.t. K1,K2 and K3 is computed as:

Ω ω(K1) ω(K2) ω(K3)
ω1 = ¬s¬d¬o 1/2 2/3 0
ω2 = ¬s¬do 1 1 1/3
ω3 = ¬sd¬o 0 1 1/3
ω4 = ¬sdo 1/2 2/3 2/3
ω5 = s¬d¬o 1 1/3 1/3
ω6 = s¬do 1 2/3 2/3
ω7 = sd¬o 1/2 2/3 2/3
ω8 = sdo 1/2 1/3 1

To define the preference priority in our framework, we will assume that each
clause of a goal base shares the same weight in the preference evaluation. For
example, the formula (s ∧ d ∧ o) of the goal base K3 will have a priority weight
1 (because there is only one clause in the goal base), while the clauses (s ∧ ¬d)
and (o∧¬d) of the goal base K1 will have both the priority weight 1

2
(the sum of

weights needs to be equal to 1). Formally, we will define this idea in two different
ways.

Definition 5 (Preference Priority (sum)). Let E = {K1, . . . ,Kn} be a pro-
file and ω an interpretation. The priority of ω w.r.t. E is given by:

ω+(E) =

n∑

i=1

1

ai
× ω(Ki),

where ai is the number of clauses in the goal base Ki.



This step reflects the preference priority of the group of agents, which will
be a prioritized sum of the partial satisfiability of each individual goal base of
the group. Intuitively, The higher is the number of choices made by an agent,
the lower will be his/her preference priority among the group of agents. Another
characterization of the preference priority can be defined as:

Definition 6 (Preference Priority (product)). Let E = {K1, . . . ,Kn} be a
profile and ω an interpretation. The priority of ω w.r.t. E is given by:

ω×(E) =

n∏

i=1

(ω(Ki))
1

ai ,

where ai is the number of clauses in the goal base Ki.

Example 5. Finally, considering the sum operation, the preference priority of the
profile E = {K1,K2,K3} is:

Ω ω+(E)
ω1 = ¬s¬d¬o 1/4 + 1/3 + 0 = 7/12 ≃ 0.583
ω2 = ¬s¬do 1/2 + 1/2 + 1/3 = 4/3 ≃ 1.333
ω3 = ¬sd¬o 0 + 1/2 + 1/3 = 5/6 ≃ 0.833
ω4 = ¬sdo 1/4 + 1/3 + 2/3 = 5/4 = 1.25
ω5 = s¬d¬o 1/2 + 1/6 + 1/3 = 6/6 = 1
ω6 = s¬do 1/2 + 1/3 + 2/3 = 3/2 = 1.5
ω7 = sd¬o 1/4 + 1/3 + 2/3 = 5/4 = 1.25
ω8 = sdo 1/4 + 1/6 + 1 = 17/12 ≃ 1.416

By considering the product, the preference priority of the profile E is:

Ω ω×(E)
ω1 = ¬s¬d¬o 0.707× 0.816× 0 = 0
ω2 = ¬s¬do 1× 1× 0.333 ≃ 0.333
ω3 = ¬sd¬o 0× 1× 0.333 = 0
ω4 = ¬sdo 0, 707× 0.816× 0.666 ≃ 0.384
ω5 = s¬d¬o 1× 0.577× 0.333 ≃ 0.192
ω6 = s¬do 1× 0.816× 0.666 ≃ 0.544
ω7 = sd¬o 0, 707× 0.816× 0.666 ≃ 0.384
ω8 = sdo 0, 707× 0.577× 1 ≃ 0.407

For the sake of information, if we consider in giving more priority to the
agents that are expressing more choices, we must make a little change in the

definitions above. In this case, we shall have ω+(E) =
n∑

i=1

ai × ω(Ki) and

ω×(E) =

n∏

i=1

(ω(Ki))
ai , We will follow the examples using the former definitions,

but we want to highlight that, although these two approaches express differ-
ent ideas, they share similar properties (the logical properties of the merging
operator will be explored in the next section).



After compute the preference priorities, we can rank the interpretations and
decide which one is the best option for the group.

Definition 7. The binary relations ≤pr,+
E and ≤pr,×

E are defined as

ω ≤pr,+
E ω′ if and only if ω+(E) ≤ ω′

+(E) and

ω ≤pr,×
E ω′ if and only if ω×(E) ≤ ω′

×(E)

Here, an outcome ω′ is preferred to ω if the preference priority of ω′ is greater
or equal to the priority of ω.

Example 6. After computing the preference priority of the group of agents we
can rank the interpretations as:

ω1 ≤pr,+
E ω3 ≤pr,+

E ω5 ≤pr,+
E {ω4, ω7} ≤pr,+

E ω2 ≤pr,+
E ω8 ≤pr,+

E ω6 and

{ω1, ω3} ≤pr,×
E ω5 ≤pr,×

E ω2 ≤pr,×
E {ω4, ω7} ≤pr,×

E ω8 ≤pr,×
E ω6.

The best outcome in this example is the interpretation ω6. Comparing our
approach (with the sum operation) to the one presented by the PS-Merge (which
is defined with the help of the sum), we will have:

Pr-Merge PS-Merge
Ω ω+(E) ω(E)
ω1 = ¬s¬d¬o 0.583 1.16
ω2 = ¬s¬do 1.333 2.33
ω3 = ¬sd¬o 0.833 1.5
ω4 = ¬sdo 1.25 1.83
ω5 = s¬d¬o 1 1.67
ω6 = s¬do 1.5 2.33
ω7 = sd¬o 1.25 1.83
ω8 = sdo 1.416 1.83

Note that, in general, the preferences between the outcomes are very similar.
The difference appears in the results of the outcomes ω2 and ω8. The goal base
K3 = (s ∧ d ∧ o) have a preference priority greater than the other bases, which
will influence in the result of ω8 (an interpretation that satisfies K3), increasing
its final result, whereas it will decrease the result of the outcome ω2, because it is
not a good outcome toK3 (ω2 satisfies only one propositional variable ofK3). We
can define this process as a merging operator in the following model-theoretical
way:

Definition 8 (Pr-Merge). Let E = {K1, . . . ,Kn} be a profile and µ an in-
tegrity constraint, the merging operator ∆pr,op

µ (E) is defined as:

Mod(∆pr,op
µ (E)) = max(Mod(µ),≤pr,op

E ),

where op ∈ {+,×} and max(Mod(µ),≤pr,op
E ) is the set of interpretations that

satisfy µ and are the maximal with respect to the relation ≤pr,op
E .



An integrity constraint µ is a formula that the result of the merging process
has to obey, i.e., they cannot be inconsistent. When we do not consider an
integrity constraint in the process, we assume that µ = ⊤.

Example 7. The merging operator ∆pr,op
µ (E) for the previous example, when

µ = ⊤ and op ∈ {+,×}, shall result in:

Mod(∆pr,op
µ (E)) = ω6 = (s ∧ ¬d ∧ o).

If we restrict the result of merging, considering that only one programming
language will be taught, i.e., µ1 = (s ∧ ¬d ∧ ¬o) ∨ (¬s ∧ d ∧ ¬o) ∨ (¬s ∧ ¬d ∧ o),
the result is:

Mod(∆pr,op
µ1

(E)) = ω2 = (¬s ∧ ¬d ∧ o).

To conclude this section, we want to emphasize our choice with respect to
the partial satisfiability approach. The approach introduced in this paper is not
restricted only to PS-Merge, i.e., it can be used with distance-based merging
operators too. Indeed, the distance-based merging with priorities may be viewed
as a particular case of the weighted sum aggregation function [9].

Formally, it can be defined in the following way: as said previously, the dis-
tance measure between an interpretation and a goal base is defined as d(ω,K) =
min
ω′|=K

d(ω, ω′), where d(ω, ω′) is the distance between interpretations. Using the

sum as an aggregation function we define the distance measure between an in-

terpretation and a profile E = {K1, . . . ,Kn} as d(ω,E) =

n∑

i=1

{d(ω,Ki)}. When

the weighted sum is considered as the aggregation function we have d(ω,E) =
n∑

i=1

ai × d(ω,Ki), where ai is the number of clauses in the goal base Ki in our

work. Consequently, the merging operator ∆d,op
µ (E), where op ∈ {sum,wsum},

is defined as Mod(∆d,op
µ (E)) = min(Mod(µ),≤d,op

E ). The comparison between
distance-based and partial satisfiability merging is showed below (when d = dH):

Ω ∆
dH ,sum
µ ∆

ps,+
µ ∆

dH ,wsum
µ ∆

pr,+
µ

ω1 = ¬s¬d¬o 5 1.16 4 0.583
ω2 = ¬s¬do 2 2.33 2 1.333
ω3 = ¬sd¬o 4 1.33 3 0.833
ω4 = ¬sdo 3 1.83 2 1.25
ω5 = s¬d¬o 4 1.66 3 1
ω6 = s¬do 2 2.33 1.5 1.5

ω7 = sd¬o 3 1.83 2 1.25
ω8 = sdo 3 1.83 1.5 1.416

In short, we can see that a partial satisfiability-based merging is richer than
a distance-based merging, since it gives us a more detailed evaluation of the



interpretations. Another important point that we want to highlight is that the
partial satisfiability allows us to employ the product as an aggregation function,
which is not possible when a distance is considered.

3 Logical Properties

A main requirement for adhering to a merging operator is that it offers the
expected properties of what intuitively merging means. This calls for sets of
rationality postulates and this has been addressed in several papers [5,6,7,10,11].
The more postulates satisfied the more rational the operator. We will look in the
sequence the characterization of Integrity Constraints (IC) merging operators.

Definition 9 (IC merging operators [11]). Let E,E1, E2 be profiles, K1,K2

be consistent goal bases, and µ, µ1, µ2 be propositional formulas. ∆ is an IC
merging operator if and only if it satisfies the following postulates:

– (IC0) ∆µ(E) |= µ.
– (IC1) If µ is consistent, then ∆µ(E) is consistent.
– (IC2) If

∧
E is consistent with µ, then ∆µ(E) ≡

∧
E ∧ µ.

– (IC3) If E1 ≡ E2 and µ1 ≡ µ2, then ∆µ1
(E1) ≡ ∆µ2

(E2).
– (IC4) If K1 |= µ and K2 |= µ, then ∆µ({K1,K2}) ∧K1 is consistent if and

only if ∆µ({K1,K2}) ∧K2 is consistent.
– (IC5) ∆µ(E1) ∧∆µ(E2) |= ∆µ(E1 ⊔ E2).
– (IC6) If ∆µ(E1) ∧ ∆µ(E2) is consistent, then ∆µ(E1 ⊔ E2) |= ∆µ(E1) ∧

∆µ(E2).
– (IC7) ∆µ1

(E) ∧ µ2 |= ∆µ1∧µ2
(E).

– (IC8) If ∆µ1
(E) ∧ µ2 is consistent, then ∆µ1∧µ2

(E) |= ∆µ1
(E).

The meaning of the properties is the following: (IC0) ensures that the result
of merging satisfies the integrity constraint. (IC1) states that, if the integrity
constraint is consistent, then the result of merging will be consistent. (IC2)
states that if there is no inconsistencies among the goal bases, the result of
merging is simply the conjunction of the goal bases with the integrity constraint.
(IC3) is the principle of irrelevance of syntax: the result of merging has to
depend only on the expressed opinions and not on their syntactical presentation.
(IC4) is a fairness postulate meaning that the result of merging of two goal bases
should not give preference to one of them. It is a condition that aims at ruling
out operators that can give priority to one of the bases. (IC5) expresses the
following idea: if profiles are viewed as expressing the beliefs/preferences of the
members of a group, then if E1 (corresponding to a first group) compromises
on a set of alternatives which A belongs to, and E2 (corresponding to a second
group) compromises on another set of alternatives which contains A too, then
A has to be in the chosen alternatives if we join the two groups. (IC5) and
(IC6) together state that if one could find two subgroups which agree on at
least one alternative, then the result of the global merging will be exactly those
alternatives the two groups agree on. (IC7) and (IC8) state that the notion of



closeness is well-behaved, i.e., that an alternative that is preferred among the
possible alternatives will remain preferred if one restricts the possible choices.

Proposition 1. ∆pr,op
µ satisfies (IC0)-(IC3) and (IC5)-(IC8).

Proof. (IC0) By definition, Mod(∆pr,op
µ (E)) ⊆ Mod(µ).

(IC1) The functions ω+(E) and ω×(E) map to values inR, so ifMod(µ) 6= ∅,
there is a model ω of µ such that for every model ω′ of µ, ω+(E) ≥ ω′

+(E) (or
ω×(E) ≥ ω′

×(E)). So ω |= ∆pr,op
µ (E) and ∆pr,op

µ (E) 6|= ⊥.
(IC2) By assumption,

∧
E is consistent and without loss of generality let

E = {K1, . . . ,Kn}. There exists ω such that ω |= (c11 ∨ · · · ∨ c1k) ∧ · · · ∧ (cn1 ∨
· · · ∨ cnm), where K1 = {c11, . . . , c1k}, . . . ,Kn = {cn1, . . . , cnm}. By definition,
ω(K1) = max{ω(c11), . . . , ω(c1n)} and as ω |= (c11 ∨ · · · ∨ c1n), there is a clause
c1j such that ω |= c1j . It is easy to see that this clause has the maximum
value, i.e. ω(cij) = 1 (see the Definition 4). Thus, ω(K1) will also receive the
maximum possible value. The same idea holds for every Ki, 1 ≤ i ≤ n. Hence,

as ω+(E) =

n∑

i=1

1

ai
× ω(Ki), for every ω′, ω+(E) ≥ ω′

+(E) (the same holds for

ω×(E)). So ω |= ∆pr,op
µ (E) if and only if ω |=

∧
E ∧ µ.

(IC3) Assume that E1 ≡ E2 and µ1 ≡ µ2, where E1 = {K1, . . . ,Kn} and
E2 = {K ′

1, . . . ,K
′
n}. We want to prove that ∆pr,op

µ1
(E1) ≡ ∆pr,op

µ2
(E2). For this,

it is sufficient to guarantee that ω(Ki) ≤ ω′(Ki) ⇒ ω(K ′
i) ≤ ω′(K ′

i), for any
ω, ω′. It is possible to show this using the notion of Hamming distance [10]. The
Hamming distance between interpretations, denoted as dH(ω, ω′), characterizes
the number of propositional variables that they differ. The distance between an
interpretation and a goal base is defined as: d(ω,Ki) = min

ω′|=Ki

d(ω, ω′).

We have that if ω(Ki) ≤ ω′(Ki) then d(ω′,Ki) ≤ d(ω,Ki) (it is easy to show
this by contradiction). By hypothesis, Ki ≡ K ′

i, and therefore we have ω(Ki) ≤
ω′(Ki) then d(ω′,K ′

i) ≤ d(ω,K ′
i). We need to show now that d(ω′,K ′

i) ≤
d(ω,K ′

i) ⇒ ω(K ′
i) ≤ ω′(K ′

i). By contradiction, suppose that d(ω
′,K ′

i) ≤ d(ω,K ′
i)

and ω(K ′
i) > ω′(K ′

i). In this case we would have d(ω′,K ′
i) > d(ω,K ′

i) (by the
consequence of ω(K ′

i) > ω′(K ′
i)), which is a contradiction.

To end this proof, note that definition of ω+(E) =

n∑

i=1

1

ai
× ω(Ki) (and

ω×(E) =

n∏

i=1

(ω(Ki))
1

ai )does not alter the results showed above, i.e., ω+(E1) ≤

ω′
+(E1) ⇒ ω+(E2) ≤ ω′

+(E2) (resp. ω×(E1) ≤ ω′
×(E1) ⇒ ω×(E2) ≤ ω′

×(E2)),
due the properties of the sum (resp. product). As µ1 ≡ µ2, finally we have that
∆pr,op

µ1
(E1) ≡ ∆pr,op

µ2
(E2).

(IC5) In order to show that the operator satisfy (IC5), it is enough to
guarantee that the following property holds: if ωop(E1) ≥ ω′

op(E1) and ωop(E2) ≥
ω′
op(E2), then ωop(E1 ⊔E2) ≥ ω′

op(E1 ⊔E2), for op ∈ {+,×}. We can see clearly
that this is satisfied.

(IC6) In order to show that the operator satisfy (IC6), it is enough to
guarantee that the following property holds: if ωop(E1) > ω′

op(E1) and ωop(E2) ≥



ω′
op(E2), then ωop(E1 ⊔E2) > ω′

op(E1 ⊔E2), for op ∈ {+,×}. We can see clearly
that this is satisfied.

(IC7) Suppose that ω |= ∆pr,op
µ1

(E)∧µ2. For any ω′ |= µ1, we have ωop(E) ≥
ω′
op(E). Hence, for any ω′ |= µ1 ∧ µ2, we have ωop(E) ≥ ω′

op(E). Subsequently
ω |= ∆pr,op

µ1∧µ2
(E).

(IC8) Suppose that ∆pr,op
µ1

(E) ∧ µ2 is consistent. Then there exists a model
ω′ of ∆pr,op

µ1
(E) ∧ µ2. Consider a model ω of ∆pr,op

µ1∧µ2
(E) and suppose that ω 6|=

∆pr,op
µ1

(E). In this case ω′
op(E) > ωop(E), and since ω′ |= µ1 ∧ µ2, we have

ω 6∈ Mod(∆pr,op
µ1∧µ2

(E)) = max(Mod(µ1 ∧ µ2),≤
pr,op
E ), hence ω 6|= ∆pr,op

µ1∧µ2
(E).

Contradiction. �

Proposition 2. ∆pr,op
µ does not satisfy (IC4).

Proof. In general, ∆pr,op
µ does not satisfy (IC4). Let us give a counter-example:

suppose that µ = ⊤, K1 = {(a∧¬b)∨(¬a∧b)} and K2 = {(a∧b)}. The result of
the merging is ∆pr,op

µ ({K1,K2}) = (a∧b), when op ∈ {+,×}. ∆pr,op
µ ({K1,K2})∧

K2 is consistent, but ∆pr,op
µ ({K1,K2}) ∧K1 is not. �

Since (IC4) is not satisfied, it means that this merging operator tends to
give preference to some specific goal bases. This is not a bad result, since we
intended from the beginning to give more priority to some agents.

The merging operators ∆pr,+
µ and ∆pr,×

µ share the same logical properties so
far, but intuitively, they express different ideas. Two main subclasses of merging
operators are described by analyzing others characteristics: majority operators
which are related to utilitarianism, and arbitration operators which are related
to egalitarianism. In other words, majority operators solve conflicts using ma-
jority wishes, i.e., they try to satisfy the group as a whole. Whereas arbitration
operators have a more consensual behavior, trying to satisfy each agent as far
as possible.

Besides these nine postulates presented above, we will also consider these
two important sub-classes of merging operators: IC majority operator and IC
arbitration operator. We will show in the sequel that ∆pr,+

µ and ∆pr,×
µ do not

agree with both postulates.

Definition 10 (IC majority operator). A merging operator is a majority
operator if it satisfies

– (Maj) ∃n∆µ(E1 ⊔ E2 ⊔ · · · ⊔ E2
︸ ︷︷ ︸

n

) |= ∆µ(E2).

This postulate states that if an information has a majority audience, then it
will be the choice of the group.

Proposition 3. ∆pr,+
µ satisfies (Maj).

Proof. Showing that the operator satisfies (Maj) is easy from the properties of

sum. Since ω+(E) =

n∑

i=1

1

ai
×ω(Ki), without loss of generality we can assume two



cases: (i) let ω be a model for ∆pr,+
µ (E1 ⊔E2) and for all ω′, ω+(E2) ≥ ω′

+(E2).
In this case, we also have that ω is a model for ∆pr,+

µ (E2), and for every n,
∆pr,+

µ (E1⊔En
2 ) |= ∆pr,+

µ (E2); (ii) let ω be a model for ∆pr,+
µ (E1⊔E2) and there

is a ω′ such that ω+(E2) < ω′
+(E2). In this case we can always find a number

n of repetitions to E2 such that ω′ will be a model for ∆pr,+
µ (E1 ⊔ En

2 ), i.e.,
ω′
+(E2)×n+ω′

+(E1) > ω+(E2)×n+ω+(E1). Consequently, ∆
pr,+
µ (E1 ⊔En

2 ) |=
∆pr,+

µ (E2). �

As a consequence of this postulate, we can state that although it is given
more priority to some goal bases in the merging process of ∆pr,+

µ , it will not
be always the case that these goal bases will be satisfied by the results of the
merging operator.

Proposition 4. ∆pr,×
µ does not satisfy (Maj).

Proof. We can find a counter-example where the repetition of one base does not
change the result. Consider the following counter-example: Let µ = ⊤, E1 =
{K1} = {{a ∧ b}} and E2 = {K2} = {{¬a ∧ ¬b}}. Clearly, we have ∆pr,×

µ (E1 ⊔
E2 ⊔ · · · ⊔ E2
︸ ︷︷ ︸

n

) 6≡ ∆pr,×
µ (E2) for any n ∈ N. �

Definition 11 (IC arbitration operator). A merging operator is an arbitra-
tion operator if it satisfies

– (Arb)

∆µ1
({K1}) ≡ ∆µ2

({K2})

∆µ1↔¬µ2
({K1,K2}) ≡ (µ1 ↔ ¬µ2) ⇒ ∆µ1∨µ2

({K1,K2}) ≡ ∆µ1
({K1}).

µ1 6|= µ2

µ2 6|= µ1

Unlike the majority operator, an arbitration operator tries to satisfy each
agent as possible. According to [12] this postulates ensures that this is the median
of possible choices that are preferred.

Proposition 5. ∆pr,+
µ does not satisfy (Arb).

Proof. To show that∆pr,+
µ does not satisfy (Arb), consider the following counter-

example: K1 = {{a ∧ b}},K2 = {{¬a ∧ ¬b}}, µ1 = ¬(a ∧ b) and µ2 = a ∨ b. We
have that ∆pr,+

µ1∨µ2
({K1,K2}) 6≡ ∆pr,+

µ1
({K1}). �

We can note that, it may be the case where a goal base has more priority
than the other ones, and the result of the merging will only favor it rather than
the others.

Proposition 6. ∆pr,×
µ satisfies (Arb).

Proof. We can see that (Arb) holds since the stronger following property is
true: if ∆pr,×

µ1
(K1) ≡ ∆pr,×

µ2
(K2), then ∆pr,×

µ1∨µ2
({K1,K2}) ≡ ∆pr,×

µ1
(K1). �



The weighted product considers relevant the partial satisfiability of each
agent to compute the preference priority of the group. It is different from the
weighted sum in the sense that every agent is relevant to the final result and
this result tries to satisfy the whole group as much as possible. In other terms,
we can say that, although the merging gives priority to some specific agents, the
product operator tries to consider important the opinion of each agent to the
result of the merging.

To finish this section, we remind that regardless the strategy used in the
priority merging, the logical properties remain the same, i.e., we can use the
same proofs of this section to the case where we give more priority to the agents
with more clauses in the goal bases.

4 Computational Complexity

Let us now consider the complexity issue of the merging operator ∆pr,op
µ . For-

mally, the decision problem MERGE(∆pr,op
µ ) is defined as:

– Input: A triple 〈E, µ, α〉 where E = {K1, . . . ,Kn} is a profile and µ and α
are propositional formulas.

– Question: Does ∆pr,op
µ (E) |= α hold?

In this section, we will give an alternative algorithm to Pr-Merge, instead of
using the one presented for PS-Merge in [16].

Proposition 7. MERGE(∆pr,op
µ ) is PTIME.

This result is consequence of the following two lemmas:

Lemma 1. For any ω ∈ Ω the number of possible values of ωop(E) is bounded
by the value h(|E|) (where h is a function with values in N), which is polynomial.

Proof. Let E = {K1, . . . ,Kn} be a profile and |V | = m be the number of
propositional variables of E. For each Ki ∈ E, the number of possible values that
ω(Ki) may receive is bounded by m+(m−1)+ · · ·+1 = m.(m+1)/2 = O(m2),
i.e., the scenario where Ki has clauses of size m,m− 1, . . . , 2 and 1 (if a clause
has size m, then the quantity of values that it can obtain is m). Thus, for the
profile E, the number of possible values is O(n.m2). �

Lemma 2. Given a profile E and an integrity constraint µ, the problem of de-
termining the max

ω|=µ
ωop(E) is PTIME.

Proof. max
ω|=µ

ωop(E) can be computed using binary search on L = {0, . . . , h(|E|)}

(the list of possible values for ωop(E)), but first we shall change slightly the
representation of L. Assuming that E = {K1, . . . ,Kn}, each li ∈ L is represented
as li = [li1, . . . , lin], where lij denotes a possible value of the base Kj and li =
li1 + · · ·+ lin (when op = +) or li = li1 × · · · × lin (when op = ×). For instance,



considering op = +, we have that the first element of the list is 0 = [0, 0, . . . , 0],
and according to Example 2, the last element of the list would be 2 = [ 2

4
, 2

4
, 3

3
]

(the maximum value of ω for K1 = {(s ∧ ¬d), (o ∧ ¬d)} is 2

4
, K2 = {(¬s ∧ d ∧

¬o), (¬s ∧ ¬d ∧ o)} is 2

4
and K3 = {(s ∧ d ∧ o)} is 3

3
).

Generating the list L can be made in the following way: Consider E =
{K1, . . . ,Kn}, and (Ki) = [m, [m1, . . . ,mm]], where m is the number of clauses
of Ki and for 1 ≤ j ≤ m, mj is the number of literals in the j-th clause.
With respect to the weighted sum operator, the set of possible values of Ki

is {0, 1

m.m1

, 2

m.m1

, . . . , m1

m.m1

, . . . , 1

m.mm

, . . . , mm

m.mm

}. In consideration with the

weighted product, the set of possible values ofKi is {0, (
1

m1

)
1

m , ( 2

m1

)
1

m , . . . , (m1

m1

)
1

m ,

. . . , ( 1

mm

)
1

m , . . . , (mm

mm

)
1

m }. For instance, in the Example 2, for op = +, the
set of possible values of K1 = {(s ∧ ¬d), (o ∧ ¬d)}, where (K1) = [2, [2, 2]] is
{0, 1

4
, 2

4
, 1

4
, 2

4
} = {0, 1

4
, 2

4
}.

Let us assume now that L is ordered by the value of the li, where li =
li1 + · · ·+ lin or li = li1 × · · · × lin (this sorting can be done in polynomial time)
and that E = {K1, . . . ,Kn} is also ordered by the number of clauses in the bases
(i.e., K1 is the base with the least number of clauses), in order to simplify the
execution of the algorithm.

It is sufficient to consider the following algorithms:

1. The first step is ask whether max
ω|=µ

ωop(E) ≥ l, for a given l ∈ L.

2. For a given l = [l1, . . . , ln], pick K1 and find the interpretations ω in which
ω(K1) = l1 and ω |= µ. As each li is a number of the form (p/q.m), an
interpretation ω is given by the outcome that satisfies p elements in the
clause with q literals. These interpretations can be found in polynomial time,
since K1 is in DNF.

3. For every Kj ∈ E, check if ω(Kj) = lj , for any ω found in the previous step.
If it is true, then max

ω|=µ
ωop(E) ≥ l. This step can be done in polynomial time.

4. To compute max
ω|=µ

ωop(E), we can make a binary search on L = {0 = [0, . . . , 0],

. . . , lk = [lk1, . . . , lkn]}. We start with lk and ask if max
ω|=µ

ωop(E) ≥ lk. The

max
ω|=µ

ωop(E) will be the highest li which max
ω|=µ

ωop(E) ≥ li holds. Consequently

all ω that satisfies this statement are results from merging. Clearly, we can see
that this step is polynomial, since the binary search needs at most log2h(|E|)
steps and the procedure of max

ω|=µ
ωop(E) ≥ l is polynomial.

5. Lastly, we only have to check if ω |= α, for any ω found in the previous step.
This can be done in linear time. �

This result shows that Pr-Merge is computationally easier (as well as the
PS-Merge) than usual merging operators, which are usually at the first level of
the polynomial hierarchy [10]. This is given mainly because the goal bases are
represented in DNF formulas and the computation of the preference priority ω
can be done in polynomial time.



5 Conclusion

In this work, we described a refined version of the merging operator PS-Merge
by introducing the notion of priority information between goal bases. This new
operator was named Pr-Merge, which was defined in two versions: one with a
weighted sum and another one with a weighted product. The weighted sum
has a characteristic of majority priority, whereas the weighted product shows
the characteristic of priority combined with some aspects of egalitarianism. We
analyzed their logical properties and computational complexity. With respect to
the complexity, we exhibited an alternative algorithm from that presented to
PS-Merge, which has a polynomial time complexity.

Regarding the logical properties, Pr-Merge satisfies all postulates in general,
except (IC4). The loss that we have in using Pr-Merge is that our approach does
not satisfy the fairness condition, i.e., our merging approach can give priority to
some goal bases, which is an expected result to us. When the weighted sum is
considered as the aggregation function, Pr-Merge satisfies (Maj). In other terms,
we can say that, even the priority given to some agents, a group of agents can
influence the result of the merging. When the weighted product is considered,
Pr-Merge satisfies (Arb), i.e., the priority merging tries to satisfy each agent as
far as possible.

Following the proposal presented by PS-Merge, this paper focus in research-
ing a merging operator without using distance measures. There is still too much
to be done in this area. A possible line of research is to characterize a fam-
ily of merging operators using the notion of partial satisfiability employed by
PS-Merge, through different aggregation functions, and their relationships. An-
other open question is to discover the relationship between Partial Satisfiability-
based and distance-based merging. Lastly, another interesting subject is to find
out other alternative ways of doing information merging without using distance
measures.
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8. E. Grégoire and S. Konieczny. Logic-based approaches to information fusion. In-
formation Fusion, 7(1):4–18, 2006.

9. S .Konieczny, J. Lang, and P. Marquis. Distance-based merging: a general frame-
work and some complexity results. KR, 2:97–108, 2002.

10. S. Konieczny, J. Lang, and P. Marquis. DA2 merging operators. Artificial Intelli-
gence, 157(1):49–79, 2004.
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17. P.P. Parra and V.B. Maćıas. Partial satisfiability-based merging. In MICAI 2007:
Advances in Artificial Intelligence, pages 225–235. Springer, 2007.

18. P.P. Parra, L. Perrussel, and J.M. Thevenin. Belief merging using normal forms.
In Advances in Artificial Intelligence, pages 40–51. Springer, 2011.

19. P.Z. Revesz. On the semantics of theory change: arbitration between old and
new information. In Proceedings of the 12th ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems, pages 71–82. ACM, 1993.


