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Abstract

The Multi-agent Path Finding (MAPF) problem
consists in all agents having to move to their own
destinations while avoiding collisions. In practical
applications to the problem, such as for navigation
in an automated warehouse, MAPF must be solved
iteratively. We present here a novel approach to it-
erative MAPF, that we call Priority Inheritance with
Backtracking (PIBT). PIBT gives a unique priority
to each agent every timestep, so that all movements
are prioritized. Priority inheritance, which aims at
dealing effectively with priority inversion in path
adjustment within a small time window, can be ap-
plied iteratively and a backtracking protocol pre-
vents agents from being stuck. We prove that, re-
gardless of their number, all agents are guaranteed
to reach their destination within finite time, when
the environment is a graph such that all pairs of ad-
jacent nodes belong to a simple cycle of length 3
or more (e.g., biconnected). Our implementation
of PIBT can be fully decentralized without global
communication. Experimental results over vari-
ous scenarios confirm that PIBT is adequate both
for finding paths in large environments with many
agents, as well as for conveying packages in an au-
tomated warehouse.

1 Introduction

In systems using physical moving agents, it is essential to al-
low agents to reach their own destinations smoothly without
collisions, by providing valid paths while minimizing excess
travel time. This problem, known as Multi-agent Path Find-
ing (MAPF), is however computationally difficult due to the
search space growing exponentially as the number of agents
increases. MAPF is an important problem due to its appli-
cations in various domains, e.g., traffic control [Dresner and
Stone, 2008], automated warehouse [Wurman et al., 2008],
or airport surface operation [Morris et al., 2016], etc.

Previous research on MAPF focuses on solving a “one-
shot” version of the problem, i.e., to make agents reach their
goal from their initial position only once. In practical ap-
plications, such as conveying packages in a warehouse [Ma
et al., 2017], MAPF must however be solved iteratively.

That is, whenever an agent reaches a goal, it receives a
new one. This rules out any simple adaptation of offline
and computationally-intensive optimal solutions due to pro-
hibitive computations, and new goals typically appearing at
runtime. Furthermore, centralized solutions being inherently
problematic for systems with many agents due to scalabil-
ity concerns, decoupled algorithms such as prioritized route
planning are adequate, especially if fully decentralized. De-
centralized solutions are highly attractive to multi-agent/robot
systems for many reasons, including a higher potential for
robustness and fault-tolerance, better scalability, and lower
production cost [Yan et al., 2013]. Finally, implementations
without global communication are preferable since they pro-
vide better potential for scalability and concurrency.

In this paper, we present a novel algorithm for iterative
Multi-agent Path Finding (iterative MAPF), called Priority
Inheritance with Backtracking (PIBT), which focuses on the
adjacent movements of multiple agents based on prioritized
planning in a short time window. Priority inheritance is a
well-known approach to deal effectively with priority inver-
sion in real-time systems [Sha et al., 1990], and is applied
here to path adjustment. When a low-priority agent X im-
pedes the movement of a higher-priority agent Y, agent X
temporarily inherits the higher-priority of Y. To avoid a sit-
uation where agents are stuck waiting, priority inheritance is
executed in combination with a backtracking protocol. Since
PIBT assumes that agents can only communicate when lo-
cated within two hops of each other (e.g., Manhattan distance
2 in a grid environment), it can be implemented in a fully
decentralized way and inherits the above characteristics.

Our main contributions are two-folds: 1) we propose an al-
gorithm ensuring that every agent always reaches its destina-
tion within finite time as long as the environment satisfies the
condition that all pairs of adjacent nodes belong to a simple
cycle of length 3 or more (includes undirected biconnected
graphs); and 2) we evaluate that algorithm in various envi-
ronments, showing its practicality. In particular, experimental
results over various scenarios confirm its adequateness both
for finding paths in large environments with many agents, as
well as for conveying packages in an automated warehouse.

The paper is organized as follows. Section 2 reviews ex-
isting algorithms for MAPF and a variant called Multi-agent
Pickup and Delivery (MAPD). Section 3 defines iterative
MAPF, which provides an abstract framework for multiple
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moving agents. Section 4 presents the PIBT algorithm and its
theoretical analysis. Section 5 presents empirical results on
both path finding (MAPF) and pickup and delivery (MAPD).
Section 6 concludes the paper and discusses future work.

2 Related Work

Many complete MAPF algorithms exist, such as A∗ with Op-
erator Decomposition [Standley, 2010], Enhanced Partial Ex-
pansion A∗ [Goldenberg et al., 2014], Increasing Cost Tree
Search [Sharon et al., 2013], Conflict-based Search [Sharon
et al., 2015], M∗ [Wagner and Choset, 2015], etc.

Finding an optimal solution is however NP-hard [Yu and
LaValle, 2013], and optimal algorithms do not scale in the
number of agents and are too costly for iterative use, hence
the need for sub-optimal solvers, e.g., FAR [Wang et al.,
2008], MAPP [Wang and Botea, 2011], Tree-based Agent
Swapping Strategy [Khorshid et al., 2011], BIBOX [Surynek,
2009], CBS variants [Barer et al., 2014; Cohen et al., 2016].

Push and Swap/Rotate [Luna and Bekris, 2011; de Wilde
et al., 2013], which partly inspired our proposal, are sub-
optimal centralized approaches that allow one agent to push
another away from its path. However, they only allow a sin-
gle agent or a pair of agents to move at each timestep. En-
hanced Push and Swap include Parallel Push and Swap [Sajid
et al., 2012] where all agents can move simultaneously, or
Push-Swap-Wait [Wiktor et al., 2014] which takes a decen-
tralized approach in narrow passages. DisCoF [Zhang et al.,
2016] combines decoupled prioritized planning with fallback
to coupled push and swap in case of conflicts. PIBT, the pro-
posed method, can be seen as a combination of safe “push”
operations, thanks to backtracking and dynamic priorities.

Prioritized planning is computationally cheap and hence
attractive for MAPF. Hierarchical Cooperative A∗ (HCA∗)
and Windowed HCA∗ (WHCA∗) [Silver, 2005] are decou-
pled approaches in that they plan a path for each agent
one after the other while avoiding collisions with previously
computed paths. WHCA∗ uses a limited lookahead win-
dow. Our proposal, PIBT, is based on WHCA∗ with a win-
dow size of one. Decentralized solutions, i.e., where each
agent computes its own path based on information from
other agents, are inherently decoupled. Decentralized solu-

tions for MAPF [Velagapudi et al., 2010; Čáp et al., 2015;
Chouhan and Niyogi, 2015] are hence usually prioritized.
The negotiation process for ordering priorities studied by
Azarm et al. [Azarm and Schmidt, 1997] solves conflicts by
having involved robots try all priority orderings, and deals
with congestion by limiting negotiation to at most 3 robots
and letting others wait. A recent theoretical analysis of pri-
oritized planning [Ma et al., 2018] identifies instances that
fail for any order of static priorities. That study, which also
presents a centralized approach called Priority-Based Search,
actually provides a very strong case for planning based on
dynamic priorities, such as the approach taken with PIBT.

The problem of Multi-agent Pickup and Delivery
(MAPD) [Ma et al., 2017] abstracts real scenarios such as
an automated warehouse, and consists of both allocation and
route planning. Agents are assigned to a task from a stream of
delivery tasks and must consecutively visit both a pickup and

a delivery location. The paper proposes two decoupled algo-
rithms based on HCA∗ for MAPD, called respectively Token
Passing (TP) and Token Passing with Task Swap. These algo-
rithms can easily be adapted to be decentralized but require
a certain amount of non-task endpoints where agents do not
block other agents’ motion.

3 Problem Definition

The problem of iterative Multi-agent Path Finding (itera-
tive MAPF) is a generalization of problems addressing mul-
tiple moving agents, including both Multi-agent Path Find-
ing (MAPF) and Multi-agent Pickup and Delivery (MAPD).
Since iterative MAPF is an abstract model we do not intend to
solve it directly, rather, it is necessary to embody task creation
according to target domains.

The system consists of a set of agents, A = {a1, . . . , an},
and an environment given as a graph G = (V,E), where
agents occupy nodes in V and move along edges in E. Con-
sidering practical situations, G must be a simple (neither
loops nor multi-edges) and strongly-connected (every node
is reachable from every other node) directed graph. This in-
cludes all simple undirected graphs that are connected.

Let vi(t) denote the node occupied by agent ai at discrete
time t. The initial position of agent ai is vi(0) and given
as input. At each timestep, ai selects one node vi(t + 1) ∈
{v|v ∈ V, (vi(t), v) ∈ E} ∪ {vi(t)} as its location for the
next timestep. Agents must avoid 1) collision: vi(t) 6= vj(t);
and 2) intersection with others: vi(t) 6= vj(t + 1) ∨ vj(t +
1) 6= vj(t). We do not prohibit rotations, so vi(t + 1) =
vj(t)∧vj(t+1) = vk(t)∧· · ·∧vl(t+1) = vi(t) is possible.

Let Γ = {τ1, τ2, . . . } be a dynamic set of tasks with new
tasks being added over time, i.e., not all tasks are known
initially. A task is defined as a finite set of goals τj =
{g1, g2, . . . , gm} where gk ∈ V , possibly with dependencies
as a partial order on gk. Let tj be the timestep when τj is
added to Γ. An agent is free when it has no assigned task. A
task τj ∈ Γ can only be assigned to free agents. When τj is
assigned to ai, ai starts visiting goals in τj . When all goals
have been visited, τj is completed and ai becomes free.

Let now π(ai, τj) = (vi(t), vi(t+ 1), . . . ) be the path of
ai when τj is assigned at timestep t until ai completes τj .
When ai is free, it is assigned a dummy task τ̄l with path
π(ai, τ̄l), where index l is for the uniqueness of π. The path
must ensure no collision and no intersection, with the follow-
ing additional condition; gk ∈ π(ai, τj), ∀gk ∈ τj . The
service time λ(π(ai, τj), tj) is defined as the time elapsed
from start (tj) to the completion of τj by ai. Note that
λ(π(ai, τj), tj) does not usually equal to |π(ai, τj)| because
τj is not always assigned immediately.

We say that iterative MAPF has a solution if and only if
the service times of all tasks are finite. Iterative MAPF is a
generic problem which, depending on its concrete instance,
can rely on an objective function of the following general
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(a) stuck agent
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low (as high)

a1
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(b) priority inheritance

a0a1 a2

(c) one timestep later

Figure 1: Examples of priority inheritance. Without inheritance
(1a), a stuck agent (a0) cannot give way to a high-priority agent
(a2) without risking collision into a third agent (a1). With priority
inheritance (1b), a0 temporarily inherits the priority of a2, forcing
a1 to give way, and solving the situation (1c).

form.

minimize
Γi,π

n∑

i=1

∑

τj∈Γi∪{τ̄l}

λ(π(ai, τj), tj)

s.t. Γ = Γ1 ∪ Γ2 ∪ · · · ∪ Γn

Γi ∩ Γi′ = ∅, ∀i 6= i′ ∈ {1, . . . , n}

where Γi is the set of tasks allocated to ai. Concrete instances
of iterative MAPF include route planning and task allocation,
for which objective functions are described in Section 5.

Depending on context, Γi is determined a priori. For in-
stance, in the literature on MAPF, Γi is provided as {τi =
{gi}} where gi is a goal node of ai. A start node is de-
fined by vi(0). In the basic definition of MAPF, termination is
achieved once all agents are at their goal in the same timestep.
To satisfy this requirement, when ai that once reached gi
leaves it, a new task τ = {gi} is added to Γi.

MAPD is an instance of iterative MAPF, where every task
is a tuple of two nodes (pickup and delivery) instead of a set.

4 Priority Inheritance with Backtracking

This section introduces the concept of Priority Inheritance
with Backtracking (PIBT), describes the algorithm and its
properties, as well as how to apply PIBT to specific prob-
lems such as MAPF and MAPD. To avoid unnecessarily com-
plex explanations, we introduce PIBT as a centralized algo-
rithm and focus on the analysis of the prioritization scheme
itself. PIBT relies on a decoupled approach making it easily
amenable to decentralization. We briefly discuss later how to
adapt it to a decentralized case.

4.1 Basic Concept

Prioritized approaches are effective for iterative use, so PIBT
essentially implements WHCA∗ [Silver, 2005] with a time
window of one. At every timestep, each agent updates its
own unique priority. Paths are computed one by one while
avoiding collisions with previously computed paths.

Priority Inheritance

Priorities alone can still result in a deadlock (see Fig. 1a)
resulting from a case of priority inversion. Priority in-
version occurs when a low-priority agent (a0) fails to ob-
tain a resource held by a medium-priority agent (a1), even
though it holds a second resource claimed by a higher-priority

a6

priority: high

a5

a4 a3

a2

a0

low

a1

medium

(a) initial priority inheritance

a6 a5

a4 a3

a2

a0

low (as high)

a1

(b) backtracking and PI again

a6 a5

a4 a3

a2

a0a1

(c) backtracking

a6

a5a4 a3

a2

a0

a1

(d) one timestep later

Figure 2: Example of PIBT. Flows of back tracking are drawn as
doubled-line arrows. Since a2 is stuck (2a), back tracking returns
invalid to a3, subsequently a4. a4 executes other priority inheritance
to a0 (2b). a4, a0, a5 and a6 wait for the results of back tracking (2c)
and then start moving (2d).

agent (a2). This is typically addressed by priority inheri-
tance [Sha et al., 1990] (Fig. 1b). The rationale is that, a
low-priority agent (a0) temporarily inherits the higher prior-
ity of agents (a2) claiming resources it holds, thus forcing
medium-priority agents (a1) out of the way (Fig. 1c).

Backtracking

Priority inheritance deals effectively with priority inversion,
but it does not completely ensure deadlock-freedom. For in-
stance, as shown in Fig. 2a, agent a2 finds no escape as a
result of consecutive priority inheritance (a6→a5→a4→a3).

The solution relies on backtracking: i.e., any agent a that
gives its priority must wait for an outcome (valid or invalid).
If valid, a successfully moves to the desired node. Other-
wise, it must change its target, excluding 1) nodes requested
from higher priority agents, and 2) nodes denied from inher-
ited agents. Upon finding no valid or unoccupied nodes, a
sends back an invalid outcome to the agent from which it in-
herited its priority. In Fig. 2b, a2 first sends invalid back to a3,
which in turn sends invalid to a4. Since a0 has lower priority,
a4 can let a0 inherit its priority as an alternative, which leads
to a valid outcome (Fig. 2c), and agents can move (Fig. 2d).

4.2 Algorithm

We begin by defining the notion of groups of interacting
agents, since the algorithm and its proofs rely on it. When
two agents located within two hops of each other move, they
might collide in the next step, and they are said to be directly
interacting in that step. For an agent ai, a group of interacting
agents Ai(t) ⊆ A is then defined by transitivity over direct
interactions in a timestep t. Note that, given ai and Ai(t),
then for any other agent aj ∈ Ai(t) we have Ai(t) = Aj(t).
Whenever obvious from context, we use A(t) or A.

Since agents belonging to different groups cannot affect
each other, path planning can effectively occur in parallel. As
a result, PIBT is decentralized and only relies on local com-
munication, i.e., it is sufficient that two agents in close prox-
imity can talk directly and utilize multi-hop communication.
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Algorithm 1 PIBT (code at timestep t)

1: UNDECIDED← A(t) ⊲ agents list
2: OCCUPIED← ∅ ⊲ nodes list
3: update all priorities pi(t)
4: while UNDECIDED 6= ∅ do
5: let a be the agent with highest priority in

UNDECIDED
6: PIBT(a,⊥)
7: end while
8:

9: function PIBT(ai, aj)
10: UNDECIDED← UNDECIDED \ {ai}
11: Ci ← ({v | (v, vi(t)) ∈ E} ∪ {vi(t)})

\({vj(t)} ∪ OCCUPIED)
12: while Ci 6= ∅ do
13: v∗i ← arg max

v∈Ci

fi(v)

14: OCCUPIED← OCCUPIED ∪ {v∗i }
15: if ∃ak ∈ UNDECIDED such that v∗i = vk(t)

then
16: if PIBT(ak, ai) is valid then
17: vi(t+ 1)← v∗i
18: return valid
19: else
20: Ci ← Ci \ OCCUPIED
21: end if
22: else
23: vi(t+ 1)← v∗i
24: return valid
25: end if
26: end while
27: vi(t+ 1)← vi(t)
28: return invalid
29: end function

Algorithm 1 describes PIBT, where pi(t) ∈ R is the pri-
ority of agent ai at timestep t. fi(v), v ∈ V is the valua-
tion function of nodes for ai at the current timestep, where
a larger value of fi(v) means that ai has a higher preference
to move to node v at the next timestep. PIBT can be de-
scribed recursively, especially with respect to priority inheri-
tance and backtracking. We assume that the groups of inter-
acting agents A(t) are fully identified prior to starting the al-
gorithm. UNDECIDED is the set of agents that have not man-
ifested an intention (initially A(t)). At each timestep, agents
update their priorities in the way mentioned later [Line 3].
Subsequently, select the agent with highest priority in UN-
DECIDED and call function PIBT [Lines 5,6]. This loops
until all agents inA determines their nodes for next timestep.

The function PIBT takes two arguments: the agent ai mak-
ing a decision and an agent aj from which ai inherits its pri-
ority, or⊥ if there is none. ai must select a node for vi(t+1)
from the set of candidates nodes Ci. Here, Ci consists of
vi(t) and its neighbors while excluding 1) nodes requested
from higher priority agents, 2) nodes denied from inherited
agents, and 3) vj(t) for avoiding intersection [Line 11].

If Ci is empty [Line 12], this means that ai is stuck like

a2 in Fig. 2b. In that case, ai selects vi(t) as vi(t + 1) and
returns invalid as outcome [Lines 27,28]. Otherwise (Ci non-
empty), ai selects the most valuable node v∗i [Line 13]. If
v∗i is occupied by an agent ak in UNDECIDED [Line 15], ai
applies priority inheritance and waits for the result of back-
tracking [Line 16], otherwise, v∗i is set to vi(t+1) and returns
valid [Lines 23,24]. Upon a valid outcome, ai can move to
v∗i [Line 17]. Otherwise, ai updates Ci to exclude prohibited
nodes [Line 20] and repeats the process [Lines 12–26].

We now prove that the agent with highest priority can al-
ways move. The intuition is that it can always move along a
simple cycle.

Lemma 1. Let a1 denote the agent with highest priority at
timestep t and v∗

1
an arbitrary neighbor node of v1(t). If

there exists a simple cycle C = (v1(t), v
∗
1
, . . . ) and |C| ≥ 3,

Algorithm 1 makes a1 move to v∗
1

in the next timestep.

Proof. After deciding v∗
1
, it is added to OCCUPIED

[Line 13,14]. From the definition of Ci, ∀i 6= 1 [Line 11],
no other agent can select v∗

1
.

Consider first the case when v∗
1

is unoccupied. No other
agent can enter v∗

1
and a1 is guaranteed to move to v∗

1
.

Consider now that v∗
1

is occupied by some agent a2. a2
inherits a1’s priority which is highest. The existence of cycle
C ensures that C2 is not initially empty (|C| ≥ 3, C contains
v1(t) and v2(t)). From the definition of C2, collision and
intersection with a1 are implicitly prevented. If a2 selects
v∗
2
∈ C2 such that v∗

2
is unoccupied by another agent, then a2

is guaranteed to move to v∗
2

according to the same logic as for
a1. Consequently, a1 successfully moves to v∗

1
. This forms

the basis and the remaining now proves the induction step.

Following this, suppose that ai grants its priority to aj
(ai, aj ∈ A1(t), 2 ≤ i < j). From the definition of Cj , col-
lision and intersection with other agents are implicitly pre-
vented. If aj selects an unoccupied node v∗j ∈ Cj , aj can
move to v∗j and a series of agents that will receive the result
of backtracking as valid, including ai and a2, can move to its
current target node based on the same argument.

Now, by contradiction, suppose that a2 fails to move to
any node, i.e. a2 receives invalid as the result of back-
tracking and C2 becomes empty. Let DECIDED denote
A1(t) \ {UNDECIDED ∪ {a1}}. The assumption says all
agents in DECIDED failed to move. Since ai ∈ DECIDED
(∀i ≥ 2) tried to move other nodes until Ci became empty,
neighbor nodes of v2(t) exclusive of v1(t) are in OCCUPIED,
and all nodes adjacent to vj(t) (∀j ≥ 3) are in OCCUPIED.
Incidentally, the existence of C indicates at least one agent
a∗ 6= a2 on C had initially at least one free neighbor node
including v1(t). At the beginning of the original priority
inheritance from a1, even though all nodes in C is occu-
pied of someone, the agent on the last node of C has a free
neighbor node, i.e., v1(t), otherwise, it is obviously there ex-
ists a∗. Considering the mechanism of priority inheritance,
DECIDED must contain all agents on C exclusive of a1 be-
cause C contains v2(t). This is contradiction; a∗ should be in
DECIDED but a∗ initially had an free neighbor node. There-
fore, a2 can finally move to a node not v1(t) or v2(t) (equals
to v∗

1
). Thus, a1 can move to v∗

1
.
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Prioritization

Let τi denote the task currently assigned to ai, and gi the
current goal in τi. Let ηi(t) ∈ N be the number of timesteps
elapsed since ai last updated gi and until time t. Note that
ηi(0) = 0 or when ai is free. Let ǫi ∈ [0, 1) be a value unique
to each agent ai. At every timestep, pi(t) ∈ R is computed
as follows; pi(t) ← ηi(t) + ǫi. Obviously, pi(t) is unique
among agents at every timestep.

This prioritization leads to the following theorem.

Theorem 2. If G has a simple cycle C for all pairs of ad-
jacent nodes and |C| ≥ 3 then, with PIBT, all agents reach
their own destination within diam(G) · |A| timesteps after be-
ing given.

Proof. From Lemma 1, the agent with highest priority
reaches its own goal within diam(G) timesteps. Based on the
definition of ηi(t), once some agent ai has reached its goal,
pi(t) is reset and is lower than that of all other agents that
have not reached their goal yet. Those agents see their prior-
ity increase by one. As long as such agents remain, exactly
one of them must have highest priority. In turn, that agent
reaches its own goal after at most diam(G) timesteps. This
repeats until all agents have reached their goal at least once,
which takes at most diam(G) · |A| timesteps in total.

A typical example that satisfies the above condition is any
biconnected undirected graph. The opposite is not true how-
ever, and Theorem 2 is expressed more generally to account
for directed graphs. For instance, a directed ring satisfies the
condition even though it is not biconnected. Note that we
neither ensure nor require that all agents be on their goal si-
multaneously.

Complexity Analysis

Now we consider the computational complexity of PIBT. To
simplify, assume that PIBT performs in a centralized way.
Let ∆(G) denote the maximum degree of G, and F be the
maximum time required to compute the most valuable node
for the next timestep [Line 13]. F depends on both G and the
node evaluation function fi.

Proposition 3. The computational complexity of PIBT in one
timestep is O(|A| ·∆(G) · F ).

Proof. For an agent ai, the function PIBT(ai, ·) is called
once in one timestep because PIBT(ai, ·) is called if and only
if ai ∈ UNDECIDED [Line 5 and Line 15,16], and ai is re-
moved from UNDECIDED after calling [Line 10]. The main
loop in Line 12 is repeated at most ∆(G) + 1 times. If pri-
ority inheritance occurs and succeeds [Line 16], the loop is
broken [Line 18], otherwise |Ci| decreases [Lines 14 and 20].
If the absence of priority inheritance, the loop is also broken
[Line 24]. At each iteration of the loop, the node selection
[Line 13] occurs and is itself of complexity F . Thus, we de-
rive the complexity of PIBT as O(|A| ·∆(G) · F ).

Communication

Since PIBT is based on priorities and assumes only local in-
teractions, it is easily adapted to a decentralized context. The

part of priority inheritance and backtracking is done by prop-
agation of information. In a decentralized context, PIBT re-
quires agents to know others’ priorities before they decide
their next nodes. Usually, this requires |A|2 communication
between agents, however, updating rule of pi relaxes this ef-
fort, e.g., stores other agents priories and communicates only
when ηi becomes zero. Therefore, the communication cost of
PIBT mainly depends on the information propagation phase.

Let us now consider this phase. In Algorithm 1, communi-
cation between agents corresponds to calling function PIBT

[Line 6,16] and backtracking [Line 18,24,28]. PIBT(ai, ·) is
never called twice in each timestep, as discussed in the pre-
vious section. Moreover, each agent sends a backtracking
message at most once in each timestep. Overall, the com-
munication cost for PIBT at each timestep is linear w.r.t. the
number of agents, that is, O(|A|). In reality, this can be even
less because the figures depend on the number of interacting
agents |A| which can be much smaller than |A|.

4.3 Applying to Specific Problems

The valuation function of nodes, fi(v), must be defined based
on the concrete problem. In the two scenarios introduced
later, we use−cost(v, gi) as fi, where cost(u, u′) is the length
of the shortest path from u to u′, and gi is the current desti-
nation if ai has a task. 1 To avoid unnecessary priority in-
heritance, the presence (or not) of an agent is used as a tie-
breaking rule. If ai is free, make vi(t) to be the highest and
use the same tie-breaking rule.

Multi-agent Path Finding (MAPF)

In any graph G, PIBT with above fi does not ensure that
all agents are located on their goals simultaneously, which
MAPF requires. We confirmed a certain kind of livelock situ-
ations in our experiment. It might be possible to ensure com-
pleteness for some classes of graphs through a more complex
fi, e.g., akin to “swap” operation [Luna and Bekris, 2011],
but we do not address this issue here. Note that PIBT is aimed
at iterative use rather than one-shot use.

Multi-agent Pickup and Delivery (MAPD)

The MAPD problem is a typical example of iterative MAPF.
Since PIBT only provides coordinated movements of agents,
we need to complement the method of task allocation.

Different from the proposed algorithms by Ma et al. [Ma
et al., 2017], deadlocks never occur with PIBT even with-
out non-task endpoints, as long as G follows the condition
stated in Theorem 2. Moreover, PIBT does not require well-
formed instances which guarantees that for any two endpoints
including pickup and delivery locations, a path exists between
them that traverses no other endpoints. Practically, MAPD is
performed in orderly environments, i.e., the assumption we
stated of a graph is adequate. Therefore, there is no need to
care about the behavior of free agents.

From the above reasons, we propose a simple allocation
process; at every timestep, each free agent moves to the near-

1 Experiments on MAPF rely on A∗ to obtain the shortest paths.
Those on MAPD used the Floyd-Warshal algorithm, to build the all-
pairs distance matrix, during a preprocessing phase. The comparison
(TP) also utilized the matrix.
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PIBT WHCA∗ PPS

field agents path makespan success runtime path makespan success runtime path makespan success runtime

simple map

8×8

10 6.7 (6.7) 11.2 (11.2) 99 0 (0) 5.8 (5.8) 10.5 (10.5) 98 1 (1) 8.3 (8.3) 13.7 (13.7) 100 0 (0)

15 7.5 (7.5) 12.7 (12.5) 99 1 (1) 6.2 (6.2) 12.6 (12.5) 85 2 (2) 11.0 (11.1) 18.3 (18.5) 100 1 (1)

20 8.4 (7.9) 15.0 (13.9) 89 2 (2) 6.5 (6.4) 13.8 (13.5) 44 4 (3) 13.8 (12.9) 23.0 (22.2) 100 2 (2)

25 9.5 (10.0) 18.1 (20.3) 85 2 (2) 6.8 (6.8) 15.0 (15.0) 4 5 (5) 16.9 (16.7) 26.9 (27.8) 100 4 (4)

30 10.7 19.7 75 3 - - 0 - 21.3 32.7 99 7

40 14.3 25.9 41 5 - - 0 - 33.3 47.4 99 21

50 33.3 67.0 37 12 - - 0 - 58.0 72.7 95 73

lak105d

25×31

10 20.3 (20.2) 34.2 (34.0) 100 2 (2) 19.0 (19.0) 34.0 (34.0) 99 4 (4) 21.1 (21.1) 35.7 (35.6) 100 2 (2)

25 23.0 (23.0) 41.1 (40.8) 99 8 (8) 19.9 (19.9) 40.4 (40.5) 87 22 (22) 26.0 (26.2) 47.0 (47.1) 100 9 (6)

50 26.9 (26.4) 49.0 (47.6) 95 19 (19) 21.1 (21.1) 47.9 (47.9) 36 92 (92) 36.5 (35.4) 67.1 (64.5) 100 40 (26)

75 31.7 (32.1) 59.4 (64.5) 77 36 (37) 22.8 (23.7) 54.0 (57.0) 3 210 (230) 52.1 (47.7) 97.4 (91.0) 98 118 (62)

100 37.1 67.6 62 55 - - 0 - 69.9 130.3 98 284

arena

49×49

10 32.4 (32.4) 56.5 (56.5) 100 5 (5) 31.6 (31.6) 56.5 (56.5) 100 5 (5) 32.6 (32.6) 56.9 (56.9) 100 3 (3)

25 33.1 (33.1) 63.7 (63.7) 100 12 (12) 31.5 (31.5) 64.0 (64.0) 100 17 (17) 33.8 (33.8) 65.1 (65.1) 100 9 (9)

50 35.0 (35.0) 68.7 (68.7) 100 25 (25) 32.2 (32.2) 69.3 (69.3) 100 59 (59) 36.6 (36.6) 72.7 (72.7) 100 20 (20)

100 37.6 (37.6) 74.1 (74.0) 98 52 (52) 32.4 (32.4) 74.8 (74.8) 98 253 (253) 41.1 (41.1) 82.1 (82.0) 100 53 (53)

200 42.1 (42.1) 77.5 (77.7) 96 121 (121) 33.3 (33.3) 79.8 (79.9) 82 1292 (1294) 51.0 (50.9) 96.6 (96.4) 100 185 (183)

300 46.0 (46.2) 80.6 (81.6) 90 210 (212) 34.3 (34.3) 83.8 (83.8) 26 3482 (3492) 62.0 (62.1) 111.9 (112.2) 100 477 (463)

400 49.4 (47.5) 84.1 (84.0) 74 318 (305) 35.1 (35.1) 83.0 (83.0) 1 6703 (6703) 74.3 (72.6) 129.4 (139.0) 100 1048 (847)

500 52.7 88.4 61 458 - - 0 - 87.6 147.0 99 2122

ost003d

194×194

10 163.3 (163.3) 316.4 (316.4) 100 208 (208) 159.6 (159.6) 316.3 (316.3) 100 290 (290) 163.8 (163.8) 317.3 (317.3) 100 192 (192)

25 170.6 (170.6) 356.3 (356.3) 100 586 (586) 162.1 (162.1) 356.4 (356.4) 100 1179 (1179) 172.4 (172.4) 360.3 (360.3) 100 485 (485)

50 173.4 (173.0) 370.9 (370.8) 100 1413 (1407) 160.3 (160.3) 370.2 (370.2) 99 3317 (3317) 177.2 (176.8) 379.0 (378.8) 100 1053 (1050)

100 179.6 (178.7) 381.6 (381.2) 100 3298 (3224) 158.8 (158.8) 380.2 (380.2) 91 8436 (8436) 189.0 (188.0) 403.7 (403.3) 100 2796 (2748)

200 190.5 (189.8) 393.1 (392.2) 100 8550 (8392) 160.1 (160.1) 391.1 (391.1) 57 22853 (22853) 215.6 (214.7) 453.1 (454.1) 100 9506 (9276)

300 198.9 (194.1) 402.3 (396.2) 98 14614 (13069) 155.2 (155.2) 397.8 (397.8) 6 38453 (38453) 243.3 (233.1) 498.4 (488.8) 100 21630 (18219)

400 207.4 410.7 99 21813 - - 0 - 274.8 551.3 98 42966

500 215.7 424.9 94 29834 - - 0 - 308.3 606.4 100 76312

Table 1: The results of MAPF experiments. “path” corresponds to path cost. “success” means the percentage that solver successfully solved
within 100 instances. The unit of “runtime” is ms. In “path”, “makespan” and “runtime”, average only in the case of success within a solver
(no decoration) and average over instances that were successfully solved by all solvers (in parentheses) are both shown.

est pickup location of the non-assigned task, ignoring the be-
havior of other agents, and is assigned to a task if and only
if it reaches the pickup location and the task remains. The
following theorem directly follows from Theorem 2.

Theorem 4. If G has a simple cycle C for all pairs of adja-
cent nodes and |C| ≥ 3, then PIBT with the above-mentioned
allocation process solves MAPD.

5 Evaluation

This section assesses the effectiveness of PIBT quantitatively,
through computer simulation. The simulator was developed
in C++, 2 and all experiments were run on a laptop with In-
tel Core i7 2.2GHz CPU and 8GB RAM. The experiments
address both the MAPF and MAPD problems.

5.1 Multi-agent Path Finding (MAPF)

We carefully chose four undirected graphs, shown in Ta-
ble 1, as testbeds for MAPF. Three of them (lak105d, arena,
ost003d) come from the game Dragon Age: Origins [Sturte-
vant, 2012] and are commonly used to evaluate multi-agent
algorithms. For comparison with PIBT, we also experimented
using two sub-optimal MAPF solvers, namely WHCA∗ [Sil-
ver, 2005] and Parallel Push and Swap (PPS) [Sajid et al.,
2012]. The window size of WHCA∗ was set to 5 on the
simple map, and to 10 otherwise. All solvers were executed
on the same set of 100 settings with random initial positions
and goal locations for each configuration while changing the
number of agents. An execution was considered failed if the

2 The code is available at https://kei18.github.io/pibt/

solver yielded a failure or failed to provide a result after a
timeout of 5 minutes. The evaluation metrics are the fol-
lowing four, referring to other MAPF studies: 1) path cost,
i.e., the timestep when each agent reaches its given goals and
never move from then; 2) makespan, i.e., the timestep when
all agents reach their given goals; 3) runtime; and 4) success
rate over 100 instances. Note that the sum of service time
for one agent defined in Section 3 is different from path cost,
e.g., assume that an agent reaches its goal and apart there. The
service time does not augment when the agent is on the goal
since the task is not issued, whereas the path cost does count
that time. Stated in section 3, the typical objective function
of iterative MAPF is service time and path cost is the spe-
cific metric of the one-shot version. However, following the
literature on one-shot MAPF, we address here path cost and
makespan, which is also indirect criteria of service time.

The results, shown in Table 1, indicate, for each solver,
both an average over the instances successful with that solver
(no decoration), and an average over only the instances that
were successfully solved by all three solvers (in parentheses).
In summary, PIBT compares well with other methods; Path
efficiency is reasonable with a high success rate in most cases,
moreover, PIBT is comparable with PPS in terms of runtime
cost. In general, PIBT appears to have an advantage in huge
fields with many agents since it relies only on local communi-
cation, and here, the experimental results support the strength
of our proposal (see ost003d in Table 1). Conversely, PIBT
suffers from a somewhat low success rate in dense situations
(see the simple map). PIBT fails on MAPF either because the
graph property mentioned before is not met or due to livelock
situations.
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PIBT TP

freq. agents
make-

span

service

time

run-

time

make-

span

service

time

run-

time

10 2531 29 255 2543 38 3007

20 2527 26 405 2541 38 3864

0.2 30 2525 25 534 2540 38 4790

40 2524 25 648 2542 38 5971

50 2524 24 776 2541 38 6990

10 1224 116 142 1240 124 882

20 1038 28 218 1058 40 5709

0.5 30 1033 25 326 1059 40 7211

40 1031 24 410 1058 40 8019

50 1031 24 494 1058 40 9629

10 1135 296 144 1154 309 907

20 652 77 152 672 85 1778

1 30 552 33 178 576 41 4258

40 540 27 229 580 43 11309

50 537 25 286 581 44 13953

10 1115 403 145 1134 415 933

20 609 167 154 631 177 1852

2 30 448 92 164 478 101 2917

40 370 58 175 404 67 4187

50 328 41 184 369 51 5810

10 1105 470 143 1125 479 976

20 597 231 155 616 238 1889

5 30 429 152 164 454 159 2895

40 346 114 172 381 121 4022

50 299 92 183 341 99 5619

10 1103 492 144 1122 501 884

20 596 252 153 612 259 1779

10 30 425 173 163 452 179 2717

40 344 135 173 371 140 4058

50 294 112 182 336 118 5461

Table 2: The results of MAPD experiments. Each value is an average
of 100 instances. The unit of runtime is ms. The graph is 21×35 4-
connected grid. Gray cells in the MAPD map are task endpoints,
i.e., pickup and delivery locations.

Experimental results in arena show drastic improvements
in both runtime and makespan for PPS and WHCA∗ when
compared to the original paper of PPS [Sajid et al., 2012].

The improvement in runtime is easily explained by heavy
optimization of our implementation and, in particular, of the
underlying A∗ algorithm and its use (aggressive caching,
elimination of redundant computations across agents, ...).

The improvement in makespan is difficult to isolate but is
likely to come as a side-effect of the aggressive caching men-
tioned above. The rationale is that, when many agents need to
move in the same direction, the caching helps create one-way
flows of agents and hence reduce interactions and contention
between groups of agents moving in opposite directions. In
contrast, since A∗ is a stochastic algorithm, this could result
in increased contention. This is interesting but largely beyond
the scope of this paper.

All three solvers determine paths one at a time, but PPS
and PIBT differ from WHCA∗ in that the former two have
a look ahead of a single step, whereas the WHCA∗ com-
putes paths multi-steps ahead. Due to this, WHCA∗ is nat-
urally expected to compute better paths than PIBT and PPS.
We however observe that PIBT sometimes results in a bet-
ter makespan than WHCA∗, which can be explained by the
fairness provided by dynamic prioritization (i.e., more unifor-

mity in path lengths among agents). In PIBT, once an agent a
reaches its goal, its priority drops below other agents that have
yet to reach their goal, letting them push a away rather than
taking a detour. This likely contributes to reducing makespan
over WHCA∗, in which agents hold their priority. Further,
the “Swap” operation in Push and Swap [Luna and Bekris,
2011] solvers, while effective in narrow passages, produces
unnecessary steps in open spaces such as arena.

5.2 Multi-agent Pickup and Delivery (MAPD)

Following the experimental setup of the original study [Ma
et al., 2017], we used the same undirected graph as testbed,
as shown in Table 2. We generated a sequence of 500 tasks
by randomly choosing their pickup and delivery locations
from all task endpoints. We used 6 different task frequencies,
which numbers of tasks are added to the task set Γ: 0.2 (one
task every 5 timestep), 0.5, 1, 2, 5 and 10 where the number
of agents increases from 10 to 50. TP algorithm [Ma et al.,
2017] was also tested for comparison. All experimental set-
tings were performed in 100 instances which initial positions
of agents were set randomly. We evaluated following three:
1) makespan which is the timestep when all tasks are com-
pleted; 2) service times, i.e., terms from issue to completion
of tasks; and 3) runtime.

The results are shown in Table 2. Clearly, PIBT signif-
icantly outperforms TP in the view from all three metrics.
PIBT is efficient because 1) it ignores the positions of free
agents; 2) the computational cost of planning a path is cheap.

6 Conclusion

This paper introduces PIBT, an algorithm for iterative MAPF.
PIBT focuses on the adjacent movements of multiple agents,
and hence can be applied to many domains. Intuitively, PIBT
is well-suited to large environments because such environ-
ments result in intensive communication and path efficiency
improves with a lower density of agents. Empirical results
support this aspect, moreover, PIBT outperforms current so-
lutions to pickup and delivery (MAPD).

Future research include the following: 1) relaxing condi-
tions on the graph environment; 2) finding the effective valua-
tion function of nodes for each domain; 3) adapting the model
to asynchronous communication and movements; 4) expand-
ing the time window; and 5) applying PIBT to applications
other than MAPF and MAPD.
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