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 
Abstract—This paper critically evaluates a number of 

sensitivity analysis (SA) techniques to identify the most 
influential parameters affecting power system small-disturbance 
stability. Sensitivity analysis of uncertain parameters has 
attracted increased attention with the adoption of deregulated 
market structure, intermittent energy resources and new types of 
loads. Identification of the most influential parameters affecting 
system stability using SA techniques will facilitate better 
operation and control with reduced monitoring (only of the 
parameters of interest) by system operators and stakeholders. In 
total, nine SA techniques have been described, implemented and 
compared in this paper. These can be categorised into three 
different types: local, screening, and global SA. This comparative 
analysis highlights their computational complexity and 
simulation time. The methods have been illustrated using a two-
area power system and 68 bus NETS-NYPS test system. The 
priority ranking of all uncertain parameters has been evaluated, 
identifying the most critical parameters with respect to the small-
signal stability of the test systems. It is shown that for many 
applications, the Morris screening approach is most suitable, 
providing a good balance between accuracy and efficiency.  
 

Index Terms — Computational efficiency, probability 
distribution, sensitivity analysis, small-disturbance stability, 
uncertainty. 
 

NOMENCLATURE 


md  Distances between each alternative and the ideal 

solutions. 

md   Distances between each alternative and the non-

ideal solutions. 
i

p
EE    Elementary effect. 

    Magnitude of each step in Morris trajectory. 
*     Mean of the elementary effects . 
*     Standard deviation of the elementary effects. 

n   Uncertainty samples in MADM, FAST and 
Borgonovo method. 
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N     Number of Monte Carlo simulation. 

p     Number of uncertain (input) parameters. 

r     Number of levels in Morris trajectory. 

pr    Output ranking coefficient in MADM. 

npr     Elements of normalized decision matrix in MADM. 

iS    Index of Sobol 1st order effect. 

iO   Impact of relative variation of output  Y  due to a 

change in iX  by a fixed fraction of iX ’s central 
value. 

iST    Index of Sobol total effect.  

maxv    Ideal solutions in MADM. 

minv    Non-ideal solutions in MADM. 

nw   Weight obtained from the pdf of each uncertain 

parameter in MADM.  

iX  th
i  input parameter. 

iY  th
i  output parameter. 

X  Mean value of input parameter samples. 

Y  Mean value of output parameter samples. 

pnX  MADM decision matrix elements with p  

parameters and n  uncertainty samples. 
X  All input parameter set. 
Y  All output parameter set. 

XY    Index of Pearson correlation coefficient. 

rYrX   Index of Spearman's correlation coefficient. 

XY.Z   Index of Partial correlation coefficeint. 

I. INTRODUCTION 

OWER system parameters inherently exhibit spatio-
temporal variability, which leads to ignorance of their true 

values and inaccuracies in their estimation. The number of 
uncertain parameters in power system planning and operation 
is increasing due to the deregulated market structure, 
intermittent energy resources and new types of loads. A 
conventional deterministic analysis methodology neglects 
these uncertain parameters and does not provide an accurate 
assessment of the status and capability of a power network, 
which may lead to overly conservative and non-optimal 
techno-economic solutions [1]. 
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A probabilistic approach, conversly, considers uncertain 
parameters present in the system and can more accurately 
predict the system behaviour as affected by possible changes 
in uncertain parameters. The terms ‘parameters’ and 
‘variables’ will be used in the paper interchangeably. As the 
number of system parameters increases with the size of the 
network and due to the proliferation of new technologies and 
operational structure, it is computationally intensive and 
inefficient to address all uncertain parameters present in a 
realistic system. Moreover, it may not be necessary to model 
all uncertain parameters as some may have very little or no 
impact on the system phenomenon of interest [2]. Hence, 
identification of the most influential parameters of the system 
will facilitate better operation and control with less monitoring 
(only of the parameters of interest) by system operators and 
stakeholders.    

Global sensitivity analysis (SA) techniques can numerically 
identify the most influential parameters from large sets of 
uncertain system inputs. Global SA can determine the 
contribution of one input (or a set of inputs) to the change in a 
specific output (or a set of outputs). Consequently, it enables 
the analysis of the impact of input variables on the variation of 
a system output. SA is beneficial for identifying the most 
influential inputs, determining the non-influential inputs, 
mapping output variability with respect to specific input 
variability, and calibrating inputs by observing the consequent 
changes in outputs [3]. There has been limited application of 
global SA within power systems research, however  a number 
of applications have been demonstrated in several areas such 
as flood prediction [3], urban water supply [4], hydrological 
modelling [5], crop yield [6], cancer models [7], aircraft 
infrared signature [8], and geolocation systems [9].   

The applications of SA techniques in power systems 
research have been reported in generator ranking [10], load 
classification [11], voltage stability assessment [12-14], 
transient response prediction [15], PSS design [16], and 
frequency support from storage devices [2]. Early applications 
of sensitivity analysis to power system area consider linear 
[12, 13, 16], quadratic [14], and trajectory measures [15], 
which are incapable of assessing the impact of uncertainties 
across the full range of possible uncertain space [2]. Several 
global sensitivity analysis methods have been discussed and 
implemented in [2] to assess the uncertainty importance 
measures of system frequency excursion and its mitigation by 
storage devices. However, highly efficient screening methods 
of sensitivity analysis have not previously been considered for 
power systems applications, nor have global SA approaches 
been used to analyse small-disturbance stability.  

A recent work [17] by the authors presented the 
applicability of the Morris screening method in identifying 
important parameters with varying levels of uncertainty at 
different system operating conditions. This paper presents a 
significant extension of [17] and compares the performance of 
a wide range of SA techniques applied to multiple test 
systems. It describes and implements the local and global SA 
methods presented in [2] in addition to the computationally 
efficient Morris screening method [3, 4, 18] and a multi-
attribute decision making (MADM) approach [19-22]. These 

methods are all compared with respect to their analysis of the 
most important parameters affecting the small-disturbance 
stability of multiple power systems. The main contributions of 
the paper are: 

 Nine widely used numerical sensitivity analysis 
techniques with significantly different computational 
procedures and complexity are described, compared and 
their advantages and disadvantages discussed with respect 
to their suitability for the identification of the most 
important parameters affecting the small-disturbance 
stability of power systems. 

 The most suitable techniques are determined and 
recommended for the identification of the parameters on 
which modelling efforts should be focused in order to 
improve the accuracy of small disturbance stability 
studies of uncertain power system and consequently the 
overall operation of the power system. 

The results are illustrated using a two-area test network with 
35 uncertain parameters and a 68-bus NETS-NYPS test 
system with 49 uncertain parameters. The application of a 
wide variety of SA techniques in multiple test systems 
demonstrates the wide ranging potential for further application 
in other areas of power system analysis. 

II. SENSITIVITY ANALYSIS TECHNIQUES 

Sensitivity analysis determines how the input variable 
uncertainty propagates through the process to the output [4]. 
SA methods can be classified as: (i) local, (ii) screening and 
(iii) global, where the computational cost and complexity 
increases from (i) to (iii) [18]. When the impact of a small-
perturbation in input is studied on the system output, this is 
known as local sensitivity analysis. It determines a normalized 
linear relationship between variables in the local region 
around the nominal operating point. Screening techniques, on 
the other hand, change one input at a time in a 
multidimensional space to evaluate the input-output 
relationship. A global sensitivity analysis considers the whole 
range of variation of inputs on the system output.  

A. Local Method – One-at-a-Time (OAT) 

Local SA methods determine the impact of individual input 
parameters on the model output, by directly calculating the 
partial derivatives of the output with respect to input. One 
such local SA approach is one-at-a-time (OAT) [5, 18].  

In the OAT design, one factor is varied over a small interval 
around its nominal value. This nominal value correspond to a 
specific point in the input space. Hence, the results are 
dependent on the choice of the input space. The sensitivity 

measure (as a relative variation of Y  due to a change of iX  

by a fixed fraction of iX ’s central value) can be expressed as, 

   iiiO XYYX  .         (1) 

This approach is easy to implement and requires relatively 

low computational cost (i.e. 1p   simulation for p  uncertain 

parameters). The performance of this method can be 
insufficient when the model is nonlinear and the system output 
is affected by combinations of uncertainties [2, 18].  
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B. Screening Method – Morris Method  

When a system has a large number of input parameters and 
it is computationally expensive to evaluate the model, a 
screening method can be used to identify the most influential 
parameters. The Morris method is such a screening method. 

The Morris screening method creates a multidimentional 
semi-global trajectory within its search space and can 
efficiently identify the most influential parameters [3, 5, 18]. 
A prominent feature of Morris method is its low 

computational cost. It requires 1p r   simulations. Here, r  is 

the number of levels in Morris trajectory generation and 
typical value of r  is between 4 to 10 [3, 18]. A significantly 
reduced computational burden with respect to full global SA 
approaches (which will be discussed in II.C) makes it efficient 
and feasible for application in realistic power networks with 
many uncertain parameters. 

The Morris method changes one variable at a time by a 
magnitude of  . The standardized (or elementary) effect of 
a   change is defined as (2). 

    /)(),...,,,,...,,()( 1121 XYYX piii

i

p XXXXXXEE  

 (2) 
The Morris method proposes two importance measures, 

which are mean ( *)  and standard deviation ( *)  of the 

elementary effects of each input variable, (3) and (4).  

1

* 1
r

i

p p

i

r EE


          (3) 

 2
*

1

* 1
r

i

p p p

i

r EE 


         (4) 

In (3), *
p

 expresses the sensitivity strength between the th
p  

input variable and the output. A high value of *
p

  

demonstrates a high contribution of the input variability to the 
output variability. On the other hand, an input variable having 

large *
p

  has a non-linear effect on the output and it has high 

interaction with other variables [3, 4].  

C. Global Methods 

Global sensitivity methods evaluate the importance of 
parameters across the full range of possible input values. 
Global SA methods can be subdivided further into: (i) those 
which generate samples equidistantly across the input space 
such as MADM, (ii) those which are non-parametric such as 
correlation coefficients, (iii) those which analyse the influence 
on output variance such as Sobol indices or the FAST (Fourier 
Amplitude Sensitivity Testing) method, and (iv) those which 
analyse output probability distributions such as the Borgonovo 
method. These methods are typically complex in nature and 
computationally expensive [5, 18].  
1) Multi-Attribute Decision Making (MADM) 

The multi-attribute decision making (MADM) algorithms 
are priority ranking methods including Analytic Network 
Process (ANP), Decision EXpert (DEX), ELECTRE, Goal 
Programming (GP), New Approach to Appraisal (NATA), 
Superiority and Inferiority Ranking (SIR) method, Value 
Analysis (VA), and Weighted Sum Model (WSM), etc. [23-
25]. The version of MADM considered in this study is based 

on the TOPSIS (Technique for Order Performance by 
Similarity to Ideal Solution) method because of its efficiency 
and simple implementation [19-22]. A decision matrix can be 
built considering p  parameters and n  uncertainty samples as 

in (5). 





















pnn

p

XX

XX

....

........

........

....

1

111

        (5) 

In (5), 
pnX  are decision matrix elements. Each column of the 

matrix represents different uncertain parameters and each row 
represents the same parameter at different uncertain values. 

The decision matrix normalization, weighting and ideal, 
non-ideal solutions is obtained by using (6)-(8). 


n

nppnnpr
1

2
XX          (6) 

nppnp rwv           (7) 

 
 







nnvnnvv

nnvnnvv

npnp

npnp

max,min

min,max

min

max

    (8) 

Distances between the outputs related to various 
uncertainties of ideal and non-ideal solutions have been 
calculated using (9).  

   



 

n

npp

n

npp vvdandvvd
1

2

min
1

2

max ,   (9) 

Finally, the MADM output ranking coefficient pr  is 

determined as (10). 

   pppp dddr  (10) 

2) Pearson Correlation Coefficient 

Pearson correlation coefficient is a quantitative measure that 
determines the linear dependency between the output and the 

inputs. The inputs )(X  can be ranked according to their 

influence on the system output )(Y . This method is the most 

commonly used in science and engineering [2]. The Pearson 
correlation coefficient is calculated by (11) [3]. 

       









N

i
i

N

i
i

N

i
ii

1

2

1

2

1
YYXXYYXXXY   (11) 

In (11), the numerator term expresses the covariance 
between variables, and the denominator shows the standard 
deviation of the parameters, where, 

   






N

i
i

N

i
i NN

11
, YYXX        (12) 

3) Spearman Rank Correlation Coefficient 

Spearman's correlation coefficient is the Pearson correlation 
coefficient among ranked variables. This number varies 
between -1 and +1[26].  

Spearman's correlation coefficient requires calculating the 
sum of the squares of the differences of the ranks using (13).  

  161 22   NNdi         (13) 

where N  is the sample size, and iiid YX  . If tied ranks 

exists, (14) is used. 
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        
i i

ii
i

ii

22
YYXXYYXX

rYrX    (14) 

 
4) Partial Correlation Coefficient 

Partial correlation coefficeint measures the degree of 

association between output variable Y  and input variable 

jX  when the effects of the other inputs have been canceled.  

 jjj ~~
ˆ,ˆ YYXXXY.Z         (15) 

Where j~X̂  is the prediction of the linear model, 

expressing jX  with respect to other inputs, and j~Ŷ  is the 

prediction of the linear model where jX  is absent [3]. Partial 

correlation is based on the assumption of linear relationship. 
5) Sobol Total Indices 

Sobol method is a variance-based method, which is very 
useful in case of non-linear and non-monotonic models. Sobol 
total indices are the sum of all the sensitivity indices involving 
all uncertain factors [2, 3, 18]. 

, ,

...
T i ij ijk

i j i j i k j k

S S S S
   

         (16) 

   i i
S D Y Var Y        (17) 

   ij ij
S D Y Var Y       (18) 

 )|()( ii VarD XYY        (19) 

  )()(),|()( YYXXYY jijiij DDVarD     (20) 

Where, 
i

S is the 1st-order sensitivity index for i , ij
S  is the 

2nd-order sensitivity index describing the interactions between 

two uncertainties i  and  j i . ijk
S  is the 3rd-order sensitivity 

index for three uncertainties, , ,i j k  i j k  . These 

interactions will continue up to th
p  order for p  parameters.  

iS  is the Sobol 1st order effect which is determined by 
obtaining the correlation coefficient of the output vector from 
two model runs in which all values for variables in iX  are 
common, but all other inputs use independent samples. 

In determining the Sobol total indices, input data set X is 
partitioned into i~X  and iX , where i~X  is the set of all input 
variables which include a variation in the th

i  index of X . The 
total effect is then calculated by (21). 

ii SST ~1          (21) 

where, iS~  is the sum of the all terms that include the 

variation in iX . The Sobol method has been efficiently 

implemented in environmental and hydrological models [3, 5].  
6) Fourier Amplitude Sensitivity Testing (FAST) 

The FAST method associates input parameter variation with 
a specific frequency in the Fourier transform space of the 
system. This variation is then quantified using the statistical 
variance as presented in (22) [27].  

   



n

i
i ns

1

22 1/YY        (22) 

where n  is the sample size, iY  is the th
i  output and Y  is the 

output mean. The output variances are then separated 
according to their coherence with the input parameter 
frequency. The variation of output at a given frequency 
provides a measure of sensitivity index of that input 

parameter. In this way, the multidimensional problem is 
transformed to just a single dimension [2]. 

The sampling procedure in FAST defines a sinusoidal 
function of a particular frequency for each input variable that 
assigns a value to the search space based on the sample 
number 1 to the n  samples. Applications for systems with 
large numbers of uncertainties can become computationally 
intensive due to the determination of a set of p  integer 

frequencies (used during the Fourier transformation). The 
number of simulations N  required within the study is 
dependent on the maximum frequency of parameter variation 
used which increases quickly and non-linearly with p  [28].  

7) Borgonovo Method 
The Borgonovo method evaluates the influence of the entire 

input distribution on the entire output distribution without 
reference to a particular moment of the output [29]. In the 

Borgonovo method, iX  is kept fixed at a given value *
i

x  and 

the remaining inputs i~X  are varied in order to produce a new 

distribution for the observed output  *
ii xX|Y . Here,  is X  

is defined as (23), and the importance index δ is defined as 
(24). In (24) the expectation of  is X  is determined by 

integrating across the full range of X i , taking into account its 
distribution, as in (25) [29, 30]. 

  dyyfyfs
ixi

i 


 )()( *X|YYX      (23) 

  isE X½         (24) 

   i
ixi

iii dxdyyfyfxfsE  
 



  )()()( *X|YYXX ) (25) 

In (25),  is X  provides an indication of the impact of input 

on the output. In (23), if Y  is independent of iX , then 

)()( * yfyf
ixi 


X|YY  and   0is X  and 0  . Thus   can 

take any value between 0 and 1. The Borgonovo method 
requires a Monte Carlo-based integration across the range of 

iX , using N studies for this outer integration loop. The total 

computational cost is therefore much higher for this index than 
the others discussed above. This is the price to be paid for a 
sensitivity measure which accounts for the whole distribution 
and not just a moment of the distribution and requires p n N  

simulations to determine δ indices for p  parameters. 

D. Summary on Sensitivity Analysis Techniques 

Fig. 1 presents a graphical representation of working 
principle of the different SA techniques discussed in two 
dimensions. OAT changes one factor at a time over a small 
interval around its nominal value. The Morris method creates 
a multidimensional trajectory through the search space. 
MADM generates equidistant samples across the range of 
each parameter. Correlation coefficients handle thousands of 
random generated samples within the search space. Sobol 
samples are generated in a symmetrical geometric orientation. 
The FAST method translates the analysis into the frequency 
spectrum. The Borgonovo method integrates the whole space 
while fixing different parameters at given values.  

Selection of an SA technique depends on the characteristics 
of the model (particularly the number of uncertain parameters) 
and computational cost [18]. Fig. 2 presents a graphical 
synthesis adopted from [3] of the total nine SA techniques 



TPWRS-01688-2015 
 

5 

discussed in this paper, with their relative computational 
complexity and number of simulations required. SA 
techniques can be clearly dintinguished among local, 
screening and global with respect to their computational cost. 
Local method requires very low computational effort. The 
screening method has medium complexity and relatively low 
computational cost. Global methods, on the other hand, are 
generally computationally demanding but also capable of 
identifying more complex input-output relationships. 

There are other sensitivity analysis techniques which have 
not been considered in this study, e.g., Bettonvil’s sequential 
bifurcation, Green function method, first-order or second-
order reliability method (FORM or SORM), Bayesian 
sensitivity analysis, Taguchi method and High-Dimensional 
Model Representation (HDMR) [3, 5, 6, 8, 9, 18, 31, 32]. 
These methods vary widely in implementation complexity and 
computational cost and remain an ongoing area of research 
with respect to their suitability for application in small 
disturbance stability studies.   

III. TEST NETWORK AND SYSTEM UNCERTAINTIES 

All sensitivity analysis techniques discussed have been 
illustrated through the simulation of two separate test systems: 
the two-area test system, and NETS-NYPS test system. 

In total 35 and 49 parameters are considered for two-area 
and NETS-NYPS test system, respectively. Correlation among 
input parameters has not been modelled in this study.       

A. Two-Area Test System 

In total, nine sensitivity methods described have been 
evaluated using the well-established Kundur two-area network 
[33]. The network, shown in Fig. 3, consists of two areas with 
four generators and two loads. This system has one poorly 
damped inter-area oscillatory mode, the damping (real part) of 
which is selected as the system output of interest. 

A variety of system uncertainties are considered in order to 
thoroughly test the described methods. These have been 
classified into the following groups: 
1) Operating Uncertainty 

The electrical power output of all generators (excluding the 
slack G1) and real and reactive power demand at both loads 
are considered as uncertain. Seven operating uncertainties are

,{ 4~2 GGP ,7LP ,7LQ ,9LP }9LQ .  

2) AVR Setting Uncertainty 

Each generator in Fig. 3 is equipped with a fast static 

exciter, whose parameters [18] (gain AK and time constant 

AT  shown in Fig. 4(a)) are considered as uncertain. Eight 

uncertainties in the AVR settings are ,{ 4~1 GG

AK }4~1 GG

AT . 

3) PSS Setting Uncertainty 

Each generator is controlled using an additional Power 
System Stabilizer (PSS) to help damp persistent oscillations 
with the structure shown in Fig. 4(b) [18]. There are a total of 

20 uncertainties in the PSS settings, which are ,{ 4~1 GG

PK

,4~1
1

GG
T ,4~1

2
GG

T ,4~1
3

GG
T }4~1

4
GG

T . 

4) Uncertainty Distributions 

A total of 35 uncertainties are considered in the two-area 
system. Probability distributions and probabilistic model 
parameters of three sets of uncertain input variables are 
presented in Table I. The operational uncertainties (generation 
and load) are modelled as normally distributed with nominal 
mean and standard deviation such that 3𝜎 = 𝜐 where 𝜐 is the 
level of uncertainty (as a percentage of the nominal value). A 
uniform distribution is selected to represent the uncertainty of 
the controller parameters AK , AT , PK , and 4...1T  around the 

nominal given values, and range of ±𝜐 where 𝜐 is the level of 
uncertainty (again, as a percentage of the nominal value). 

All simulations including load flow and eigenvalue analysis 
are performed using MATLAB/Simulink. 

B. NETS-NYPS Test System  

The second test system is a modified version of the NETS-
NYPS system (New England Test System – New York Power 
System) which has five areas, 16 machines and 68 buses, as 
shown in Fig. 5. Data and more information of the test 
network are available in [34, 35].  
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Fig. 2.  Relative computational effort and complexity of the SA techniques. 

 

 

Fig. 3.  Two-area test network. 
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A high amount of distributed energy resources (DER) has 
been added to the network so that the impact of intermittent 
resource variability on the small-disturbance stability can be 
analysed. Renewable wind and solar generators are placed in 
seven buses of the network, namely bus 17, 26, 33, 53, 57, 60, 
and 68. Based on the uncertain random sampling of DERs, 
renewable generation can contribute towards a maximum of 
30% of system load.  
1) System Uncertainties 

The probabilistic system variables considered with the 
second test system are load demand, wind speed, and solar 
power, which follow normal, Weibull, and beta distributions. 

In total, 49 uncertain parameters (35 loads, 7 wind farms 
and 7 solar farms) have been modelled probabilistically. The 
35 uncertain loads presented in the NETS-NYPS test system 

are 1,3,4,7,9,12,15~18,20,21,23~29,33,36,39~42,44~52L , where subscripts are 

bus numbers in NETS-NTPS system. The 7 wind and solar 

farms are 68,60,57,53,33,26,17W  and 68,60,57,53,33,26,17S , respectively.  

Table II shows the probability distributions and 
probabilistic model parameters of three categories of uncertain 
input variables. The normal, Weibull and beta distributions are 
represented through [mean )( , standard deviation )( ], 
[scale parameter )( , shape parameter )( ] and [shape 
parameter 1 )(a , shape parameter 2 )(b ], respectively. A 
3.33% standard deviation of input parameters has been 
considered for normal distribution of load (i.e. 3σ is 10%). 
Weibull and beta distributions, whose parameters are given in 
Table II, also follow a similar high level of uncertainty. 

The uncertainties of AVR and PSS parameters were not 
considered in simulations with the larger system in order to 

reduce the number )( p  of uncertainties considered and 

consequently required computational time. The simulation 
time would increase significantly with larger number of 
uncertain parameters considered without contributing to 
accuracy and quality of conclusions drawn with respect to 
comparison of the methods.  

Probabilistic modelling of the input parameters and 
sensitivity analyses have been performed in MATLAB and 
OPF simulation has been solved in MATPOWER [36]. Modal 
analysis has been conducted in DIgSILENT PowerFactory. 

C. Number of Simulations and Computational Time 

The relative computational cost in terms of both the number 
of simulations and simulation execution run-time for all 
presented techniques are shown in Table III. For 35 and 49 
uncertain parameters, OAT requires considerably less (36 and 

50, respectively) computations. For the Morris method, 10r , 
a moderate number of (351 and 491) simulations are needed to 
run. The computational cost of MADM is same as Morris 
method. All correlation coefficients require a high number of 
simulations (which is in the range of 1000). Sobol, FAST and 
Borgonovo methods require a very large number of 
simulations, which are 180,000, 91,941 and 350,000, 
respectively for two-area system and 50,000, 207,661 and 
490,000, respectively for NETS-NYPS system. 

All of these sensitivity techniques (except FAST and 
Borgonovo for NETS-NYPS) have been implemented in this 
study to identify the most influential parameters. The 

application of FAST and Borgonovo is unsuitable for large 
test system as these requires large number of (207,661 and 
490,000, respectively) simulations and extremely high 
estimated run-times of 5.5 days and 13 days. All the studies 
are performed using a desktop PC with Intel Core i5-3470 
CPU @ 3.20GHz and 8GB RAM processor.  

A sufficient number of Monte Carlo run is determined 
through a stopping rule as in (26) [37].  
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Fig. 4.  Simplified (a) AVR and (b) PSS model used during linear analysis. 

TABLE I 
PROBABILITY DISTRIBUTIONS AND PROBABILISTIC MODEL PARAMETERS OF 

UNCERTAIN INPUT VARIABLES OF TWO-AREA POWER SYSTEM 

Variables 
Generators and 
Load Demand 

AVR Gain and 
Time Constant 

PSS Gain and 
Time Constant 

Probability 
Distribution 

Normal Uniform Uniform 

Modelling 
Parameters 

 of%10:   of%10:   of%10:  
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Fig. 5.  Modified NETS-NYPS (New England Test System – New York 
Power System) network with a high amount of wind and solar generation. 
 

TABLE II 
PROBABILITY DISTRIBUTIONS AND PROBABILISTIC MODEL PARAMETERS OF 

UNCERTAIN INPUT VARIABLES OF NETS-NYPS TEST SYSTEM 

Variables Load demand Wind Speed Solar Power 
Probability 
Distribution 

Normal Weibull Beta 

Modelling 
Parameters 

 of%103   1.11,2.2    3.1,7.13  ba  

 
TABLE III 

TOTAL NUMBER OF SIMULATIONS AND COMPUTATIONAL TIME REQUIRED 

FOR DIFFERENT SENSITIVITY ANALYSIS TECHNIQUES 

Sensitivity 
Techniques 

Cost 
No. of Simulations Simulation Time 

System1 System2 System1 System 2 

OAT 1p  36 50 7 s 4 m 

Morris 1 rp  351 491 66 s 17 m 

MADM 1np  351 491 66 s 30 m 

Pearson N  5000 1,000 16 m 40 m 

Spearman N  5000 1,000 16 m 40 m 

Partial N  5000 1,000 16 m 40 m 

Sobol Np  )1(  180,000 50,000 9 h 25 m 32 h 

FAST fp   91,941 207,661 4 h 50 m - 

Borgonovo Nnp   350,000 490,000 18 h 20 m - 
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According to the criterion presented in (26), simulations can 
be stopped if the calculated sample mean error falls below a 
specific threshold,  . At a confidence level of 01.0 (i.e. 
99% confidence), 5000 and 1000 simulations for two-area and 
NETS-NYPS test system gives sample mean error )(  0.14% 

and 0.3%, respectively. As can be seen from Table III, a 
reduced number of Monte Carlo runs (1000 instead of 5000) 
are performed for NETS-NYPS test system to keep the 
simulation time within a practical limit. 

The accuracy of the simulation will be reduced with a 
reduced number of simulations. The accuracy (percentage 
error) can be calculated from (26). The sample mean error (E) 
is increased from 0.18 with N=5000 to 0.32 with N=1000 for 
system 1 and from 0.14 with N=5000 to 0.30 with N= 1000 
for system 2. This, however, does not significantly, if at all, 
affect the ranking of the most influential parameters. In this 
case, the ranking of the top 19 (out of 35) and top 23 (out of 
49) parameters remains the same with 1000 and 5000 
simulations for system 1 and system 2, respectively.  

The number of simulation is dependent on the number of 
input parameters. It is inherently system dependent and 
independent of the numbers of output parameters being 
considered. The computational cost of sensitivity analysis 
techniques depends on the number of parameters for OAT, 
Morris, MADM, Sobol, FAST and Borgonovo method, as 
presented in Table III. On the other hand, correlation 
coefficient methods, Sobol and Borgonovo depend on the 
convergence criteria as mention in Eq. (26). The convergence 
of Monte Carlo simulation generally follows the central limit 
theorem which states that the error reduces by a factor of 

1/√N, where N is the number of simulation [38]. Hence the 
Monte Carlo convergence is mainly dependent on the 
scalability of the system and the level of acceptable error. 

All of these methods can be processed through high 
throughput computing (HTC) facilities by using a large 
numbers of processors, coupled together and run in parallel to 
solve very large problem sizes. This will significantly reduce 
the simulation time for all methods. In such a case also, the 
relative performance of the different sensitivity analysis 
techniques would be preserved. 

     

IV. SENSITIVITY ANALYSIS – RESULTS AND DISCUSSION 

A. Probabilistic Modal Analysis 

The modal plot displaying the movements of the most 
critical eigenvalue of NETS-NYPS test system is presented in 
Fig. 6 including the distribution contours. The movement of 
the critical eigenvalue over 5000 random simulations has been 
influenced by the input uncertainties and probability 
distributions of input parameters. The range of damping (real 
part of eigenvalues, s-1) spreads over [-0.12 ~ -0.143], and 
frequency (Hz) varies between [0.51~0.55]. Different input 
parameters have contributed at different proportion to the 
movement of eigenvalues on the complex plane. The most 
influential parameters causing the movement of the eigenvalue 
have been numerically calculated through SA techniques.  

B. Priority Ranking of Two-Area System Uncertainties  

For the two-area test system, all 35 uncertainties are 
considered individually and compared against each other. The 
sensitivity analysis is completed using a system loading factor 
of 0.66 pu and a 10% level of uncertainty (i.e. 𝜐 =10%). The 

results from this extensive sensitivity study are presented as a 
heatmap in Fig. 7 due to the impracticality of tabulating the 
full numerical results. Both the sensitivity methods and 
uncertainties have been analysed. It is clearly evident that not 
all methods produce the same levels of importance for 
different parameters, but also that key parameters can be 
identified using various sensitivity measures. It is evident from 
the heatmap that local method produces a significantly 
different ranking compared to screening and global methods.  

1) Five Most Influential Parameters of Two-Area System 

Table IV presents the top five most important uncertainties 
affecting critical mode damping according to the different 
sensitivity analysis methods. It can be seen that the same top 

 
Fig. 6.  Contour and footprints of the critical eigenvalue in the complex plane 
as affected by input parameter uncertainties of NETS-NYPS test system. 
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Fig. 7.  Heatmap illustrating results of multiple SA techniques identifying the most influential uncertainties in two-area test system. 
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five uncertainties (with some ranking differences) are 
identified by all of the global sensitivity analysis tools. All 
global methods except MADM agree that 9L

P  is the most 

important parameter. This may be due to the limited search-
space exploration of the MADM approach (illustrated in Fig. 

1). Additionally, OAT ranks 9L
P  as third most important, and 

the method over-quantifies the importance of the 1T  PSS 

parameter. OAT ranks 1
1
G

T , 3
1
G

T  and 4
1
G

T  as three of the top 

five influential parameters. These do not appear in the top five 
for any of the global measures. This strongly highlights the 
limitations of only completing a local sensitivity analysis. The 
effect that a parameter may have on the output around the 

nominal equilibrium point is not necessarily equivalent to the 
global effect across the entire operating range. 

The Morris screening method correctly identifies the top 
three critical parameters same as global methods, though it 

includes the 3
1
G

T  PSS parameter in the top five. This 

demonstrates the value of evaluating the importance of 
parameters across a greater region of the search space. It also 
highlights the limitation of the Morris method due to the 
simple random trajectory that is used and the limited number 
of sample points. The MADM identifies the top five 
influential parameters as being the same as from the global 
methods, except the top two swaping their position. 

The FAST method should reproduce the same results as the 
Sobol first order effects however it can be seen that this is not 
the case and that some information is lost during frequency 
uncertainty encoding and subsequent Fourier analysis. Perhaps 
most interestingly, it can be seen that the simple Pearson 
correlation coefficient ranks the top five parameters in the 
same order as the much more complex Borgonovo δ measure. 
This suggests that such complex and computationally 
intensive SA may be unnecessary. 

C. Priority Ranking of NETS-NYPS System Uncertainties  

The heatmap of sensitivity measures of NETS-NYPS 
parameters have been presented in Fig. 8. The ranking of all of 
the uncertain parameters can be seen from the heatmap, which 
also highlights a comparative ranking by different techniques. 
Though the underlying theory and computational techniques 
are different for each method, the results are generally 
consistent in identifying the most influential parameters. The 
darker shades in the heatmap around column 10, 11, 25, and 
26 represent the most influential parameters identified by 
almost all SA techniques.  

The OAT method overestimates some parameters that are 
categorized as non-influential by the more comprehensive 

global techniques due to its limited local search around the 
nominal value. The performance of Morris and MADM are 
comparable while they identify some of the influential 
parameters and give low scores to other parameters. These 
methods are very efficient in identifying the most influential 
parameters with less computational effort. The global 
methods, being the most computationally expensive, provide a 
thorough priority ranking.  

1) Five Most Influential Parameters of NETS-NYPS System  

The most critical five parameters identified through 
different sensitivity analysis techniques have been presented in 
Table V. All methods have a very good agreement in ranking 
the most influential parameters, where the top four are same 
for all methods (with some positional differences). 17L  is the 

most influential parameter by all SA techniques (except OAT). 
OAT overestimates 18L as 1st and 42L as 2nd most influential 

parameter due to its local search and these parameters rank 2nd 
and 3rd respectively for all global methods. The ranking 
performance of Morris screening method is in between local 
and global methods. Though it identifies the top two 

OAT                                                  
Morris                                                  
MADM                                                  
Pearson                                                  
Spearman                                                  
Partial                                                  
Sobol Total                                                  
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Fig. 8.  Heatmap describing results of seven SA techniques identifying most influential uncertainties in NETS-NYPS test system. 

TABLE V 
TOP FIVE MOST IMPORTANT PARAMETERS OF NETS-NYPS SYSTEM 

IDENTIFIED THROUGH DIFFERENT SENSITIVITY ANALYSIS TECHNIQUES 
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1 18L  17L  17L  17L  17L  17L  17L  

2 42L  18L  18L  18L  18L  18L  18L  

3 41L  41L  42L  42L  42L  42L  42L  

4 17L  42L  41L  41L  41L  41L  41L  

5 68S  40L  20L  17W  17W  17W  50L  

Letters represent load (L), wind (W) and solar (S) generators presented at 
NETS-NYPS test system, whereas the subscripts are the bus numbers. 

TABLE IV 
TOP FIVE MOST IMPORTANT UNCERTAINTIES IN TWO-AREA SYSTEM AS 

RANKED BY THE DIFFERENT SENSITIVITY MEASURES 
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1 𝑇1𝐺3 𝑃𝐿9 𝑃𝐿7 𝑃𝐿9 𝑃𝐿9 𝑃𝐿9 𝑃𝐿9 𝑃𝐿9 𝑃𝐿9 𝑃𝐿9 
2 𝑇1𝐺4 𝑃𝐿7 𝑃𝐿9 𝑃𝐿7 𝑃𝐿7 𝐾𝐴𝐺4 𝑃𝐿7 𝐾𝐴𝐺4 𝑃𝐿7 𝑃𝐿7 

3 𝑃𝐿9 𝐾𝐴𝐺4 𝐾𝐴𝐺4 𝐾𝐴𝐺4 𝐾𝐴𝐺4 𝑃𝐿7 𝐾𝐴𝐺4 𝑃𝐿7 𝑃𝐺3 𝐾𝐴𝐺4 

4 𝑇1𝐺1 𝑇1𝐺3 𝑃𝐺3 𝑃𝐺3 𝑃𝐺3 𝑃𝐺3 𝑃𝐺3 𝑃𝐺3 𝑃𝐺4 𝑃𝐺3 
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parameters same as global methods, the 3rd and 4th parameters 
swap around compared to global methods. 

It is evident that in both test systems power system loads 
appeared as the most influential parameters, in particular in 
NETS-NYPS test system where their dominance among the 
most influential parameters is overwhelming.  

D. Physical Significance of the Priority Ranking of System 

Uncertainties  

Fig. 9 compares the locations of critical eigenvalues for 
1000 simulations considering %10   variation in input 
parameter values for all 49 and for the 5 most influential 
parameters as identified by Sobol Total method in Table V. It 
can be seen that the area of eigenvalue dispersion for the five 
influential parameters covers a larger portion of the range of 
damping covered by eigenvalues considering all 49 
parameters, hence, the criticality of the system stability 
(measured by the damping of critical eigenvalue) has been 
properly captured by the identified five most influential 
parameters. Thus, the resource and effort for developing 
appropriate models of uncertain power systems for small 
disturbance stability analysis can be focused on accurate 
modelling of a small number of important parameters only.           

V. CONCLUSIONS 

This paper provides a critical assessment of nine sensitivity 
analysis techniques to assess their suitability for prioritizing 
uncertain parameters affecting power system small-
disturbance stability.  Most influential input parameters have 
been identified and ranked by each of the techniques.  

The simplest of all, the one-at-a-time method fails to 
appropriately identify the importance of the most influential 
parameters, however, it offers a reasonably good indication of 
influential parameters with a minimal number of simulations. 
Morris method and MADM represent good balance between 
accuracy and computational effort. Correlation coefficients 
present identical ranking of uncertain parameters, as above, 
with moderate computational effort. Sobol indices are more 
thorough and rigorous for identifying influential variables. 
FAST and Borgonovo methods are not suitable for large scale 
application due to their high computational cost. Considering 
that reasonably simple Pearson correlation coefficient 
provides almost identical results as Sobol, FAST and 
Borgonovo method, very complex and computationally 
intensive SA may not be necessary. 

 In a power system with large number of uncertain  
parameters it is computationally expensive and quite often 
unnecessary to evaluate the system performance with respect 
to uncertainty in all system parameters as not all of them 
contribute equally to the change in system performance. A 
screening method instead should be used to identify the 
critical parameters only, i.e., the parameters affecting the most 
system performance. The Morris method offers a significant 
benefits in this respect by providing more accurate results than 
‘local’ and more computationally efficient results than ‘global’ 
SA methods. The accuracy of the Morris screening method 
lies in its trajectory exploration across multi-dimensional 
semi-global search space. A significantly reduced 
computational time with respect to full global SA approaches 
makes it efficient and feasible for application in realistic 

power networks with many uncertain parameters.  
The presented application and critical assessment of 

efficient methods for small disturbance stability assessment of 
two different test systems with numerous uncertainties 
indicates their potential for applications in other areas of 
steady state and dynamic analysis of uncertain power systems. 
Advance identification of dominant uncertainties through an 
efficient SA technique will facilitate appropriate resource 
allocation for modelling, monitoring and control of selected 
parameters and ensure more efficient and secure operation of 
future, more uncertain, power systems.  

The presented methods are applicable to other system 
variables and any input and output parameters can be chosen 
to perform this or any other type of system studies. The 
number of input/output parameters and type of power system 
study however, may affect the effectiveness and efficiency of 
the considered methods. For example, the efficiency will be 
reduced significantly if transient stability is performed instead 
of small-disturbance stability due to the increased 
computational burden of the individual studies to be 
performed. Nevertheless, the relative performance of the 
different methods would be preserved. 
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