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Abstract. Priorities are used to control the execution of systems to
meet given requirements for optimal use of resources, e.g., by using
scheduling policies. For distributed systems, it is hard to find efficient
implementations for priorities; because they express constraints on global
states, their implementation may incur considerable overhead.

Our method is based on performing model checking for knowledge
properties. It allows identifying where the local information of a process
is sufficient to schedule the execution of a high priority transition. As a
result of the model checking, the program is transformed to react upon
the knowledge it has at each point. The transformed version has no
priorities, and uses the gathered information and its knowledge to limit
the enabledness of transitions so that it matches or approximates the
original specification of priorities.

1 Introduction

In a distributed system, it can be quite nontrivial to implement distributed com-
munication; for example, once one process decides that it is willing to communi-
cate with a second process, that communication might not be available anymore,
as the second process has meanwhile communicated with a third process. For this
reason, concurrent programming languages may restrict the choice of communi-
cation. For example, Hoare [7] has initially restricted his programming language
CSP to commit to a single output, where choice is still allowed between inputs;
overriding this restriction may require some nontrivial algorithms [2,5]. A further
implementation complication can, orthogonally, result from imposing priorities
between transitions. Separating the design of the system into a transition system
and a set of priorities can be a very powerful tool [8], yet quite challenging [1].

Executing transitions according to a priority policy is complicated due to the
fact that each process has a limited view of the situation of the rest of the system.
Such limited local information can be described as the knowledge that processes
have at each point of the execution [6,4]. Our solution for implementing priorities
is based on running an analysis of the system before it is executed using model
checking [3,11]. Specifically, we use model checking for knowledge properties,
similar to the algorithms suggested by Van der Meyden in [10]. This analysis
checks which processes possess “knowledge” about having a maximal priority
transition enabled at the current state.
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The information gathered during the model checking stage is used as a basis
for a program transformation. It produces a new program without priorities,
which implements or at least approximates the prioritized behaviors of the old
program. At runtime, processes consult some table, constructed based upon the
model checking analysis, that tells them, depending on the current local state,
whether a current enabled transition has a maximal priority and thus can be im-
mediately executed. This transformation does not introduce any new executions
or deadlocks, and is intended to preserve the linear temporal logic properties [9]
of the net.

For states where no process can locally know about having a maximal priority
transition, we suggest several options; this includes putting some semi-global
observers that can observe the combined situation of several processes, passing
additional synchronization messages, or using global variables, to inform the
different processes about the situation of their neighbors. Another possibility
is to relax the priority policy, and allow a good approximation. The priorities
discussed in this paper are inspired by the BIP system (Behavior Interaction
Priority) [8].

2 Preliminaries

Definition 1. A Petri Net N is a tuple (P, T,E, s0) where

– P is a finite set of places. The states are defined as S = 2P .
– T is a finite set of transitions.
– E ⊆ (P × T ) ∪ (T × P ) is a bipartite relation between the places and the

transition.
– s0 ⊆ P is the initial state (hence s0 ∈ S).

For a transition t ∈ T , we define the set of input places •t as {p ∈ P |(p, t) ∈ E},
and output places t• as {p ∈ P |(t, p) ∈ E}. A transition t is enabled in a state s if
•t ⊆ s and t•∩s = ∅. A state s is in deadlock if there is no enabled transition from
it. We denote the fact that t is enabled from s by s[t〉. A transition t is fired (or
executed) from state s to state s′, which is denoted by s[t〉s′, when t is enabled
at s, and, furthermore, s′ = (s \• t) ∪ t•. We extend our notation and denote by
s[t1t2 . . . tn〉s′ the fact that there is a sequence of states s = r0, r1, . . . rn = s′

such that ri[ti+1〉ri+1.

Definition 2. Two transitions t1 and t2 are independent if (•t1 ∪ t1•) ∩ (•t2 ∪
t2

•) = ∅. Let I ⊂ T × T be the independence relation. Two transitions are
dependent if they are not independent.

Graphically, transitions are represented as lines, places as circles, and the relation
E is represented using arrows. In Figure 1, there are places p1, p2, . . . , p7 and
transitions t1, t2, t3, t4. We depict a state by putting full circles, called tokens,
inside the places of that state. In the example in Figure 1, the depicted initial
state s0 is {p1, p2, p7}. If we fire transition t1 from the initial state, the tokens
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from p1 and p7 will be removed, and a token will be places in p3. The transitions
that are enabled from the initial state are t1 and t2. In the Petri Net of Figure 1,
all the transitions are dependent on each other, since they all involve the place
p7. Removing p7, as in Figure 2, both t1 and t3 become independent on both t2
and t4.

Definition 3. An execution is a maximal (i.e. it cannot be extended) alternating
sequence of states s0t1s1t2s2 . . . with s0 the initial state of the Petri Net, such
that for each states si in the sequence, si[ti+1〉si+1.

We denote the executions of a Petri Net N by exec(N). A state is reachable in a
Petri Net if it appears on at least one of its executions. We denote the reachable
states of a Petri Net N by reach(N).

We use places also as state predicates and denote s |= pi iff pi ∈ s. This is
extended to Boolean combinations in a standard way.

For a state s, we denote by ϕs the formula that is a conjunction of the places
that are in s and the negated places that are not in s. Thus, ϕs is satisfied
exactly by the state s and no other state. For the Petri Net of Figure 1 we have
that the initial state s satisfies ϕs = p1 ∧ p2 ∧ ¬p3 ∧ ¬p4 ∧ ¬p5 ∧ ¬p6 ∧ p7. For a
set of states Q ⊆ S, we can write a characterizing formula ϕQ =

∨
s∈Q ϕs or use

any equivalent propositional formula. We say that a predicate ϕ is an invariant
of a Petri Net N if s |= ϕ for each s ∈ reach(N). As usual in logic, when a
formula ϕQ characterizes a set of states Q and a formula ϕQ′ characterizes a set
of states Q′, then Q ⊆ Q′ if and only if ϕQ → ϕQ′ .

Definition 4. A process of a Petri Net N is a subset of the transitions π ⊆ T
satisfying that for each t1, t2 ∈ T , (t1, t2) �∈ I.

We assume a given set of processes S that covers all the transitions of the net,
i.e.,

⋃
π∈S π = T . A transition can belong to several processes, e.g., when it

models a synchronization between processes. Note that there can be multiple
ways to define a set of processes for the same Petri Net.

Definition 5. The neighborhood ngb(π) of a process π is the set of places⋃
t∈π(•t ∪ t•). For a set of processes Π, ngb(Π) =

⋃
π∈Π ngb(π).

In the rest of this paper, when a formula refers to a set of processes Π , we
will often replace writing the singleton process set {π} by writing π instead.
For the Petri Net in Figure 1, there are two executions: t1t3t2t4 and t2t4t1t3.
There are two processes: the left process πl = {t1, t3} and the right process
πr = {t2, t4}. The neighborhood of process πl is {p1, p3, p5, p7}. The place p7 acts
as a semaphore. It can be captured by the execution of t1 or of t2, guaranteeing
that ¬(p3 ∧ p4) is an invariant of the system.

Definition 6. A Petri Net with priorities is a pair (N,�), where N is a Petri
Net and � is a partial order relation among the transitions T of N .

Definition 7. A transition t has a maximal priority in a state s if s[t〉 and,
furthermore, there is no transition r with s[r〉 such that t� r.
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Fig. 1. A (safe) Petri Net

Definition 8. An execution of a Petri Net with Priorities is a maximal alter-
nating sequence of states and transitions s0t1s1t2s2t3 . . . with s0 the initial state
of the Petri Net. Furthermore, for each state si in the sequence it holds that that
si[ti+1〉si+1 for ti+1 having maximal priority in si.

To emphasize that the executions take into account the priorities, we sometimes
call them prioritized executions. We denote the executions of a Prioritized Petri
Net (N,�) by priorE (N,�). The set of states that appear on priorE (N,�)
will be denoted by reach(N,�). The following is a direct consequence of the
definitions:

Lemma 1. priorE (N,�) ⊆ exec(N) and reach(N,�) ⊆ reach(N).

The executions of the Petri Net M in Figure 2, when the priorities t1 � t4 and
t2 � t3 are not taken into account, include t1t2t3t4, t1t3t2t4, t2t1t3t4, t2t1t4t3,
etc. However, when taking the priorities into account, the prioritized executions
of M are the same as the executions of the Net N of Figure 1.

Unfortunately, enforcing prioritized executions in a completely distributed
way may incur high synchronization overhead [1] or even be impossible. In our
example, consider the case where t1 and t3 belong to one (left) process πl, and
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t4

p3

p1 p2

p4

p6p5

Fig. 2. A Petri Net with Priorities t1 � t4, t2 � t3
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t2 and t4 belong to another (right) process πr , with no interaction between
them. Then, the left process πl, upon having a token in p1, cannot locally decide
whether to execute t1; the priorities dictate that t1 can be executed if t4 is not
enabled, since t1 has a lower priority than t4. But this information may not be
locally available to the left process, which cannot distinguish between the cases
where the right process has a token in p2, p4 or p6.

Definition 9. The local information of a set of process Π of a Petri Net N in
a state s is s|Π = s ∩ nbg(Π).

That is, the local information of Π consists of the restriction of the state to
the neighborhood of the transitions of Π . The local information of a process
π in a state s plays the role of a local state of π in s. However, we prefer to
use the term “local information” since neighborhoods of different processes may
overlap on some common places rather than partitioning the global states. Thus,
in the Petri Net in Figure 1, the local information of the left process in a state s
consists of restriction of s to the places {p1, p3, p5, p7}. In the initial state, these
are {p1, p7}.

Our definition of local information is only one among possible definitions that
can be used for modeling the part of the state to which the system is aware at
any moment. Consider again the Petri Net of Figure 1. The places p1, p3 and p5

may represent the location counter in the left process. When there is a token in
p1 or p3, it is reasonable to assume that the existence of a token in place p7 (the
semaphore) is known to the left process. However, it may or may not be true
that the left process is aware of the value of the semaphore when the token is at
place p5. This is because at this point, the semaphore may affect the enabledness
of the right process (if it has a token in p2) but would not have an effect on the
left process. Thus, a subtle difference in the definition of local information can be
used instead. For simplicity, we will continue with the simpler definition above.

Definition 10. Let Π ⊆ S be a set of processes. Define an equivalence relation
≡Π⊆ reach(N) × reach(N) such that s ≡Π s′ when s|π = s′|π for each π ∈ Π.

It is easy to see that the enabledness of a transition depends only on the local
information of a process that contains it.

Lemma 2. If t ∈ π and s ≡π s
′ then s[t〉 if and only if s′[t〉.

We cannot make a local decision, based on the local information of processes
(and sometimes sets of processes), that would guarantee only the prioritized
executions in a Prioritized Petri Net (N,�). It is possible that there are two
states s, s′ ∈ reach(N) such that s ≡π s′, a transition t /∈ π is a maximal
enabled transition in s, but in s′ this transition is either not enabled or not
maximal among the enabled transitions. This can be easily demonstrated on
the Prioritized Petri Net in Figure 2. There, we have that for πl, {p1, p2} ≡πl

{p1, p4}. In the state {p1, p2}, t1 is a maximal priority enabled transition (and
so is p2), while in {p1, p4}, t1 is not anymore maximal, as we have that t1 � t4,
and t4 is enabled. Since the history of the execution for process πl is the same in



84 A. Basu et al.

both of the above states, recording the local history, is sufficient for distinguishing
between these two cases.

3 Knowledge Based Approach

Although, as we saw in the previous section, we may not be able to decide, based
on the local information of a process or a set of processes, whether some enabled
transition is maximal with respect to priority, we may be able to exploit some
model checking based analysis of the system.

Our first approach for a local or semi-local decision on firing transitions is
based on the knowledge of processes [4], or of sets of processes. Basically, the
knowledge of a process at a given state is the possible combination of reachable
states that are consistent with the local information of that process.

Since the set of states is limited to S = 2P (and the reachable states are a
subset of that), we can write formulas characterizing (i.e., satisfied exactly by)
the states that satisfy various properties as follows, where the propositions of
the formula are the places of the Petri Net.

All the reachable states: ϕreach(N).
The states where transition t is enabled: ϕen(t).
At least one transition is enabled, i.e., there is no deadlock: ϕdf =

∨
t∈T ϕen(t).

The transition t has a maximal priority among all the enabled transitions of
the system: ϕmax(t) = ϕen(t) ∧

∧
t�r ¬ϕen(r).

The local information of processes Π at state s: ϕs|Π .

We can perform model checking in order to calculate these formulas, and store
them in a compact way, e.g., using BDDs.

Definition 11. The processes Π (jointly) know a (Boolean) property ψ in a
state s, denoted s |= KΠψ, exactly when for each s′ such that s ≡Π s′, we have
that s′ |= ψ.

That is, the processes Π “jointly know” at state s any property that holds
for all the reachable states with the same local information that Π have at
s. At the moment, the definition of knowledge assumes that the processes do
not maintain a log with their history. We henceforth use knowledge formulas
combined using Boolean operators with propositions. For a detailed syntactic
and semantic description one can refer, e.g., to [4]. We do not define, nor use
in this paper the nesting of knowledge operators, e.g., KΠ1(KΠ2(ϕ)), nor the
notion of “common” knowledge CΠϕ.

Consider the Petri Net in Figure 3, with priorities t3 � t5 � t4 � t7.
This Net is an augmentation of the Net in Figure 1. Process πl now has the
additional transition t6. Process πr has the same transitions as before (but a
bigger neighborhood, as it now includes p8). We also have a third process π3 =
{t5, t7}. Then at any state s with s|πl

= {p3} (take, e.g., s = {p2, p3, p8}), it
is impossible that p4 has a token, because of the mutual exclusion provided by
the place p7. Thus, s |= Kπl

¬p4. On the other hand, it is not the case that
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s |= Kπl
¬p10. This follows from the fact that there are two different states

{p2, p3, p8} and {p2, p3, p8, p10}, both of them with s|πl
= {p3}; in the former

state p10 does not have a token (and t5 is disabled), while in the latter state, p10

has a token (and t5 is enabled).
The following lemmas follow immediate from the definitions:

Lemma 3. If s |= KΠϕ and s ≡Π s′, then s′ |= KΠϕ.

Lemma 4. The processes Π know ψ at state s exactly when (ϕreach(N)∧ϕs|Π ) →
ψ is a propositional tautology.

Now, given a Petri Net with priorities which runs on a distributed architecture,
one can perform model checking in order to calculate whether s |= Kπψ. Note
that this is not the most space efficient way of checking knowledge properties,
since ϕreach(N) can be exponentially big in the size of the description of the Petri
Net. In a (polynomial) space efficient check, we can enumerate all the states s′

such that s ≡π s
′, check reachability of s′ using binary search and, if reachable,

check whether s′ |= ψ.

4 The Supporting Process Policy

The supporting process policy, described below, transforms a Prioritized Petri Net
(N,�) into a priorityless Petri Net N ′, that implements or at least approximates
the priorities of the original net. This transformation augments the states with
additional information, and adds conditions for firing the transitions. This is
related to the problem of supervisory control [12], where a controller is imposed
on a system, restricting transitions from being fired at some of the states. We
will identify the states of the transformed version N ′ with the states of the
original version N , since the mapping will only add some information to the
states; information that will not be addressed by our Boolean formulas. In this
way, we will be able to compare between the sets of states of the original and
transformed version. In particular, the restriction will imply the following:

reach(N ′) ⊆ reach(N). (1)

Note that reach(N) are the reachable states when not taking into account the
priorities. We will later relate also the executions of these nets. In particular, the
supporting process policy can be classified as having a disjunctive architecture
for decentralized control [13]. Although the details of the transformation are not
given here, it should be clear from the theoretical explanation.

At a state s, a transition t is supported by a process π containing t only
if π knows in s about t having a maximal priority (among all the
currently enabled transitions of the system), i.e., s |= Kπϕmax(t);
a transition can be fired (is enabled) in a state only if, in addition
to its previous enabledness condition, at least one of the processes
containing it supports it.
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Based on Equation (1) and the definition of knowledge, we have the following
monotonicity property of knowledge:

Theorem 1. Given that s |= KΠϕ in the original program N , (when not taking
the priorities into account) then s |= KΠϕ also in the transformed version N ′.

This property is important to ensure the maximality of the priority of a tran-
sition after the transformation. The knowledge about maximality will be calcu-
lated before the transformation, and will be used to control the execution of the
transitions. Then, we can conclude that the maximality remains also after the
transformation.

We consider three levels of knowledge of processes related to having a maxi-
mally enabled transitions:

ϕ1 Each process knows which of its enabled transitions have maximal priorities
(among all enabled transitions).
That is, ϕ1 =

∧
π∈S

∧
t∈π(ϕmax(t) → Kπϕmax(t)).

ϕ2 For each process π, when one of its transitions has a maximal priority, the
process knows about at least one such transition.
ϕ2 =

∧
π∈S((

∨
t∈π ϕmax(t)) → (

∨
t∈π Kπϕmax(t))).

Note that when all the transitions of each process π are totally ordered, then
ϕ1 = ϕ2.

ϕ3 For each state where the system is not in a deadlock, at least one process
can identify one of its transitions that has maximal priority.
ϕ3 = ϕdf → (

∨
π∈S

∨
t∈π Kπϕmax(t)).

Denote the fact that ϕ is an invariant (i.e., holds in every reachable state) using
the usual temporal logic notation �ϕ (see [9]). Notice that ϕ1 → ϕ2 and ϕ2 → ϕ3

hold, hence also �ϕ1 → �ϕ2 and �ϕ2 → �ϕ3. Processes have less knowledge
according to ϕ2 than according to ϕ1, and then even less knowledge if only ϕ3

holds.

Definition 12. Let priorS (N,ϕi) be the set of executions when transitions are
fired according to the supporting process policy when �ϕi holds.

That is, when �ϕ1 holds, the processes support all of their maximal enabled
transition. When �ϕ2, the processes support at least one of their maximal en-
abled transition, but not necessarily all of them. When �ϕ3 holds, at least one
enabled transition will be supported by some process, at each state, preventing
deadlocks that did not exist in the prioritized net.

Lemma 5. priorS (N,ϕ1) = priorE (N,�). Furthermore, for i = 2 or i = 3,
priorS (N,ϕi) ⊆ priorE (N,�).

This is because when �ϕ2 or �ϕ3 hold, but �ϕ1 does not hold, then some
maximally enabled transitions are supported, but some others may not. On the
other hand, if �ϕ1 holds, the supporting process policy does not limit the firing
of maximally enabled transitions.

Advanced note. When �ϕ1 holds, our transformation preserves transition fair-
ness (transition justice, respectively) [9]. This is because when a (transformed)
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transition satisfies its original enabledness condition infinite often (continuously
from some point, respectively), then it is also supported infinitely often (contin-
uously from some point, respectively). For a similar argument, �ϕ2 guarantees
to preserve process fairness (precess justice, respectively); in this case, not all
the transitions enabled according to the original enabledness condition are also
supported, but at least one per process. Finally, �ϕ3 guarantees that no new
deadlocks are added.

Implementing the Local Support Policy: The Support Table

We first create a support table as follows: We check for each process π, reachable
state s and transition t ∈ π, whether s |= Kπϕmax(t). If it holds, we put in the
support table at the entry s|π the transitions t that are responsible for satisfying
this property. In fact, according to Lemma 3, it is sufficient to check this for a
single representative state containing s|π out of each equivalence class of ‘≡π’.

Let ϕsupport(π) denote the disjunction of the formulas ϕs|π such that the entry
s|π is not empty in the support table. It is easy to see from the definition of ϕ3

that checking �ϕ3 is equivalent to checking the validity of the following Boolean
implication:

ϕdf →
∨

π∈Π

ϕsupport(π) (2)

This means that at every reachable and non deadlock state, at least one process
knows (and hence supports) at least one of its maximal enabled transitions.

Now, if �ϕ3 holds, the support table we constructed for checking it can be
consulted by the transformed program for implementing the supporting process
policy. Each process π is equipped with the entries of this table of the form s|π for
reachable s. Before making a transition, a process π consults the entry s|π that
corresponds to its current local information, and supports only the transitions
that appear in that entry. The transformed program can be represented again
as a Petri Net. The construction is simple and the details are not given here for
space constraints. The size of the support table is directly proportional to the
number of different local information combinations and not to the (sometimes
exponentially bigger) size of the state space.

Technically, for Petri Nets, strengthening the enabledness condition means
adding input places. Since in Petri Nets the enabledness is a conjunction of
places and the added condition for enabledness is disjunctive, we may want to
extend the Petri Nets model. Alternatively, we may split transitions, taking into
account of the mapping between the new and the original transitions.

Priority Approximation

It is typical that there will be many states where even ϕ3 does not hold. That
is, processes will not know locally whether one of their transitions is of highest
priority.

In the Petri Net of Figure 3, Given the analysis described above, when t3
is enabled, process πl knows that t4 is not enabled. If it also knew that t5
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is not enabled, then, given the above priorities, t3 would be maximal enabled
transitions and will be supported by πl. However, as shown above, there are
two different states were t3 is enabled, in one of which t5 is not enabled (this
is the first time when t3 is enabled), and in the other t5 is enabled (this is the
second time). Thus, t3 cannot be supported by πl in both states. In the state
{p2, p3, p8}, no transition is supported.

t1

t3

t2

t4

p7p3

p1 p2

p4

p6

p8

p9

t5
p5

t6
p10p11 t7

Fig. 3. Petri Net with priorities t3 � t5 � t4 � t7

When �ϕ3 does not hold, one can provide various suboptimal solutions, which
try to approximate the priority selection, meaning that not at all times the
executed transition will be maximal. Consider a nondeadlock state s where s �|=
ϕ3. In this case, the entries s|π are empty for each process π. Under the support
policy, in state s, no transition will be supported, hence none will be fired,
resulting in a deadlock. A pessimistic approach to fix this situation is to add to
each empty entry s|π at least one of the transitions that are maximal among the
enabled transitions of π.

Another possibility, which adds less arbitrary transitions to the support table,
but requires more intensive computation, is based on an iterative approach.
Select an empty entry s|π in the support table where some transition t ∈ π is
enabled and is maximal among the enabled transitions of π. Add t to that entry
is sufficient for checking enabledness). Update the formula (2), by adding the
disjunct ϕs|π to ϕsupport(π). Then recheck Formula (2). Repeat adding transitions
to empty entries in the support table until (2) holds. When it holds, it means
that for each reachable state, there is a supported enabled transition, preventing
new deadlocks.

Synchronizing Processes Approach

When Formula (2) does not hold, and thus also �ϕ3, we can combine the knowl-
edge of several processes to make decisions. This can be done by putting a con-
troller that checks the combined local information of multiple processes. We then
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arrange a support table based on the joint local information of several processes
s|Π rather than the local information of single processes s|π. This corresponds
to replacing π with Π in the formulas ϕ1, ϕ2 and ϕ3. Such controllers may re-
duce concurrency. However, this is not a problem if the controlled processes are
threads, residing anyway in the same processor. It is not clear apriory on which
sets of processes we want to put a controller. in order to make their combined
knowledge help in deciding the highest priority transition. Model checking un-
der different groupings of processes, controlled and observed together, is then
repeated until �ϕ1 (or �ϕ2 or �ϕ3) holds.

Another possibility is the transfer of additional information via messages from
one process to another. This also reduces concurrency and increases
overhead.

Using Knowledge with Perfect Recall

Knowledge with perfect recall [10] assumes that a process π may keep its own
local history, i.e., the sequence of local information sequence (sequence of local
states) occurred so far. This may separate different occurrences of the same local
information, when they appear at the end of different local histories, allowing
to decide on executing a transition even when it was not possible under the
previous knowledge definition. For lack of space, we describe the solution based
on knowledge with perfect recall briefly and somewhat informally.

Knowledge with perfect recall is defined so that a process knows some property
ϕ at some state s and given some local history σ, if ϕ holds for each execution
when reaching a state with the same local history σ. In our case, since the system
is asynchronous, the processes are not always aware of other processes making
moves, unless these moves can affect their own neighborhood (hence their local
information). Hence the local history includes only moves by transitions that
have some common input or output place with the ngb(π). By definition 2, these
are the transition that are dependent on some transition in π (this includes all
the transitions of π). The properties ϕ1, ϕ2 and ϕ3 can be checked where the
knowledge operators refer to knowledge with perfect recall.

An algorithm for model checking knowledge with perfect recall was shown
in [10], and our algorithm can be seen as a simplified version of it. For each
process π, we construct an automaton representing the entire state space of the
system. We keep track of all the possible (global) states Γ that correspond to
having some local history. A move from Γ to Γ ′, corresponds to the execution of
any transition t that is dependent on some transition in π. To construct Γ ′ from
Γ , we first take all the states reached from states in Γ by executing t, when t
is enabled. Then, we add to this set the states that are obtained by executing
any sequence of transitions that are independent of all those in π. The initial
state of this automaton contains any state obtained from s0 by executing a finite
number of transitions independent of π. Model checking is possible even though
the local histories may be unbounded because the number of such subsets Γ is
bounded, and the successor relation between such different subsets, upon firing
a transition t, as described above, is fixed.
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Instead of the support table, for each process π we have a support automa-
ton, representing the subset construction, i.e., the determinization, of the above
automaton. At runtime, the execution of each transition dependent on π will
cause a move of this automaton (this means access to the support automaton
of π with the execution of these transitions, even when they are not in π). If
currently the state of the support automaton corresponds to a set of states Γ
where a transition t ∈ π is maximally enabled (checking this for the states in
Γ was done at the time of performing the transformation), then π currently
supports t. Unfortunately, the size of the support automaton, for each process,
can be exponential in the size of the state space (reflecting a subset of the states
where the current execution can be, given the local history). This gives quite a
high overhead to such a transformation. The local histories of the transformed
net is a subset of the local histories of the original, priorityless net, providing
a result, similar to Theorem 1, that is expressed in terms of knowledge with
perfect recall.

Returning to the example in Figure 3, the knowledge with perfect recall can
separate the first time when t3 is enabled from the second time. On the first
time, t5 is not enabled, hence πl knows that t3 is a maximal enabled transition,
supporting it. On the second time, t5 is enabled (or first t7 is enabled and
then, due to its priority, will execute and t5 will become enabled), and πl does
not support t3. Thus, given knowledge with perfect recall, there is no need to
group processes together in order to obtain the knowledge about the maximalty
of t5.

5 Implementation and Experimental Results

We have implemented a prototype engine which performs model checking, creates
the process support tables, determines whether the invariant ϕ3 holds for the
distributed processes, and finally allows for execution of the processes based on
their support tables.

For experiments, we used the following example: a train station uses a network
of tracks to divert the trains from the point where they enter the station and into
an empty platform (we assume that is no preassignment of trains to segments).
There are some trains and some track segments. Some of the segments are initial,
i.e., where the train first appears when it wishes to enter the station, and some
of them final, consisting of actual platforms. When moving from segment r to
segment r′, a controller for segment r′ checks that the segment is empty, and
then allows the train to enter. The highest priority trains are TGV trains (Train
Grande Vitesse, in our example there is a single TGV train), then there are local
trains (two local in our example), and, with least priority, freight trains (a single
freight train). There are trains of three speeds. Our Petri Net has the following
places:

– pempty−r has a token when the track segment r is empty.
– pk@r train k is at segment r.
– poutside−k train k is not in the vicinity of the station.
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There are three types of transitions:

– Progress by train k from segment r to segment r′. Such a transition tr→r′,k,
has inputs pk@r and pempty−r′ , and outputs pk@r′ and pempty−r.

– A new train k is entering the system at segment r. Such a transitiontk enters−r

has inputs poutside−k and pempty−r and one output pk@r.
– A train k leaves the station after being on segment (track) r. the input is
pk@r and the outputs are poutside−k and pempty−r.

Each process π can be a collection of transitions that are related to the same
segment. Thus, a transition tr→r′,k is shared between the processes r and r′.
Priorities can be assigned according to the train speed (transitions of TGV trains
higher than transitions of local trains, and these, in turn have higher transitions
than those involving freight trains.

The actual segments structure we used in the experiments is shown in Figure 4
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Fig. 4. The actual segments used in the experiments

In order to measure the effect of the approximations, we have considered a
penalty, which measures the deviation of the measured behavior from an ideal
prioritized behavior. This measure sums up the deviation from selecting a max-
imal enabled transition at each execution step. If a maximal transition is in-
deed executed, we add 0. If a second-best transition is selected, e.g., involving
a local train when a TGV train is also enabled, we add 1. If all transitions
for all types of trains are enabled and a fright train (i.e., with lowest prior-
ity) moves, then we add 2. All results are based on random traces of length
100,000 steps (i.e., transitions), and taking the average 10 random traces. We
have measured the penalty for the different distributions of the processes. For a
worst case estimate of the penalty, we executed the system without considering
the priorities. That gave a penalty of 34332, which is considerably higher than
the penalties measured when applying approximations, as shown in the results
below.

The results obtained for different distribution of the processes are shown
in the following table. The global state space of the system consists of 1961
states. This was run on a Pentium-4 PC (Dell GX520) with 1GB RAM, running
GNU-linux.
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process groups table size % table empty ϕ3 holds penalty
1 1961 0 yes 0
2 1118 0 yes 0
3 219 5.5 no 387
7 126 14.4 no 3891

The “process groups” tells us how many processes are grouped together for
calculating the knowledge. When there is only one group, all the processes are
grouped together, so the global state is known to all. With 7 groups, each group
is a singleton, containing one process; thus the knowledge of multiple processes
is not combined. The “table size” shows the number of entries in the knowledge
table of the processes. In case of a single process (all transitions in one process),
the number of entries in the knowledge table is the same as the total number of
states in the system, and the process has complete information with respect to
the maximal transitions to be taken from a state (no empty entries). As a result,
ϕ3 holds, and there is no penalty.

6 Conclusions

Developing concurrent systems is an intricate task. One methodology, which lies
behind the BIP system, is to define first the architecture and transitions, and
at a later stage add priorities among the transitions. This methodology allows a
convenient separation of the design effort. We presented in this paper the idea of
using model checking analysis to calculate the local knowledge of the concurrent
processes of the system about currently having a maximal priority transition.
The result of the model checking is integrated into the program via a data
structure that helps the processes to select prioritized transition at each point.
Thus, model checking is used to transform the system into a priorityless version
that implements the priorities. There are different versions of knowledge, related
to the different ways we are allowed to transform the system. For example, the
knowledge of each process, at a given time, may depend on including information
about the history of computation.

After the analysis, we sometimes identify situations where a process, locally,
does not have enough information about having a maximal priority transition. In
this case, synchronizing between different processes, reducing the concurrency, is
possible; semiglobal observers can coordinate several processes, obtaining joint
knowledge of several processes. Another possible solution (not further elaborated
here) involves adding coordination messages.

We experimented with an example of a train station, including trains entering
the system via a net of segments that divert the trains until they arrive at an
available platform.

More generally, we suggest a programming methodology, based on a basic
design (in this case, the architecture and the transitions) with added constraints
(in this case, priorities). Model checking of knowledge properties is used to lift
these added constraints by means of a program transformation. The resulted
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program behaves in an equivalent way, or approximates the behavior of the
basic design with the constraints.
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