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Abstract 11 

Decision confidence plays a critical role in humans’ ability to make adaptive decisions 12 

in a noisy perceptual world. Despite its importance, there is currently little consensus 13 

about the computations underlying confidence judgements in perceptual decisions. 14 

One leading theory suggests that confidence is computed following the rules of 15 

Bayesian inference. Accordingly, the goal of the current study was to investigate a 16 

fundamental assumption of Bayesian models: the use of prior knowledge in subjective 17 

confidence. Rather than requiring participants to internalise the parameters of an 18 

arbitrary prior distribution, we capitalised on the existing probability distributions of 19 

features in natural scenes, which are known to play a critical role in guiding perception. 20 

Participants reported the subjective upright of naturalistic image target patches, and 21 

then reported their confidence in their orientation responses. We used computational 22 

modelling to relate the statistics of the targets to participants’ responses, confirming 23 

that participants used the prior probability distribution of features in natural scenes to 24 

judge subjective upright. Critically, our results reveal that participants also used natural 25 

image priors to inform their confidence judgements. Our findings provide important 26 

evidence supporting a Bayesian characterisation of confidence and highlight the 27 

influence of environmental priors on confidence.  28 
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 3 

Introduction 29 

Humans make hundreds of decisions about their perceptual world every day 30 

and these decisions are often accompanied by a sense of confidence. Confidence can 31 

be defined as the belief that a choice or proposition is correct based on the available 32 

evidence (Pouget et al., 2016). In a perceptual world where the ‘available evidence’ is 33 

often corrupted with noise, confidence judgements play a crucial role in peoples’ ability 34 

to make adaptive decisions in the absence of explicit feedback. For example, 35 

confidence has been shown to inform subsequent decisions (van den Berg, 36 

Zylberberg, et al., 2016) and to guide further information seeking before committing to 37 

a choice (Desender et al., 2018). Despite being a salient property of human decision-38 

making, there is currently little consensus about how humans compute their 39 

confidence. A prominent theory suggests that confidence is computed following the 40 

rules of Bayesian inference (Adler & Ma, 2018; Aitchison et al., 2015; Bertana et al., 41 

2021; Hangya et al., 2016; Li & Ma, 2020; Lisi et al., 2021; Locke et al., 2022; Navajas 42 

et al., 2017; Sanders et al., 2016). The goal of the current study, therefore, was to 43 

investigate a fundamental assumption of Bayesian models of confidence: the use of 44 

prior knowledge in the computation of confidence.  45 

According to Bayesian decision theory, observers combine knowledge about 46 

the statistical structure of the world (the “prior”) with the present sensory input (the 47 

“likelihood”) to compute a posterior probability distribution over possible states of a 48 

stimulus (Drugowitsch et al., 2014b; Hangya et al., 2016; Kepecs and Mainen, 2012; 49 

Meyniel et al., 2015; Pouget et al., 2016). The posterior probability distribution, thus, 50 

represents every possible observation and its inferred probability. To form a single 51 

representation or choice, an ideal Bayesian observer chooses the most likely 52 

observation from the posterior probability distribution. According to Bayesian models, 53 

confidence can also be derived from this posterior probability distribution and can be 54 

defined as the degree of certainty (or probability) associated with the representation 55 

that the observer has chosen (or intends to choose; Ma & Jazayeri, 2014).  56 

In contrast to Bayesian models, several alternative models of confidence have 57 

been proposed. These models posit that confidence reports are better explained by 58 

suboptimal computations, suggesting that confidence is based on learned 59 

associations with certain heuristic cues in the stimulus. These models have received 60 
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some empirical support with a range of studies linking confidence to heuristic cues 61 

such as external noise (Bertana et al., 2021; Boldt et al., 2017; Spence et al., 2016), 62 

response time (Faivre et al., 2018; Patel et al., 2012; van den Berg, Anandalingam, et 63 

al., 2016) and task-difficulty variables (Mole et al., 2018).  64 

Despite substantial research interest and myriad explanatory models, the 65 

computations underlying the generation of decision confidence remain unclear. 66 

Empirical studies investigating the plausibility of Bayesian and non-Bayesian models 67 

of confidence have shown mixed results, with some studies finding support for 68 

Bayesian models (Aitchison et al., 2015; Li & Ma, 2020; Navajas et al., 2017; Sanders 69 

et al., 2016) and others for non-Bayesian models (Adler & Ma, 2018; Aitchison et al., 70 

2015; Bertana et al., 2021; Denison et al., 2018; Lisi et al., 2021; Locke et al., 2022; 71 

West et al., 2022). Furthermore, one of the major limitations of existing research is 72 

that many previous studies have exposed participants to stimuli drawn from arbitrarily 73 

pre-specified prior distributions, and compared their behaviour to that of a Bayesian 74 

optimal observer with full knowledge of that distribution (Denison et al., 2018; Li & Ma, 75 

2020; Locke et al., 2022; Qamar et al., 2013; West et al., 2022). Such an approach is 76 

limited by the ability of humans to internalise the statistics of the prior distribution within 77 

the time frame of the experiment (Girshick et al., 2011). If participants are unable to 78 

internalise the statistics of the prior distribution within the time-limited context of the 79 

experiment, it is unlikely that their confidence judgements will match those of a 80 

Bayesian observer, even if priors are otherwise used to inform confidence.  81 

To better understand the computations underlying confidence judgements and 82 

distinguish among candidate models, in this study we seek to address the extent to 83 

which confidence is informed by a prior distribution without requiring participants to 84 

learn the parameters of that distribution over the short-term. Instead, following A-85 

Izzeddin, Mattingley and Harrison (2022), we took advantage of the distributions of 86 

low-level features present in naturalistic stimuli to define a prior distribution, the 87 

statistics of which have previously been shown to bias humans’ perceptual decisions 88 

(Appelle, 1972; Berkley et al., 1975; Dakin, 2001; de Gardelle et al., 2010; Girshick et 89 

al., 2011).  90 

A recent study introduced a novel psychophysical paradigm which shows a 91 

clear link between environmental statistics and perceptual inferences. A-Izzeddin et 92 
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al. (2022) presented participants with randomly oriented target images of outdoor 93 

scenes and participants were required to infer their subjective “upright” orientation. 94 

The targets were designed so that they were windowed within a small aperture of the 95 

original image, meaning that the targets themselves contained very little high-level 96 

structure. Participants, therefore, had to rely on a strategy which depended on the low-97 

level image features in the targets to judge “upright”. The authors sought to determine 98 

if participants had an internal representation of the average distribution of low-level 99 

features in the environment, a prior, which they used to guide their judgements. For 100 

example, as shown in Figure 1, horizontal orientation features, and, to a lesser extent, 101 

vertical orientation features are over-represented in natural images. A-Izzeddin and 102 

colleagues found that participants’ distribution of orientation responses was well 103 

approximated by the frequency distributions of orientations in natural images. The 104 

authors then used a model observer to show that participants’ responses were 105 

explained by a process in which they oriented the targets so that the low-level features 106 

in the targets, such as orientation and phase, best approximated the prior distribution 107 

for these features in the environment. This study, therefore, reveals that humans have 108 

an existing, internal model of a prior probability distribution of low-level image statistics 109 

which they use to inform their perceptual inferences about the world (A-Izzeddin et al., 110 

2022; see also Girshick et al., 2011). Hence, in the present study, we used the same 111 

paradigm to investigate confidence because it allowed us to determine the extent to 112 

which participants use an internal prior distribution to compute their confidence without 113 

requiring them to explicitly learn the parameters of that distribution.  114 

 115 
Figure 1. Natural image statistics. (A) Orientations of edges in digital photos have 116 
systematic biases. Original photo taken by Rafael Forseck and used under the 117 
Unsplash Licence. (B) Idealised distribution of orientations across many natural 118 
images (Hansen & Essock, 2004; Harrison et al., 2023). 119 
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In the present study, participants performed a perceptual task in which they 120 

made an orientation judgement about a target image, the first-order decision, and then 121 

reported their level of confidence in that orientation response, the second-order 122 

decision (see Figure 2A). To investigate whether participants used a prior for natural 123 

image statistics when making perceptual and confidence judgements, we used image 124 

processing techniques in combination with computational modelling. To preview our 125 

results, we confirmed that participants adopted a strategy that aligned the distribution 126 

of oriented features and phase with a prior probability model of the distribution of those 127 

features in the natural world (A-Izzeddin et al., 2022). Importantly, we also found that 128 

participants used a similar prior probability distribution to inform their confidence 129 

judgements, even without explicit instruction about the prior. Overall, our findings 130 

support a Bayesian characterisation of decision confidence in which its computation 131 

depends on multiple features of the incoming sensory information and their 132 

consistency with prior probability representations. 133 

 134 
Figure 2. Experimental paradigm. (A) Schematic showing trial structure. Participants 135 
saw a fixation point, followed by a noise patch and then a target was presented at a 136 
random orientation. Participants used the mouse to rotate the target to appear upright 137 
and then made a confidence judgement (either “low confidence" or “high confidence”) 138 
in their chosen orientation response. (B) Targets, such as the examples outlined in 139 
red, were extracted from high quality photos of natural scenes (Burge & Geisler, 2011). 140 
(C) To quantify perceptual performance, we computed the angular difference between 141 
the objective upright orientation of the target and the participants’ chosen orientation.     142 
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Results 143 

To better understand the computations underlying decision confidence, we 144 

investigated whether confidence judgements are informed by a prior probability 145 

distribution. Rather than requiring participants to learn the statistics of an arbitrary prior 146 

distribution, we used a distribution that has been previously shown to affect 147 

participants’ perceptual inferences: the distribution of orientation energy and phase in 148 

natural scenes. To validate this approach, in our first analysis, we confirmed a strong 149 

influence of the prior on participants’ perceptual judgements as recently reported (A-150 

Izzeddin et al., 2022).  151 

Perceptual Judgements  152 

To quantify perceptual performance, we computed the angular difference 153 

between the objective upright orientation of the target and the participants’ chosen 154 

orientation, referred to as the response orientation (see Figure 2C). Response 155 

orientation was measured in degrees ranging from -180° to 180°. The black line in 156 

Figure 3A shows the frequency distribution of response orientations. If participants (N 157 

= 21) were not able to infer the objective upright orientation of the image using the low-158 

level features in the target, the distribution of response orientations would be 159 

distributed uniformly across the range -180° to 180°. By contrast, Figure 3A shows 160 

that the most frequent response orientation was 0°, suggesting the modal response 161 

was highly accurate, and there are clear peaks at the cardinal orientations (±90° and 162 

±180°), where targets were either inverted relative to their true orientation or offset by 163 

90°. The presence of peaks aligned to cardinal orientations in Figure 3A is generally 164 

consistent with observers aligning edges within the target to the most common 165 

orientations found in nature. Note, however, that observers made ±180° inversions 166 

less frequently than 0° reports, which requires more than simply aligning the target 167 

energy to an orientation prior (in which case there would be an equal proportion of 168 

0° and ±180° responses). To further investigate how participants made their 169 

responses, we used a model observer, described below.    170 
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 171 
Figure 3. Perceptual and Confidence Data and Models (A) The distribution of 172 
observers’ binned response orientations is shown in black. The output of the 173 
perceptual model is shown in red, and provides a good fit to the empirical data. (B) 174 
Mean confidence across binned response orientations shown in black. The output of 175 
the confidence model is shown in blue, and provides a good fit to the empirical data. 176 
Bin size = 22.5°. Error bars show ± 1 SEM.  177 

Perceptual Model  178 

We modelled participants’ orientation judgements with a “pretty good observer 179 

model” developed by A-Izzeddin and colleagues (2022; see Methods for detailed 180 

model description). Whereas an ideal observer model exploits all possible sources of 181 

information to make a decision, the pretty good observer model was designed to use 182 

only a subset of image statistics to make a decision. The model included two stages. 183 

In the first stage, the model rotated the target to best match the distribution of 184 

orientation energy in the target to the prior distribution (see Figure 4). In the second 185 

stage, the model used a broadscale filter to estimate the phase of the horizon within 186 

the target, determining if the target needed to be a rotated a further 180°. As described 187 

in more detail by A-Izzeddin et al., the motivation of this second stage was to 188 

approximate a light-from-above prior (Adams, 2007; Brewster, 1826; Metzger, 1936; 189 

Murray, 2013; Ramachandran, 1988). This procedure produced a pattern of modelled 190 

response orientations for the 500 targets shown to each participant. To account for 191 

deviations from the model observer across participants, we fit a single noise parameter 192 

for each participant (see Methods – Perceptual Model).  193 
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 194 
Figure 4. Comparison of target distribution of orientation energy and prior 195 
distribution. (A) An example target displayed at an arbitrary orientation. (B) Orange 196 
distribution is orientation energy for the target shown in (A) compared with the prior 197 
distribution of orientation energy (black). (C) The same target as in (A),but rotated to 198 
its objective upright.  (D) Orange distribution is orientation energy for target shown in 199 
(C), compared with the prior distribution of orientation energy (black).  Right panels of 200 
(B) and (D) show squared difference in normalised power between the target and the 201 
prior for each orientation bin. The perceptual model rotates the target to minimise the 202 
sum of the squared differences across all orientation bins.  203 

As shown in Figure 3A, the perceptual model provided a very good 204 

approximation of participants’ responses. The close correspondence between 205 

participants’ responses and model responses suggests that participants judge the 206 

orientation of the target by matching a relatively simple set of low-level image statistics, 207 

namely orientation energy and phase, to an internal representation of the distribution 208 

of these statistics in the natural world.  Thus, we confirmed that participants use prior 209 

knowledge of natural image statistics to make novel perceptual inferences about 210 

ambiguous stimuli (A-Izzeddin et al., 2022). 211 

Confidence Judgements  212 

If participants’ confidence was informed by the same prior used to make their 213 

perceptual orientation inferences, we hypothesised that their confidence judgements 214 

should characterise how well they had matched the low-level statistics in the target 215 

with the prior. In contrast, if participants did not use the prior to inform their confidence, 216 

their confidence judgements would depend on other heuristic cues, not related to the 217 
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prior. We tested these predictions with a second model, the confidence model, 218 

described below. We first provide an overview of the average distribution of confidence 219 

responses across response orientations and then outline the assumptions and 220 

performance of the confidence model. 221 

The black data in Figure 3B shows mean confidence as a function of response 222 

orientations. Participants were most confident in their most accurate orientation 223 

responses (responses in the 0° bin), suggesting they had some metacognitive 224 

awareness of the match of their perceptual judgements to the upright image. There 225 

are also clear peaks in confidence at the cardinals (±90° and ±180°), demonstrating 226 

that participants’ confidence responses show the same cardinal biases as the 227 

perceptual judgements. Our perceptual model revealed that participants use priors for 228 

the distribution of orientation energy and phase in natural scenes to inform their 229 

orientation judgements. We therefore wanted to develop a similar statistical model to 230 

determine if participants’ confidence judgements were informed by the same prior.  231 

Confidence Model 232 

For the confidence model, we developed several measures that summarised 233 

the degree of overlap in orientation energy and phase in the target and the prior. In 234 

addition to these prior-related measures, we also considered the possibility that 235 

confidence depends on other stimulus cues not related to the prior, such as the 236 

contrast of the target patch or response time of the first-order decision (Bertana et al., 237 

2021; Boldt et al., 2017; Faivre et al., 2018; Mole et al., 2018; Patel et al., 2012; 238 

Spence et al., 2016; van den Berg, Anandalingam, et al., 2016). To relate these 239 

measures to confidence and investigate their relative importance, we used a 240 

generalised linear mixed model framework in the form of a modified logistic regression. 241 

This allowed us to use a set of weighted stimulus variables to predict binary confidence 242 

responses. We describe the assumptions of each predictor in the model and the fixed 243 

effect of that predictor below. See Methods – Confidence Model for further model 244 

description. See Supplementary Table 1 and Supplementary Figure 2 for model 245 

parameters and predictions. See Supplementary Figure 5 for the correlation between 246 

fixed effects.  247 

Orientation Energy. We tested two different assumptions about how 248 

participants may quantify the degree of overlap between the distribution of orientation 249 
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energy in the target and the prior. These assumptions were quantified in what we refer 250 

to as the prior mismatch predictor and the cardinal and oblique orientation energy 251 

predictors. For the prior mismatch predictor, we assumed that participants directly 252 

compared a continuous representation of the distribution of orientation features in the 253 

stimulus and veridical knowledge of the prior distribution of orientation energy (see 254 

Figure 5A). The prior mismatch predictor, therefore, was a single statistic that 255 

summarised the difference between the entire distribution of orientation energy in the 256 

target at the rotational offset chosen by the observer and the prior. As shown in Figure 257 

6B, however, the effect of the prior mismatch predictor on confidence was not 258 

significant (𝑒! = 0.95, 95%	𝐶𝐼	[0.88, 1.04], 𝑝 = 0.261), suggesting that participants do 259 

not appear to explicitly compare the distribution of orientation energy in the target and 260 

the prior veridically.   261 
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 262 

 263 

Figure 5. Prior Predictors for Confidence Model. (A) Example difference in 264 
orientation energy for each bin between the distribution for the target (orange 265 
distribution in inset) and the prior (black distribution in inset). The sum of these 266 
differences was used as the prior mismatch predictor in the confidence model. (B) 267 
Example distribution of orientation energy with horizontal (0° or 180°), vertical (90°) 268 
and oblique (45° or 135°) energy shaded. These values were calculated for each target 269 
at the rotational offset chosen by the observer and used to predict confidence. (C) 270 
Example of a broadscale filter with a positive polarity (top circle) and an example target 271 
(middle circle). The filter is applied to the target (bottom circle) to determine the 272 
direction and strength of lighting in the target. (D) Example response of a broadscale 273 
filter (blue distribution in plot). The broadscale filter is positioned at different rotational 274 
offsets (top row) based on the orientation of the target (bottom row). The response of 275 
the filter at the offset chosen by the observer was used as a predictor in the confidence 276 
model. (E) Linear predictors were passed through an inverse logistic link function to 277 
predict confidence responses. 278 

As an alternative to computing confidence by comparing the full prior probability 279 

distribution of orientation energy with that measured from the target, we postulated 280 

that observers might instead be most confident in targets that contain strong vertical 281 

or horizontal features, based on their internal model of the over-representation of these 282 

features in natural scenes. We therefore included a second set of predictors in the 283 

confidence model which quantified the amount of vertical (where 𝜃 = 90°	), horizontal 284 

energy (where 𝜃 = 0°	𝑜𝑟	180°) and oblique energy (where 𝜃 = 45°	𝑜𝑟	135°) in the 285 

target at the rotational offset chosen by the participant (see Figure 5B). We found that 286 

vertical orientation energy (𝑒! = 2.13, 95%	𝐶𝐼	[1.47, 3.09], 𝑝 < .001), horizontal 287 
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orientation energy (𝑒! = 2.11, 95%	𝐶𝐼	[1.45, 3.06], 𝑝 < .001) and oblique orientation 288 

energy (𝑒! = 1.42, 95%	𝐶𝐼	[1.12, 1.78], 𝑝 = .003) were all positively predictive of 289 

confidence. The effect of vertical and horizontal energy was almost twice that of 290 

oblique orientation energy (see Figure 6B), suggesting that participants most heavily 291 

weight the over-representation of vertical and horizontal features in natural scenes to 292 

inform their confidence.  293 

Phase. Orientation energy is phase invariant, and so a participant cannot use 294 

orientation energy alone to distinguish a 0° and ±180° target. We therefore used a set 295 

of predictors in the confidence model that estimated phase (see Methods). We used 296 

the response of a broadscale filter positioned in the centre of the target at the rotational 297 

offset chosen by the observer as a phase, which we take to be indicative of the 298 

strength of a directional lighting signal. We used both the absolute value and a log 299 

transformed value of absolute phase in the confidence model to allow for non-linear 300 

relationships between target phase and confidence. The effects of absolute phase 301 

(𝑒! = 0.89, 95%	𝐶𝐼	[0.81, 0.98], 𝑝 = .020) and log transformed absolute phase on 302 

confidence were significant (𝑒! = 1.32, 95%	𝐶𝐼	[1.18, 1.49], 𝑝 < .001). The effect of 303 

the log transformed absolute phase on confidence suggests that the relationship 304 

between target phase and confidence was non-linear. This relationship is also positive 305 

such that the more evidence that there was a strong source of lighting in the target, 306 

the more confident the participant was in their response. Overall, these findings 307 

suggest that participants use low-level features such as the phase of the target, which 308 

can approximate the strength of a light source in the image, to inform their confidence.   309 
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 310 
Figure 6. Confidence Model. (A) Marginal fixed effects of each predictor on 311 
confidence. Shaded regions show ± 1 standard error of the predictions. Note that 312 
predictors vertical energy, horizontal energy, oblique energy, prior mismatch, absolute 313 
phase, log absolute phase, contrast and response time were standardised. (B) Odds 314 
ratio for fixed effects. Dotted vertical line indicates odds ratio of 1. Error bars show 315 
95% confidence intervals. Blue values indicate negative coefficients. ***p < .001,**p < 316 
.01, *p < .05.  317 

Other predictors. If, contrary to the above effects of orientation energy and 318 

phase, participants did not use the prior to inform their confidence, we hypothesised 319 

that they might use other heuristic-like cues. We therefore included two predictors in 320 

the confidence model that were not directly related to the prior: the overall contrast of 321 

the target patch (RMS contrast) and the response time of the first-order decision. 322 

The effect of response time on confidence was not significant (𝑒! = 1.05,323 

95%	𝐶𝐼	[0.83, 1.32], 𝑝 = .721), suggesting that participants do not use their first-order 324 

response time as a heuristic cue for confidence. The effect of contrast on confidence, 325 

however, was significant (𝑒! = 1.27, 95%	𝐶𝐼	[1.16, 1.40], 𝑝 < .001), where increasing 326 

target contrast was predictive of increasing confidence. Considering the strong effect 327 

of oriented contrast energy on confidence reports, it is not particularly surprising that 328 

a measure of isotropic orientation was also a significant predictor. Indeed, RMS 329 

contrast was moderately correlated with vertical and horizontal energy (see 330 

Supplementary Figure 5). However, this finding could nonetheless also suggest that, 331 

over and above the effect of priors, participants use other stimulus features to compute 332 

their confidence.  333 
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To visualise how well these measures accounted for the data more generally, 334 

we generated predictions for a model using the statistically significant predictors only 335 

(p < 0.05 in Figure 6; horizontal orientation energy, vertical orientation energy, oblique 336 

orientation energy, absolute phase, log absolute phase, contrast and experiment; see 337 

Supplementary Table 2). The predicted confidence from this model is shown in 338 

Figure 3B (blue distribution). The model describes the empirical confidence data very 339 

well (black distribution; Figure 3B), capturing the major peaks in confidence at the 340 

cardinal orientations. To provide a reference point for model performance, we fit an 341 

intercept only model with an intercept term for each participant (see Supplementary 342 

Figure 3 and Supplementary Table 3). We found substantially poorer performance 343 

for the intercept model (AICintercept = 12657.19, BICintercept = 12678.97, AICconf = 344 

12099.96, BICconf = 12361.29; see Supplementary Figure 4). This finding suggests 345 

that the confidence model, with the predictors that quantify the low-level features in 346 

the targets and their degree of overlap with the prior, was more useful for explaining 347 

variations in confidence than a constant value for confidence for each participant. 348 

Despite capturing many aspects of participants’ confidence reports, the model 349 

is incomplete. As shown in Figure 3B, the confidence model underpredicts confidence 350 

for correctly oriented targets (those with response orientations of 0°), suggesting that 351 

observers may have had access to other features in the targets, not captured by the 352 

model, which led them to confidently infer the correct upright orientation of the target. 353 

The model also appears to overpredict confidence for response orientations between 354 

~65-165°. We expect that this asymmetry in the confidence data, where the pattern of 355 

responding is different for response orientations of ~65-165° and ~-65-165°, is a result 356 

of non-stimulus-specific noise that is not captured by the model. Despite these minor 357 

limitations, a small set of environmental statistics provides a reasonable basis from 358 

which to understand confidence computations.  359 

Discussion 360 

We investigated the influence of priors on decision confidence. Observers 361 

performed a task in which they rotated a naturalistic image patch to its upright 362 

orientation, the first order decision, and then made confidence judgements in their 363 

orientation responses, the second order decision. We found that participants use 364 

internal priors about the statistical regularities of low-level features in natural scenes 365 
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to make their perceptual judgements, replicating a recent investigation (A-Izzeddin et 366 

al., 2022). Importantly, we also found that participants use the same priors to inform 367 

their confidence responses, even without explicit instruction about the prior. We 368 

discuss the implication of these findings for our understanding of decision confidence 369 

below.  370 

Priors Affect Confidence  371 

We found that participants use prior knowledge about the statistical regularities 372 

of orientation energy and phase in natural scenes to inform both their perceptual 373 

inferences and confidence judgements. In the following sections, we discuss the role 374 

of this information in models of confidence.  375 

Orientation Energy  376 

Our confidence modelling results showed that the amount of vertical and horizontal 377 

orientation energy in the target was an important predictor of confidence. In fact, the 378 

effect of vertical and horizontal energy on confidence was almost twice that of oblique 379 

orientation energy. Participants were not given any instruction about which image 380 

features to use to make their judgements and were not given any explicit instruction 381 

about a prior distribution. This finding, therefore, suggests that participants appear to 382 

use implicit knowledge about the over-representation of horizontal and vertical 383 

orientation features in natural scenes to inform their confidence. This finding broadens 384 

our understanding of the influence of the statistical regularities of orientation features 385 

in natural scenes on perceptual judgements (Appelle, 1972; Berkley et al., 1975; 386 

Campbell et al., 1966; Dakin & Watt, 1997; Girshick et al., 2011; Hansen et al., 2003, 387 

2008; Pratte et al., 2016) and demonstrates, for the first time, that these low-level 388 

perceptual priors also effect observers’ confidence.  389 

Although participants appear to use knowledge about the prior probability of certain 390 

oriented features in natural scenes to inform their confidence, we did not find evidence 391 

that participants directly compare a full prior probability distribution of orientation 392 

energy in natural scenes and the distribution of orientation energy in the target directly 393 

(the prior mismatch predictor). Instead, our results suggest that participants use only 394 

a subset of orientations to inform their confidence, or, alternatively, use orientations 395 

within only some spatial frequencies. This finding suggests that perhaps observers 396 

may not use the entire prior probability distribution but instead, confidence is informed 397 
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by only the most predictive features of the prior. As shown in Figure 7, perceptually 398 

apparent cardinal structures need not be defined by peaks in energy as defined in our 399 

prior. When quantifying energy, we aggregated over all spatial frequencies, whereas 400 

human vision is known to be bandpass (Campbell & Robson, 1968). Future models 401 

could therefore weight an image’s orientation energy according to the human contrast 402 

sensitivity. Furthermore, phase alignment at different spatial scales is critical to 403 

perceptually relevant edge features that can guide the sorts of perceptual and 404 

confidence decisions in our study (Rideaux et al., 2022a). We discuss the role of phase 405 

in confidence computations in the next section.  406 
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   407 

 408 
Figure 7. Informativeness of Full Prior Distribution. Comparing the full distribution 409 
of orientation energy to a prior may not always be functional. The image on the left 410 
shows a greyscale natural image. Its orientation energy is shown below the image, 411 
and closely matches the prior distribution shown in Figure 1. The image on the right 412 
is the same image, but we have “whitened” its amplitude spectrum with respect to 413 
orientation: as shown below the image, the modified image has equal energy at all 414 
orientations. Despite the large change in orientation energy, the images are 415 
perceptually similar. Because natural images are dominated by low-spatial frequency 416 
structures, energy within low spatial frequency bands were over-represented in our 417 
measure of orientation energy relative to the bandpass properties of human vision. 418 
However, this example nonetheless demonstrates that clearly oriented cardinal 419 
structures need not be defined by peaks in energy as defined in our prior per se. 420 
Instead, phase alignment at different spatial scales, and orientation energy within 421 
different spatial frequency sub-bands, are critical to perceptually relevant edge 422 
features that can guide the sorts of perceptual and confidence decisions in our study 423 
(Rideaux et al., 2022b).  424 
 425 

Phase 426 

Because orientation energy is phase-invariant, we included a set of predictors in 427 

the confidence model that estimated the phase of the horizon in the target in order to 428 

capture a proportion of responses that were inverted by 180°. We found a non-linear 429 

effect of the phase predictor on confidence such that the more evidence that there was 430 

a clear horizon in the target, the more confident participants were in their response. 431 
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The horizon in the target could be used to approximate both the direction and strength 432 

of lighting in the target. Lighting in the natural world is known to follow certain statistical 433 

regularities, mostly originating from above the horizon due to predominant sources of 434 

illumination being the sun and overhead lights. The demonstrated effect of phase on 435 

confidence is thus consistent with well documented perceptual effects that humans 436 

have priors for the direction of lighting in natural scenes (Adams, 2007; Brewster, 437 

1826; Metzger, 1936; Murray, 2013; Ramachandran, 1988) and provides converging 438 

evidence that participants use priors based on experience with the statistical 439 

regularities of the natural world to inform their confidence.   440 

The Computational Basis of Confidence  441 

Our finding that priors are demonstratively used to inform confidence helps to 442 

resolve some of the theoretical debate about the computational basis of confidence. 443 

One of the leading theories of confidence suggests that it is computed according to 444 

the rules of Bayesian inference where humans combine a prior with a likelihood to 445 

compute a posterior probability distribution. Currently, however, the evidence for 446 

Bayesian accounts of confidence have been mixed with some studies finding evidence 447 

for Bayesian models (Aitchison et al., 2015; Li & Ma, 2020; Navajas et al., 2017; 448 

Sanders et al., 2016) and others for non-Bayesian models (Adler & Ma, 2018; 449 

Aitchison et al., 2015; Bertana et al., 2021; Denison et al., 2018; Lisi et al., 2021; Locke 450 

et al., 2022). One of the major limitations of existing research, however, is that many 451 

previous studies have assumed participants’ effective internalisation of arbitrary prior 452 

distributions and compared their behaviour to that of a Bayesian optimal observer with 453 

full knowledge of that distribution (Denison et al., 2018; Li & Ma, 2020; Locke et al., 454 

2022; Qamar et al., 2013; West et al., 2022). This assumption is rarely interrogated, 455 

despite the fact that if observers are unable to internalise the statistics of the prior 456 

distribution within the time-limited context of the experiment, it is unlikely their 457 

confidence judgements will match that of a Bayesian observer. This would make it 458 

difficult to find evidence of the use of priors in confidence judgments even if priors are 459 

used to inform confidence beyond the lab.  460 

In this study, we used a task design in which we did not need to explicate a prior 461 

distribution and could instead rely on participants’ existing priors.  Such a task allowed 462 

us to confirm that priors do indeed influence confidence responses. Our findings are 463 
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consistent with a Bayesian characterisation of confidence in which confidence 464 

depends on prior information, although further development of our models is required 465 

in order to compute a full posterior distribution as per other Bayesian formulations 466 

(Aitchison et al., 2015; Li & Ma, 2020; Navajas et al., 2017; Sanders et al., 2016; 467 

Denison et al., 2018; Locke et al., 2022; West et al., 2022). Our demonstration of the 468 

importance of priors suggests that previous research showing evidence against 469 

Bayesian models of confidence should be interpreted with caution. It is feasible that 470 

the use of arbitrary prior distributions in previous research meant that participants were 471 

unable to internalise the statistics of those distributions veridically and thus showed 472 

systematic deviations from prior-informed optimal behaviour. Our findings imply that 473 

future studies evaluating the computational basis of confidence could rely more on 474 

naturalistic task designs or use computational models that allow for inaccurate 475 

knowledge about the prior distribution.  476 

Other Stimulus Features as Cues for Confidence 477 

 In addition to the effect of priors on confidence, we investigated if participants 478 

used other cues to inform their confidence. Inconsistent with some previous research, 479 

we did not find evidence that response time in the first order decision influenced 480 

confidence (Faivre et al., 2018; Patel et al., 2012; van den Berg, Anandalingam, et al., 481 

2016). We did, however, find that the contrast of the target had a significant effect on 482 

confidence, where higher target contrast was associated with greater confidence. We 483 

postulate that stimulus contrast in our experimental paradigm may provide an 484 

important cue about sensory uncertainty. Lower contrast targets provide less clear and 485 

consistent visual information (Bex & Makous, 2002), and, therefore, contrast can 486 

provide a meaningful cue about the perceptual uncertainty of the source of information 487 

on which the decision is based. This is consistent with studies showing that confidence 488 

is influenced by perceived sensory uncertainty (Adler & Ma, 2018; Denison et al., 489 

2018; Michael et al., 2015; West et al., 2022). Furthermore, it is generally consistent 490 

with theoretical work which links confidence with the hypothesis that perceptual 491 

uncertainty is encoded as the variance in firing rates across neural populations, with 492 

increased uncertainty leading to down-weighting of that evidence source in perceptual 493 

integration (Beck et al., 2008; Ma et al., 2006). Further research is required to confirm 494 
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these hypotheses and understand the neural mechanisms by which certain stimulus 495 

features, like image contrast, are involved in the computation of confidence.  496 

Conclusions  497 

Our results support the idea that observers combine multiple features of 498 

incoming sensory information with prior probability representations to compute their 499 

confidence. Our experimental paradigm capitalises on statistical regularities in the 500 

structure of natural scenes such that participants relied on an existing, internal 501 

representation of prior probabilities to make their judgements. This meant that, unlike 502 

previous research, incomplete knowledge about the statistics of the prior distribution 503 

would not bias our interpretations about the computational basis of confidence. Our 504 

results provide important evidence supporting a Bayesian characterisation of 505 

confidence, highlighting the joint influence of priors and other perceptual features, 506 

such as sensory uncertainty, on confidence. Overall, our study demonstrates that prior 507 

knowledge plays an important role in both the perceptual and metacognitive decisions 508 

that humans make about the noisy, ambiguous sensory information they encounter 509 

every day.  510 

Methods 511 

Overview. On each trial, a participant viewed a randomly oriented target, 512 

positioned in the centre of the display (see Figure 2A). The participant was informed 513 

that the target was a circular patch that had been cropped from the centre of a larger 514 

source image, where source images were randomly selected from a database of 515 

images of outdoor scenes (see Figure 2B). The participant was instructed to rotate 516 

the target to the “upright” orientation, with no additional contextual information given 517 

about the source image. For each target, the participant made their orientation 518 

judgement, the first order decision, and then made a confidence judgement in their 519 

chosen orientation response, the second order decision, reporting either “high 520 

confidence” or “low confidence”.  521 

Participants 522 

In total, 21 participants (Mage = 23.95, SDage = 4.65; no exclusions) completed 523 

the experiment. 10 participants completed Study 1 and 11 participants completed 524 

Study 2. All methods were the same for Study 1 and Study 2, unless indicated 525 
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otherwise. As there did not appear to be any clear differences in the results of Study 526 

1 and Study 2, we combined datasets across studies. We, therefore, report results for 527 

all 21 participants. See Supplementary Material: Experiment 1 and Experiment 2 528 

Comparison for additional commentary. All participants were naïve to the purpose of 529 

the study and were reimbursed for their time ($20 per hour in cash). Ethics approval 530 

was granted by the University of Queensland Medicine, Low & Negligible Risk Ethics 531 

Sub-Committee. 532 

Stimuli & Apparatus  533 

All participants saw the same 500 digital natural images, selected randomly 534 

from a database of high-resolution photos of outdoor scenes and cropped to 535 

1080x1080 pixel regions (Geisler & Perry, 2011; A-Izzeddin et al., 2022).  Targets 536 

were circular patches cropped from the centre of the 1080x1080 images, subtending 537 

2° of visual angle in diameter (see Figure 2B). All stimuli were converted to greyscale 538 

using MATLAB’s rgb2gray() function. During practice, targets were selected randomly 539 

from a different set of images from the same database.  540 

Stimuli were presented using the Psychophysics Toolbox (3.0.12; Brainard, 541 

1997; Pelli, 1997) and a gamma correction was applied to the display, assuming 542 

gamma was 2. In Study 1, stimuli were presented on a 24-inch ASUS VG428QE 543 

monitor, 1920 x 1080-pixel resolution and a refresh rate of 100 Hz. Participants were 544 

seated in a dark room with their head positioned on a chin rest fixed at a viewing 545 

distance of 57cm. In Study 2, stimuli were presented on a 24-inch DELL P2414H 546 

monitor, 1920 x 1080-pixel resolution and a refresh rate of 60 Hz. 547 

Procedure 548 

As shown in Figure 2A, at the start of each trial participants were presented 549 

with a central fixation point for ~125 ms (fixation time sampled from a uniform 550 

distribution between 0 and 250 ms) followed by a black and white pink noise patch for 551 

1000 ms (27° of visual angle in diameter). The target was then presented centrally at 552 

a random orientation and participants used the mouse to re-orient the patch to be 553 

“upright”. Participants clicked the mouse to confirm their response and then used the 554 

arrow keys (left arrow = low confidence and right arrow = high confidence) to indicate 555 

their confidence in their chosen orientation. Half of the participants were instructed to 556 

use the high confidence and low confidence ratings approximately equally often (Study 557 
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1) and the other half of participants received no additional instructions about using the 558 

confidence ratings (Study 2). All participants completed 500 trials with the same 559 

targets, the order of which was randomised for each participant. Trials were split into 560 

5 blocks of 100 trials with self-paced breaks in between blocks.  561 

Prior to completing the experiment, participants did 40 practice trials to 562 

familiarise themselves with the task. In the first 20 practice trials, participants only 563 

rotated the targets to their “upright” orientation and, in the remaining 20 trials, 564 

participants rotated the targets and then made confidence ratings. Participants saw 565 

different target images during testing and training.  566 

Data Analyses 567 

We used statistical models and digital signal processing techniques (e.g. 568 

Harrison, 2022) to investigate whether participants use a prior for natural image 569 

statistics when making perceptual inferences. We then developed a novel statistical 570 

model to determine if participants use the same prior to inform their confidence 571 

judgments. In the following sections, we first describe the image processing methods 572 

used to derive the distribution of orientation energy and phase for the prior and each 573 

target patch. We then describe the perceptual and confidence models.  574 

The targets were designed so that they were windowed within a small aperture 575 

of the larger source image. This meant that the targets themselves contained very little 576 

high-level structure that participants could use to unambiguously infer the upright 577 

orientation of the target (see Supplementary Material: High-Level Image Features 578 

and “Informativeness” Data for further discussion on this issue). Participants, 579 

therefore, had to rely on a strategy that depended on the low-level image features in 580 

the targets only (see Supplementary Figure 8). Based on A-Izzeddin and colleagues 581 

(2022), we expected that participants would adopt a strategy in which they chose 582 

rotational offsets for the targets which best matched the distribution of low-level 583 

features in the targets to the average distribution of these features in the environment, 584 

referred to as the prior. Consistent with A-Izzeddin and colleagues (2022), we focused 585 

on the use of two specific low-level features, the distribution of orientation energy and 586 

phase, and defined the prior as the average distribution of these features across 587 

thousands of images of natural scenes (see Figure 1). Importantly, for the 588 

experimental task, we did not provide any guidance on what features participants 589 
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should use to make their decisions or give them any explicit instructions about the 590 

prior. Instead, we relied on participants’ internal representation of the prior to do the 591 

task.  592 

Orientation Energy  593 

Prior. We defined the prior distribution of orientation energy based on studies 594 

of natural images (e.g. Wei & Stocker, 2015): 595 

 𝑝(𝜃) ∝ 2 − |𝑠𝑖𝑛𝜃| (1) 

where 𝑝(𝜃) is the probability of observing orientation energy with an orientation of 𝜃 in 596 

radians. Equation Error! Reference source not found. assumes equal prevalence of 597 

horizontal and vertical orientations. Other studies, however, have shown that 598 

horizontal features are over-represented relative to vertical features (Hansen et al., 599 

2003; Hansen & Essock, 2004; Harrison, 2022). We therefore modified Equation 600 

Error! Reference source not found. by increasing the proportion of horizontal energy 601 

according to a von Mises function which was normalised to have a peak of one: 602 

 𝑝(𝜃) ∝ 2 − |𝑠𝑖𝑛𝜃| + 𝐶	𝑒𝑥𝑝	(𝜅	(cos𝜃 − 1)	) (2) 

where C is the strength of the horizonal bias, and 𝜅 is the width of the von Mises 603 

function which we set to 2.5. 𝑝(𝜃) was then normalised within the range 0 – 1. Small 604 

changes in 𝜅 did not change the results. Figure 1 shows the prior distribution of 605 

orientation energy (black distribution).   606 

Target Patch. We calculated the distribution of orientation energy in the target 607 

to compare against the prior. For a given target patch, we computed orientation energy 608 

in 180 equally space orientation bands, each of which covered all spatial frequencies. 609 

These operations were performed in the frequency domain; energy was the absolute 610 

of the Fourier-transformed target patches. Orientation filters were also constructed in 611 

the frequency domain as raised cosine filters with a bandwidth of 45° (full width half 612 

height). Energy was summed within each orientation band, giving a distribution of 613 

energy across orientations. Because absolute energy fluctuates from one image to the 614 

next, the distribution of energy was normalised within the range 0 – 1, by subtracting 615 

the minimum value, and then dividing by the maximum value. Figure 4B/D shows 616 
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example distributions of orientation energy (orange distribution) for an example target 617 

patch at two different rotational offsets in Figure 4A/C. 618 

Phase  619 

As described in A-Izzeddin et al. (2022), contrast energy alone is circular 620 

around ±90°, whereas observers’ reports are circular around ±180°. To estimate fully 621 

circular responses, therefore, a second image statistic is required to determine 622 

whether an image needs to be inverted. We modelled this process as an estimate of 623 

the phase of the horizon.  624 

Prior. Consistent with previous research, we assumed that participants had a 625 

light-from-above prior (Adams, 2007; Brewster, 1826; Metzger, 1936; Murray, 2013; 626 

Ramachandran, 1988). In other words, we assumed that the response of a broadscale 627 

filter positioned in the centre of the target should on average, be positive, consistent 628 

with light being above the horizon in naturalistic scenes.  629 

Target Patch. To measure the phase of the target on a given trial, the 630 

broadscale filter was positioned in the centre of the target and at the orientation of the 631 

rotational offset of the target. The polarity of the response of the filter was used to 632 

determine lighting direction. That is, if the response of the filter was positive, light would 633 

appear to be above the horizon in the target and if the response of the filter was 634 

negative, light would appear to be below the horizon in the target (see Figure 5C).  635 

Perceptual Model  636 

 We used the model observer developed by A-Izzeddin and colleagues (2022) 637 

to investigate whether participants use an internal prior model for low-level image 638 

features to inform their orientation judgements.  This model is defined as a “pretty good 639 

observer” model because it uses a subset of image statistics to make a decision, as 640 

opposed to an “ideal observer” model which exploits all possible sources of 641 

information.  642 

The model included two stages. In the first stage, we rotated the target to best 643 

match the distribution of orientation energy in the target with the prior. We used 644 

MATLAB’s fminsearch() function to find the rotational offset that minimised the sum of 645 

squared differences in each orientation band between the target and the prior (see 646 

Figure 4). To avoid local minima, we fit the model with varying starting parameters 647 

and used the rotational offset at the global minimum from all fits. Because orientation 648 
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contrast is phase invariant, in the second stage of the model after finding the best 649 

rotational offset, we estimated lighting direction in the patch using a broadscale filter 650 

and inverted the target so that it was consistent with a light-from-above prior, as 651 

described above.  In other words, where the response of the filter was positive, the 652 

model observer would leave the target patch at the current orientation. If, on the other 653 

hand, the phase was negative, the model observer would rotate the target patch by 654 

180°. The stronger the absolute value of the phase response, the more evidence the 655 

model observer had about the horizon. 656 

The fitting of the perceptual model as described thus far was independent from 657 

participants’ responses – we fit the targets’ statistics to the prior.  This meant that the 658 

model was deterministic. Because all participants saw the same targets, the model 659 

predicted the same pattern of responses for all participants. To account for deviations 660 

from the model observer across participants, we fit a single noise parameter for each 661 

participant: we added a random amount of noise, 𝜀, to the model’s predicted response 662 

orientation for each target. The amount of added noise was sampled from a normal 663 

distribution with a mean of 0 and a standard deviation, 𝜎, that was estimated 664 

separately for each participant, j, such that: 665 

 𝑁(𝜀; 0, 𝜎") (3) 

 where 𝑁 denotes the normal density function and 𝜀 is the amount of noise added to 666 

the perceptual model’s prediction. We estimated 𝜎 by minimising the difference 667 

between each participant’s observed distribution of response orientations and the 668 

mean predicted distribution of response orientations for that participant using ordinary 669 

least squares according to: 670 

 MN𝛿",$ − 𝜌",$Q
%

$

 (4) 

Where 𝛿 is the observed proportion of responses and 𝜌 is the predicted proportion of 671 

responses in bin, b, for participant, j. To calculate the predicted proportion of 672 

responses, we simulated 1000 noisy responses by drawing random samples of 𝜀 673 

according to Equation 3 for each trial and each participant and added these random 674 

samples to the model’s predicted orientation response for that target. We then 675 
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calculated the average proportion of responses in each orientation bin for each 676 

participant. See Supplementary Table 4 for 𝜎 parameter estimates.  677 

Confidence Model  678 

For the associated confidence judgements, we sought to determine if 679 

participants use the same prior for the distribution of low-level features in natural 680 

scenes to inform their confidence. If participants use the same perceptual prior to 681 

inform their confidence, we hypothesised that their confidence judgements would 682 

reflect how closely the distribution of low-level features in their chosen orientation 683 

response matched the prior distribution. To test this prediction, we developed several 684 

measures that summarised the degree of overlap in orientation energy and phase in 685 

the target, as oriented by the participant, and the prior (described above). In contrast 686 

to these prior-related measures, we also considered the possibility that confidence 687 

depends on other stimulus cues not related to the prior, such as the contrast of the 688 

target patch or response time of the first-order decision. To evaluate these predictions, 689 

we used a generalised linear mixed model framework to investigate the relationship 690 

between certain features of the target and participants’ confidence judgements. 691 

Importantly, we computed the measures (described in detail below) using the targets 692 

at the rotational offset chosen by the participant on each trial, reflecting the fact that 693 

confidence judgements are a second-order reflection on the first-order decision.  694 

In the sections below, we first describe the general modelling framework (the 695 

generative model) and then describe each of the measures used to predict confidence.  696 

Generative Model   697 

We used a generalised linear mixed model (GLMM) in the form of a modified 698 

logistic regression to relate a set of weighted predictor variables to binary confidence 699 

responses (low or high). In this framework, the sum of weighted predictor variables is 700 

passed through a logistic link function which transforms the unbounded weighted sum 701 

into the range of [0, 1]. The linear function is given by: 702 

 𝛾& 	= 	𝛽' +	𝛽(𝑥&( +⋯+	𝛽)𝑥&) (5) 
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where 	𝑥&(…	𝑥&)	are the values for the U predictors on trial i, 	𝛽(… 	𝛽) are the weights 703 

for the respective predictors and 	𝛽' is the intercept term. The inverse logistic link 704 

function that the linear function is passed through is given by:  705 

 𝑐& =
exp	(𝛾)

1 + exp	(𝛾)		 (6) 

We used a multilevel extension of this model, such that we estimate the predictor 706 

weights, 𝛽s, for each subject. These weights are assumed to come from the same 707 

population such that the individual-subject 𝛽s are estimated concurrently with the 708 

mean and variance of the weights at the population level (Wallis et al., 2015). For the 709 

confidence model, we used a model with 9 predictor variables, where the linear 710 

function was described by: 711 

 

ℎ& =	𝛽",' +	𝛽",(𝑝𝑟𝑖𝑜𝑟	𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ& +	𝛽",%𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙	𝑒𝑛𝑒𝑟𝑔𝑦&

+	𝛽",*ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙	𝑒𝑛𝑒𝑟𝑔𝑦&+		𝛽",+𝑜𝑏𝑙𝑖𝑞𝑢𝑒	𝑒𝑛𝑒𝑟𝑔𝑦&

+ 	𝛽",,|𝑝ℎ𝑎𝑠𝑒&| +	𝛽",-log	(|𝑝ℎ𝑎𝑠𝑒&|) +	𝛽",.𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡&

+	𝛽",/𝑟𝑡&	 +	𝛽",1𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡& 

(7) 

such that for subject j, 𝛽",(…	𝛽",, were the weights for the respective predictor variables 712 

and 𝛽",' was the intercept. 𝛽",1 was the weight for an experiment indicator variable 713 

which allowed for differences in mean confidence across experiments (see 714 

Supplementary Figure 1).  All predictors were standardised, by subtracting the mean 715 

and dividing by the standard deviation, prior to model fitting (see Supplementary 716 

Figure 7). The computation of each predictor variable is described below.  717 

Orientation Energy  718 

 The goal of the confidence model was to determine if participants’ confidence 719 

judgements were informed by the same prior used for their perceptual judgements. 720 

We reasoned that if participants used the same prior to inform their confidence, there 721 

would be a statistical association between confidence and the amount of 722 

correspondence in the distribution of low-level features in the target and the prior. To 723 

summarise the degree of overlap between the distribution of orientation features in the 724 

target and the prior, we used two sets of predictors: prior mismatch and cardinal and 725 

oblique orientation energy.  For both sets of predictors, we assumed that participants 726 

use prior knowledge about the statistics of the distribution of orientation features in 727 

natural scenes to inform their confidence. For the prior mismatch predictor, we 728 
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assumed that observers directly compare a veridical representation of the distribution 729 

of orientation energy in the stimulus and veridical knowledge of the prior distribution 730 

of orientation energy to compute their confidence. This means that observers use a 731 

statistic that summarises the mismatch between the entire distribution of orientation 732 

energy in the target and the prior to compute their confidence. For the cardinal and 733 

oblique orientation energy predictors, in contrast, we assume that observers rely on 734 

only a subset of features in the stimulus and the prior model to compute their 735 

confidence. Specifically, observers use a set of salient orientation cues, namely 736 

vertical, horizontal, and oblique features, for confidence, based on prior knowledge 737 

about the probability of these orientation features in the natural environment.  738 

Prior Mismatch. For the prior mismatch predictor, we calculated the average 739 

difference between the distribution of orientation energy in the target at the rotational 740 

offset chosen by the participant and the prior distribution of orientation energy. We did 741 

this by calculating the difference in orientation energy between the target and the prior 742 

in each orientation bin, squaring this difference and then summing across bins.  743 

Cardinal and Oblique Orientation Energy. For the cardinal and oblique 744 

orientation energy predictors, we assumed that participants use a subset of orientation 745 

features to estimate their confidence. We calculated orientation energy across all 746 

orientations for each target positioned at the rotational offset chosen by the participant. 747 

We then normalised energy for each orientation band so that each band expressed a 748 

proportion of orientation energy in that bin relative to total orientation energy in the 749 

target, a form of divisive normalisation (Carandini & Heeger, 2012; see 750 

Supplementary Figure 6). To predict confidence, we use 3 predictors: vertical energy 751 

(where 𝜃 = 90 ∙ 2
(/'

), horizontal energy (where 𝜃 = 0	𝑜𝑟	180 ∙ 2
(/'

), and oblique energy 752 

(where 𝜃 = 45 ∙ 2
(/'	

	𝑜𝑟	135 ∙ 2
(/'	

	). 753 

Phase 754 

To summarise the degree of overlap between the phase in the target and the 755 

prior, we used 2 phase predictors. For these predictors, we computed the response of 756 

a broadscale filter positioned at the centre of the target with an orientation that 757 

matched the rotational offset of the target.  The response of the filter approximated the 758 

strength of the horizon in the target and could be used to approximate the strength of 759 

lighting in the scene (see Figure 5C). We used both the absolute value of the filter 760 
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response and a log transformation of the absolute value of the filter response as 761 

predictors of confidence to allow for non-linear relationships between phase and 762 

confidence.   763 

Response Time  764 

 As described above, we also considered the possibility that confidence 765 

depended on other heuristic cues not related to the prior.  Based on previous research 766 

(Faivre et al., 2018; Patel et al., 2012; van den Berg, Anandalingam, et al., 2016), we 767 

therefore included a predictor in the confidence model for response time. For the 768 

response time predictor, we used the response time of the orientation response for 769 

each trial, measured in milliseconds.  770 

Contrast 771 

We also postulated that participants may use the contrast of the target as a 772 

heuristic cue for confidence. For the contrast predictor, we used the root-mean-square 773 

(RMS) contrast of each target (Bex & Makous, 2002; Harrison, 2022). RMS contrast 774 

is the standard deviation of the luminance (i.e., pixel) values:  775 

 𝐶345 =	i
1

𝑁 − 1	M
(𝑖6 − 𝐿)%

7

68(

	 (8) 

Where k is a pixel index, N is the total number of pixels, and L is the mean luminance. 776 

Summary of Modelling Approach  777 

 To summarise our expectations about the confidence modelling results, we 778 

reasoned that if participants used the perceptual prior to inform their confidence, we 779 

would find that the measures which summarise the degree of overlap in orientation 780 

energy between the target and the prior (prior mismatch and/or cardinal/oblique 781 

orientation energy) and phase (absolute phase and/or log absolute phase) predicted 782 

confidence. If, however, participants used other non-prior related measures to inform 783 

their confidence, we would expect the other heuristic cues, such as the first order 784 

response time or contrast, to be the only predictors of confidence.    785 
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