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in different directions. We approximate the DSGE model by a vector autoregression.

Dummy observations are constructed from the DSGE model and converted into the

frequency domain. By re-weighting the frequency domain dummy observations we can

control the extent to which the restrictions derived from economic theory are relaxed.

Bayesian marginal data densities can then be used to obtain a data-driven procedure

that determines the optimal degree of shrinkage toward the DSGE model restrictions.

We provide several numerical illustrations of our procedure.

JEL CLASSIFICATION: C32, E52, F41

KEY WORDS: Bayesian Econometrics, DSGE Models,

Frequency Domain Analysis, Misspecification

∗We thank Sungbae An for his excellent research assistance.



This Version: February 12, 2008 1

1 Introduction

This paper exploits the insight that the misspecification of dynamic stochastic general equi-

librium (DSGE) models is more prevalent at some frequencies than at others, developing

methods that enable different degrees of relaxation of the DSGE restrictions in various

directions. For example, DSGE models impose very strong long-run restrictions. In the

neoclassical growth model with a random walk technology process, output, consumption,

investment, real wages, and the capital stock share a common stochastic trend, implying

that pairwise ratios of those variables should be stationary (see King, Plosser, Rebelo, 1998),

but a close look at the data suggests otherwise. Data-based violation of those long-run re-

strictions results in poor DSGE model fit, in particular compared to VARs that allow for

more general common trend features. DSGE models, however, are designed for business

cycle analysis; that is, they are designed to explain medium-term business cycle fluctua-

tions, not very long-run or very short-run fluctuations. Hence we are much more willing to

relax the very short-run and very long-run DSGE model restrictions than the more relevant

medium-run DSGE model restrictions. Unfortunately, standard procedures do not permit

this. The methods proposed in this paper do.

Del Negro and Schorfheide (2004) developed a framework in which a DSGE model

was used to derive restrictions for vector autoregressions (VAR). Rather than imposing

these restrictions dogmatically, Del Negro and Schorfheide constructed a family of prior

distributions that concentrates much of its probability mass in the neighborhood of these

restrictions. The prior has the property that it biases the VAR coefficient estimates toward

the restrictions implied by a fully-specified dynamic model. Loosely speaking, the prior

is implemented by augmenting the actual observations by dummy observations generated

from the DSGE model, very much in the spirit of the classic Theil-Goldberger (1961) mixed

estimation. The more of these dummy observations are added, the closer the VAR estimates

stay to the DSGE model restrictions. This so-called DSGE-VAR framework can be used

to estimate DSGE and VAR parameters, to evaluated DSGE model, and to forecast and

conduct policy analysis, e.g., Del Negro and Schorfheide (2005), Del Negro, Schorfheide,

Smets, and Wouters (2006), and Adolfson, Laséen, Lindé, and Villani (2006).

In this paper we extend the DSGE-VAR framework by considering dummy observations
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from a DSGE model that have been transformed into the frequency domain and re-weighted

to emphasize certain spectral bands along which the DSGE model fits well. The paper

is organized as follows. Section 2 provides some evidence that the current generation of

DSGE models is severely misspecified in terms of their low frequency implications. We

consider a stochastic growth model with a number of frictions that include capital and

labor adjustment costs. This model is essentially a flexible price and wages version of the

medium-scale DSGE models that are currently used for applied monetary policy analysis,

e.g., Smets and Wouters (2003). We document that this model is unable to generate the

persistence in the great ratios, in particular the consumption-output ratio, that we observe

in quarterly U.S. data. Section 3 briefly reviews the time-domain DSGE-VAR framework.

Frequency-domain dummy observations are introduced in Section 4, Section 5 contains two

illustrative examples, and Section 6 an (currently incomplete) empirical application. We

conclude in Section 7 and outline future research.

2 Common Trends in U.S. Data and an Estimated DSGE

Model

To illustrate that model misspecification may be more prevalent at some frequencies than

at others we use a one-sector neoclassical growth model with several real frictions, based on

work of Christiano, Eichenbaum, and Evans (2005) and Smets and Wouters (2003), including

capital and labor adjustment costs. We abstract from nominal rigidities. Technology shifts

according to an integrated labor augmenting exogenous process that induces a stochastic

growth path along which output, consumption, and investment grow at the same rate and

hours worked is stationary. We compute prior and posterior predictive densities for the

spectrum of some of the great ratios (Klein and Kosobud, 1961) and compare them to

spectral estimates constructed from actual U.S. data. Before presenting the empirical results

we briefly outline the DSGE model.
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2.1 The DSGE Model

A representative household maximizes the expected discounted lifetime utility from con-

sumption Ct and hours worked Lt: given by:

IEt

∞∑

s=0

βs

[
log(Ct+s − hCt+s−1) −

φt+s

1 + νl
L1+νl

t+s

]
. (1)

Household’s preferences display habit-persistence. The short-run (Frisch) labor supply elas-

ticity is νl. The exogenous process

lnφt = (1 − ρφ) lnφ + ρφ lnφt−1 + σφεφ,t

can be interpreted as labor supply shock, since an increase of φt raises aggregate labor supply.

This may reflect permanent shifts in per capita hours of work due to demographic changes,

tax reforms, shifts in the marginal rate of substitution between leisure and consumption, or

(non-neutral) technological changes in household production technology.

The household supplies labor at the competitive equilibrium wage Wt and rents capital

services to the firms at the competitive rental rate Rk
t . The household’s budget constraint

is given by:

Ct+s+It+s+Tt+s ≤ At+s−1+Πt+s+Wt+sLt+s+
[
Rk

t+sut+sK̄t+s−1 − a(ut+s)K̄t+s−1

]
, (2)

where It is investment, Πt is the profit the household gets from owning firms, Wt is the real

wage earned by the household, and Tt are lump-sum taxes (transfers) from the government.

The term within parenthesis represents the return to owning K̄t units of capital. Households

choose the utilization rate of their own capital, ut. Households rent to firms in period t an

amount of effective capital equal to:

Kt = utK̄t−1, (3)

and receive Rk
t utK̄t−1 in return. They however have to pay a cost of utilization in terms of

the consumption good equal to a(ut)K̄t−1. Households accumulate capital according to the

equation:

K̄t = (1 − δ)K̄t−1 + µt

(
1 − S

(
It

It−1

))
It, (4)

where δ is the rate of depreciation, and S(·) is the cost of adjusting investment, with

S(eγ) = 0, and S′′(·) > 0. The term µt is a stochastic disturbance to the price of investment
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relative to consumption, see Greenwood, Hercovitz, and Krusell (1998), which follows the

exogenous process:

lnµt = (1 − ρµ) lnµ + ρµ lnµt−1 + σµεµ,t. (5)

Firms rent capital, hire labor and capital services, and produce final goods according

to the following technology

Yt = (ZtLt)
1−αKα

t

(
1 − ϕ ·

(
Lt

Lt−1
− 1

)2
)

, (6)

where the technology shock Zt (common across all firms) follows a unit root process in logs:

zt = ln(Zt/Zt−1) = γ + σzεz,t. (7)

The last term in (6) captures the cost of adjusting labor inputs: ϕ ≥ 0. In models M0 and

M1, there is no adjustment cost: ϕ = 0. Despite various types of adjustment costs in the

labor market – e.g., search (Andolfatto, 1996), learning (Chang, Gomes, and Schorfheide,

2002), time non-separable utility in leisure (Kydland and Prescott, 1982) – we use a simple

reduced-form quadratic cost to firms without taking a particular stand on the micro foun-

dations of the nature of friction. The firms maximize expected discounted future profits

IEt

[
∞∑

s=0

βt+sΞt+s|tΠt

]
, (8)

where Πt = Yt − WtLt − Rk
t Kt and Ξt+s|t is the marginal value of a unit consumption to a

household, which is treated as exogenous to the firm.

A fraction of aggregate output is purchased by the government:

Gt = (1 − 1/gt)Yt, (9)

where gt follows the exogenous process:

ln gt = (1 − ρg) ln g + ρg ln gt−1 + σgεg,t (10)

The government levies lump-sum taxes Tt to finance its purchases. In equilibrium the goods,

labor, and capital markets clear and the economy faces an aggregate resource constraint of

the form

Ct + It + Gt = Yt. (11)
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Our model economy evolves along stochastic growth path. Output Yt, consumption Ct,

investment It, physical capital K̄t and effective capital Kt all grow at the rate Zt. Hours

worked Lt are stationary. The model can be rewritten in terms of detrended variables.

We find the steady states for the detrended variables and use the method in Sims (2002)

to construct a log-linear approximation of the model solution around the steady state (see

Appendix). We collect all the DSGE model parameters in the vector θ, stack the structural

shocks in the vector εt, and derive a state-space representation for the n × 1 vector ∆yt:

∆yt = [∆ lnYt, ∆ln Ct,∆ln It, lnLt]
′,

where ∆ denotes the temporal difference operator.

2.2 Empirical Findings

We begin by specifying a prior distribution for the parameters of the DSGE model, which

is summarized in the first columns of Table 1. We are assuming that the parameters are a

priori independent. All parameter ranges refer to 90% credible intervals. The labor share

lies between 0.17 and 0.50 and the annualized growth rate of the economy ranges from 0.5

to 3.5%, which is consistent with pre-sample evidence. Our prior for the habit persistence

parameter h is centered at 0.7, which is the value used by Boldrin, Christiano, and Fisher

(2001). These authors find that h = 0.7 enhances the ability of a standard DSGE model

to account for key asset market statistics. The 90% interval for the prior distribution on

νl implies that the Frisch labor supply elasticity lies between 0.3 and 1.3, reflecting the

micro-level estimates at the lower end, and the estimates of Kimball and Shapiro (2003)

and Chang and Kim (2006) at the upper end.

The prior for the adjustment cost parameter s′ is consistent with the values that Chris-

tiano, Eichenbaum, and Evans (2005) use when matching DSGE impulse response functions

to consumption and investment, among other variables, to VAR responses. The prior for a′′

implies that in response to a 1% increase in the return to capital, utilization rates rise by 0.1

to 0.3%. These numbers are considerably smaller than the one used by Christiano, Eichen-

baum, and Evans (2005). The prior on the labor adjustment cost Φ parameter ranges from 9

to 55 and is taken from Chang, Doh, and Schorfheide (2006) who provide some justification

for the numerical values. We use beta-distributions roughly centered at 0.9 to obtain a prior
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for the autocorrelation parameters. Finally, the priors for the standard deviations of the

structural shocks are chosen to ensure that the prior predictive distribution for the sample

moments of the endogenous variables is commensurable with the magnitudes in the sample.

Figure 1 shows pointwise 90% credible bands for the predictive distribution of smoothed

periodograms of the great ratios and hours worked (all series have been converted into logs).

For each parameter draw from the prior (posterior) distribution, we generate a sample of

300 observations starting from the model’s steady state, discard the first 100 observations,

and compute a parametric spectral estimate by fitting an AR(4) model and conditioning

on its least squares estimates.1 Moreover, we display the (parametric) sample spectrum

computed from actual U.S. data. The spectral estimates are computed after the samples

have been normalized to have unit (sample) variance. The results indicate that the DSGE

model is unable to explain the low frequency movements of the consumption-output ratio.

We proceed by generating draws from the posterior distribution of the DSGE model

parameters using Markov Chain Monte Carlo (MCMC) techniques described in Schorfheide

(2000) and An and Schorfheide (2006). Moments and 90% credible intervals for the struc-

tural parameters are provided in Table 1. While Posterior (I) is obtained from the benchmark

prior distribution reported in the table, we also compute a second posterior under the restric-

tion that the autocorrelation parameters are fixed at 0.9. With the exception of the labor

adjustment parameter Φ, the standard deviation of the labor supply shock, and the autocor-

relation parameters, the two sets of posterior estimates are very similar. In the unrestricted

specification, the ρ-estimates are close to unity. If the autocorrelation of the labor supply

shock is restricted to be 0.9, the estimated labor adjustment cost rises to capture the persis-

tence of hours worked. Since the adjustment costs dampen the fluctuations in hours, a more

volatile labor supply shock is needed to explain the observed hours movements. In general,

large autocorrelation estimates can have two interpretations. First, it could indeed be the

case that preference and technology shifts are highly persistent. Second, it is possible that

the exogenous shocks capture to some extent low frequency misspecifications of the DSGE

model. The second column of panels in Figure 1 depicts bands for the posterior predictive

distribution of sample spectra. Most strikingly, even with autocorrelation parameters near

1We also considered a non-parametric approach, using a Blackman-Tukey Kernel estimate with a lag

window of M = 60.
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unity, the DSGE model is not able to capture the persistence of the consumption-output

ratio. In the next two sections we will discuss econometric techniques that allow us to relax

the restrictions generated by the DSGE model. The main innovation in this paper is a

method described in Section 4, which enables us to deviate from the theoretical model to

different degrees at different frequencies.

3 Using DSGE-VARs to Compare Models and Data

We begin by defining some notation. We use the vector θ to denote the structural parameters

of the DSGE model. We assume that the DSGE model has been solved with a linear or

nonlinear solution technique. While we do not take a stand on the pros and cons of linear

versus nonlinear approximations, many of the procedures that we describe below are easier

to implement if the structural model is solved with linear techniques.

DSGE models are tightly linked to vector autoregressions which have emerged as one

of the workhorses of empirical macroeconomics in the past two decades. More specifically,

DSGE models impose restrictions on vector autoregressive representations of the data. Con-

sider the following VAR(p) model

yt = Φ1yt−1 + . . . + Φpyt−p + ut, (12)

where yt is an n × 1 vector of observables and ut is a vector of reduced-form disturbances

with distribution ut ∼ N (0,Σ). To simplify the exposition we abstract from intercepts and

trends in the VAR specification. Define x′
t = [y′

t−1, . . . , y
′
t−p] and Φ = [Φ1, . . . ,Φp]

′. Suppose

conditional on the DSGE parameter vector θ one generates a sample of T ∗ observations

Y ∗ = [y∗
1 , . . . , y∗

T∗ ]′ from the structural model. The VAR likelihood function constructed

from this artificial sample, assuming that the one-step-ahead forecast errors ut are normally

distributed with mean zero and covariance matrix Σ, is of the form

p(Y ∗|Φ,Σ) ∝ |Σ|−T∗/2 exp

{
−1

2

T∗∑

t=1

tr[Σ−1(y∗′

t − x∗′

t Φ)′(y∗′

t − x∗′

t Φ)]

}
. (13)

Rather than actually simulating observations from the DSGE model it is more attractive

to consider averages of sample moments constructed from simulated data. If the DSGE

model implies a stationary law of motion for y∗
t then let us replace the sample moments
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that appear in the likelihood function by population moments and add an initial improper

prior |Σ|−(n+1)/2 to obtain

p(Φ, Σ|θ) ∝ |Σ|−(T∗+n+1)/2 exp

{
−T ∗

2
tr[Σ−1(ΓY Y (θ) − Φ′ΓXY (θ) − ΓY X(θ)Φ + Φ′ΓXX(θ)Φ)

}
,

(14)

where

ΓY Y (θ) = IED
θ [yty

′
t], ΓY X(θ) = IED

θ [ytx
′
t], ΓXX(θ) = IED

θ [xtx
′
t] (15)

are the DSGE model implied covariance matrix of y∗
t and x∗

t , conditional on θ. Now let

Φ∗(θ) = Γ−1
XX(θ)ΓXY (θ), Σ∗(θ) = ΓY Y (θ) − ΓY X(θ)Γ−1

XX(θ)ΓXY (θ). (16)

The matrices Φ∗(θ) and Σ∗(θ) define a VAR approximation of the DSGE model. By con-

struction, the first p autocovariance matrices computed from the approximation are equal

to the autocovariances of the DSGE model. Since the dimension of DSGE model parameter

vector θ is typically smaller than the dimension of the VAR parameters, Φ∗(θ) and Σ∗(θ) can

be viewed as restriction functions. Deviations from the restriction functions are interpreted

as misspecifications of the DSGE model.

The VAR will play two roles in our analysis. First, using the language of indirect infer-

ence, e.g., Smith (1993) and Gourieroux, Renault, and Monfort (1993) and more recently

Gallant and McCulloch (2005), the VAR serves as an approximating model for inference

about the DSGE model and its parameters. Φ∗(θ) and Σ∗(θ) define the binding function

that links VAR and DSGE model parameters. Second, the estimated VAR is of interest by

itself because it can be used as a device for forecasting and policy analysis and we are able

to relax the DSGE model restrictions to improve its fit.2

Now suppose we interpret (14) as a prior density for the VAR coefficients Φ and Σ. This

prior has the property that it is centered at the VAR approximation of the DSGE model,

2As is well-known from the indirect inference literature, the fact that the finite-order VAR provides only

an approximation to the DSGE model does not invalidate statistical inference. However, as discussed in

recent work by Chari, Kehoe, and McGrattan (2004), Christiano, Eichenbaum, and Vigfusson (2006), and

Fernandez-Villaverde, Rubio-Ramirez, and Sargent (2004), in the presence of approximation error one has

to be careful in drawing conclusions from the estimated VAR about the validity of dynamic equilibrium

models.
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defined through the restriction functions Φ∗(θ) and Σ∗(θ):

Σ|θ ∼ IW
(

T ∗Σ∗(θ), T ∗ − k

)
(17)

Φ|Σ, θ ∼ N
(

Φ∗(θ),Σ ⊗ [T ∗ΓXX(θ)]−1

)
.

Here IW denotes the Inverted Wishart distribution and N the normal distribution. We

denote the properly normalized density of this distribution by

pIW−N

(
Φ, Σ

∣∣∣∣ Φ∗(θ),Σ∗(θ),ΓXX(θ), T ∗

)
. (18)

The larger T ∗ the more concentrated the prior distribution. The use of such a prior tilts the

VAR estimates toward the restrictions implied by the DSGE model.3 Building on work by

Ingram and Whiteman (1994), Del Negro and Schorfheide (2004) used this prior to improve

forecasting and monetary policy analysis with VARs. An alternative interpretation of (14)

is that the prior allows the researcher to systematically relax the DSGE model restrictions

by letting T ∗ decrease and study how the dynamics of the VAR changes as one allows for

deviations from the restrictions. Del Negro, Schorfheide, Smets, and Wouters (2006) use

the setup to study the fit of the Smets-Wouters (2003) model.

More specifically, by combining the prior (17) with the likelihood function of the VAR

model (12) we can obtain a joint posterior distribution for θ, Φ, and Σ:

pζ(θ, Φ, Σ|Y ) ∝ p(Y |Φ, Σ)pζ(Φ, Σ|θ)p(θ), (19)

where we define the hyperparameter ζ = T ∗/(T ∗ + T ). The closer ζ is to one, the larger

the number of dummy observations relative to the actual observations, or, loosely speak-

ing, the larger the weight on the DSGE model restrictions. The estimates of the DSGE

model parameters θ can be interpreted as minimum distance estimates that are obtained by

projecting the estimated VAR parameters onto the restricted subspace traced out by Φ∗(θ)

and Σ∗(θ). To facilitate posterior simulations it is convenient to factorize the posterior as

follows:

pζ(θ, Φ, Σ) = pζ(θ|Y )pζ(Φ, Σ|Y, θ), (20)

where

pζ(Φ,Σ|Y, θ) = pIW−N

(
Φ,Σ

∣∣∣∣ Φ∗(θ), Σ∗(θ), , ΓXX(θ), T ∗

)

3Since the prior has the property of shrinking the discrepancy between VAR estimate and restriction

function to zero, the procedure is often referred to as shrinkage estimation.



This Version: February 12, 2008 10

and pζ(θ|Y ) is a function of

pζ(Y |θ) =

∫
p(Y |Φ, Σ)pζ(Φ,Σ|θ)d(Φ, Σ),

which can be computed analytically. The marginal likelihood of the DSGE model weight ζ

p(Y |ζ) =

∫
pζ(Y |θ)p(θ)dθ (21)

can be used to assess the overall fit of the DSGE model. Loosely speaking, the marginal

likelihood summarizes the discrepancy between the DSGE model implied autocovariances

of yt and the sample autocovariances. The larger this discrepancy, the smaller the value of

ζ that maximizes the marginal likelihood function.

4 Dummy Observations in the Frequency Domain

Our point of departure from the existing work on DSGE model priors is the observation

that the prior has the potentially undesirable feature that the DSGE model restrictions are

treated equally at all frequencies. However, as we pointed out in the introduction, most

DSGE models are designed for business cycle analysis and we often do not expect them

to capture high frequency or long-run movements in the data. As we have documented in

Section 2, and other authors have pointed out as well (e.g., Whelan (2000) and Edge, Kiley

and Laforte (2005)) many of the great ratios, such as consumption-to-output or the labor

share are strictly speaking not stationary as implied by standard DSGE models. Models

that impose invalid long-run restrictions on the data tend to be quickly rejected against

specifications that allow for a more general trend structure, such as VARs. For this reason

much of the early literature has either proceeded by filtering out low frequency variation

from the data prior to model estimation and evaluation or, as in Watson (1993) and Diebold,

Ohanian and Berkowitz (1998), conducted the empirical analysis explicitly in the frequency

domain.

4.1 Specification of the Prior

We will generalize the prior characterized by (14) and the associated model estimation and

evaluation procedures as follows. Suppose we use the dummy observations Y ∗ to construct
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a sample periodogram:

F ∗
Y Y (ω) =

1

2π

T∗−1∑

h=−T∗+1

Γ̂∗
he−iωh =

1

2π

(
Γ̂∗

0 +

T∗−1∑

h=1

(Γ̂∗
h + Γ̂∗′

h ) cos ωh

)
, (22)

where Γ̂∗
h = 1

T∗

∑T∗

t=h+1 y∗
t y∗′

t−h. The likelihood function of the dummy observations has the

following frequency domain approximation (see Appendix C.1 for a derivation)

p̃(Y ∗|Φ, Σ) ∝




T∗−1∏

j=0

|2πS−1
V (ωj , Φ, Σ)|




1/2

exp



−1

2

T∗−1∑

j=0

tr[S−1
V (ωj , Φ, Σ)F ∗

Y Y (ωj)]



 .

(23)

Here the ωj ’s are the fundamental frequencies 2πj/T ∗, S−1
V (ωj , Φ, Σ) is the inverse spectral

density matrix associated with the VAR

S−1
V (ω, Φ, Σ) = 2π[I − M(eiω)Φ]Σ−1[I − Φ′M ′(e−iω)], (24)

and M(z) = [Iz, . . . , Izp]. As before in the step that lead us from (13) to (14), we now

replace the sample periodogram by the spectral density matrix of the DSGE model to

obtain:

p̃(Φ, Σ|θ) ∝




T∗−1∏

j=0

|2πSV (ωj ,Φ,Σ)|




−1/2

(25)

× exp



−1

2

T∗−1∑

j=0

tr[S−1
V (ωj ,Φ,Σ)SD(ωj , θ)]



 .

The advantage of the frequency domain formulation is that we are able to introduce

hyperparameters that control the tightness of the prior by frequency. Let λ(ω) be a weight

function such that 1
T∗

∑T∗−1
j=0 λ(ωj) = 1 (or

∫ 2π

0
λ(ω)dω = 2π). We can modify the prior as

follows:

p̃(Φ, Σ|θ) ∝ exp





1

2

T ∗

2π

2π

T ∗

T∗−1∑

j=0

λ(ωj) ln

∣∣∣∣
1

2π
S−1

V (ωj , Φ, Σ)

∣∣∣∣



 (26)

× exp



−1

2

T ∗

2π

2π

T ∗

T∗−1∑

j=0

λ(ωj)tr[S
−1
V (ωj ,Φ,Σ)SD(ωj , θ)]



 .
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Using the definition of S−1
V (ω, Φ, Σ) from (24) we can rewrite the trace in (26) as follows:

tr[S−1
V (ωj , Φ, Σ)SD(ωj , θ)]

= 2πtr

[
Σ−1(I − Φ′M ′(e−iω))SD(ωj , θ)(I − M(eiω)Φ)

]

= 2πtr

[
Σ−1

(
SD(ωj , θ) − Φ′M ′(e−iω)SD(ωj , θ) − SD(ωj , θ)M(eiω)Φ

+Φ′M ′(e−iω)SD(ωj , θ)M(eiω)Φ

)]

= 2πtr

[
Σ−1

(
SD(ωj , θ) − Φ′re(M ′(e−iω))SD(ωj , θ) − SD(ωj , θ)re(M(eiω))Φ

+Φ′M ′(e−iω)SD(ωj , θ)M(eiω)Φ

)]
.

Here re(C) denotes the real part of the complex matrix C. If we now replace the summations

over the fundamental frequencies ωj in (26) by integrals, and add an initial improper prior

I{Φ∈int(P)}|Σ|−(n+1)/2, we can obtain the following representation

p(Φ, Σ|θ) ∝ I{Φ∈P}|Σ|−(T∗+n+1)/2fλ,T∗(Φ)

× exp

{
−T ∗

2
tr

[
Σ−1 (Γλ,Y Y (θ) − 2Γλ,Y X(θ)Φ + Φ′Γλ,XX(θ)Φ)

]}
, (27)

where I{Φ∈int(P)} is the indicator function that is one if Φ ∈ int(P), P is the set of parameter

values for which the VAR is non-explosive, and int(P) denotes its interior.4 Moreover,

fλ,T∗(Φ) = exp

{
T ∗

2 · 2π

∫ 2π

0

λ(ω) ln |(I − M(eiω)Φ)(I − Φ′M ′(e−iω))|dω

}
,

and

Γλ,Y Y (θ) =

∫ 2π

0

λ(ω)SD(ω, θ)dω, Γλ,Y X(θ) =

∫ 2π

0

λ(ω)SD(ω, θ)re(M(eiω))dω,(28)

Γλ,XX(θ) =

∫ 2π

0

λ(ω)M ′(e−iω)SD(ω, θ)M(eiω)dω.

Finally, define

Φ∗
λ(θ) = Γ−1

λ,XX(θ)Γλ,XY (θ), Σ∗
λ(θ) = Γλ,Y Y (θ) − Γλ,Y X(θ)Γ−1

λ,XX(θ)Γλ,XY (θ). (29)

and rewrite the prior density as

p(Φ,Σ|θ) = c(λ, T ∗, θ)I{Φ∈int(P)}fλ,T∗(Φ) (30)

×pIW−N

(
Φ,Σ

∣∣∣∣ Φ∗
λ(θ), Σ∗

λ(θ),Γλ,XX(θ), T ∗

)
,

4Depending on the choice of λ(ω), the set P can be enlarged. If Λll, l = 1, . . . , np are the possibly complex

eigenvalues of Φ (written in companion form), it has to be guaranteed that 0 < 1+ |Λll|
2 −2re(Λll) cos(ω)−

2im(Λll) sin(ω) for all ω with λ(ω) > 0.
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where pIW−N (·) was defined in (18) and c(λ, T ∗, θ) ensures that the density function is

properly normalized.

Remark: In the special case of λ(ω) = 1 the matrices Γλ,.(θ) reduce to the time domain

counterpart given in (15). Moreover, (see Appendix B.2) since

∫ 2π

0

ln

∣∣∣∣
1

2π
S−1

V (ω, Φ, Σ)

∣∣∣∣ dω = −2π ln |Σ|

it follows that fλ,T∗(Φ) = 1 for all Φ and T ∗. Hence, the prior density in (27) reduces to its

time domain analogue (14) and the prior takes the familiar IW −N form. ¤

As in the previous section, we introduce the hyperparameter 0 ≤ ζ ≤ 1 to control the

overall degree of shrinkage: ζ = T ∗/(T ∗ + T ), where T is the size of the actual sample

that is used to estimate the model. The prior p(Φ,Σ|θ) can now be combined with a prior

distribution for the DSGE model parameters, p(θ), and the VAR-based likelihood function

constructed from the a sample of actual observations Y , denoted by L(Φ,Σ|Y ), to conduct

Bayesian inference.

Our proposed procedure differs from a Bayesian version of band-spectrum regression in

that all the frequencies are used (and equally weighted) in the construction of the likelihood

function. Hence, the estimated DSGE-VAR can be used to forecast short-run fluctuations as

well as long-run trends. The key feature of our analysis is that the degree of shrinkage toward

the DSGE model restrictions, determined by λ(ω), can be frequency-specific. Suppose that

λ(ω) is large a business cycle frequencies and zero elsewhere. The resulting prior will penalize

VAR estimates that imply large discrepancies between the spectrum of the DSGE model

and the spectrum of the VAR at business cycle frequencies.

4.2 Posterior Distributions

We begin by characterizing the posterior distribution conditional on the DSGE model pa-

rameters θ. The likelihood function is of the form

p(Y |Φ, Σ) = (2π)−nT/2|Σ|−T/2 exp

{
−T

2
tr[Σ−1(Γ̂Y Y − 2Γ̂Y XΦ + Φ′Γ̂XXΦ)]

}
, (31)
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where, for instance, Γ̂Y Y denotes the sample moment 1
T

∑
yty

′
t. We deduce from Bayes

Theorem

p(Φ, Σ|Y, θ) ∝ c(λ, T ∗, θ)I{Φ∈int(P)}fλ,T∗(Φ) (32)

× exp

{
−T ∗ + T

2
tr

[
Σ−1

(
Γ̃λ,ζ,Y Y (θ) − 2Γ̃λ,ζ,Y X(θ)Φ + Φ′Γ̃λ,ζ,XX(θ)Φ

)]}
,

using the notation that Γ̃λ,ζ,Y Y (θ) = ζΓλ,Y Y (θ) + (1 − ζ)Γ̂Y Y . As before, we define

Φ̃λ,ζ(θ) = Γ̃−1
λ,ζ,XX(θ)Γ̃λ,ζ,XY (θ),

Σ̃λ,ζ(θ) = Γ̃λ,ζ,Y Y (θ) − Γ̃λ,ζ,Y X(θ)Γ̃−1
λ,ζ,XX(θ)Γ̃λ,ζ,XY (θ).

and can write the posterior density as

p(Φ, Σ|Y, θ) = c(λ, T ∗, θ)I{Φ∈int(P)}fλ,T∗(Φ) (33)

×pIW−N

(
Φ,Σ

∣∣∣∣ Φ̃λ,ζ(θ), Σ̃λ,ζ(θ), Γ̃λ,ζ,XX(θ), T ∗ + T

)
.

Remark: If λ(ω) = 1 then the adjustment term fλ,T∗(Φ) = 1 and we can use Algorithm 1 to

generate parameter draws from the posterior. In the general case of λ(ω) 6= 1 the posterior

distribution of Φ conditional on Σ and θ is non-standard and the normalizing constant of

the prior density cannot be calculated analytically. ¤

4.3 Discussion

Bandpass-filtered Dummy Observations. Suppose we use bandpass-filtered dummy

observations to construct a prior distribution instead of the approach outlined in the previous

section. Assume that the bandpass filter has a transfer function of the form

B(e−iω)B′(eiω) = |B(e−iω)|2 = I · λ(ω), (34)

where B(·) is a diagonal matrix. Let SD(ω, θ) be the spectrum of the DSGE model generated

observations and define

SB
D(ω, θ) = B(e−iω)SD(ω, θ)B′(eiω) = λ(ω)SD(ω, θ) (35)

as the spectrum of the filtered observations. Then the prior constructed from the filtered

dummy observations can be represented as

p(Φ,Σ|θ) ∝ I{Φ∈int(P)} × pIW−N

(
Φ,Σ

∣∣∣∣ Φ∗
λ(θ), Σ∗

λ(θ), Γλ,XX(θ), T ∗

)
, (36)
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which is identical to (27) with the exception that the adjustment term fλ,T∗(Φ) is absent.

Relationship to Band Spectrum Regression. The restriction function Φ∗
λ(θ) can be

viewed as the population analog of a band spectrum regression estimator of Φ (see Engle

(1974)), constructed from the dummy observations. Let Y ∗ and X∗ be composed of (un-

filtered) dummy observations from the DSGE model. Let W be the T ∗ × T ∗ matrix with

elements

Wj,t =
1√
T ∗

eiωjt

We use † to denote the complex conjugate of the transpose of a matrix. Moreover, Λ is a

T ∗×T ∗ diagonal matrix with entries λ1/2(ωj), which re-weights different frequencies. Then

the band-spectrum estimator of Φ in the VAR Y ∗ = X∗Φ + U is given by

Φ̂B = (X∗′

W †Λ′ΛWX∗)−1X∗′

W †Λ′ΛWY ∗

=


 1

T ∗

T∗−1∑

j=0

λ(ωj)F
∗
XX(ωj)




−1

1

T ∗

T∗−1∑

j=0

λ(ωj)F
∗
XY (ωj).

and converges to Φ∗
λ(θ) [needs to be verified]. Here F ∗

XX(ωj) = (WX)†.j(WX)j. and

F ∗
XY (ωj) = (WX)†.j(WY )j. denote sample cross periodograms. Hence, the prior constructed

from bandpass-filtered dummy observations is centered at the (population) band-spectrum

regression estimator of Φ. As shown in Engle (1980), this estimator is in general not a

consistent estimator of the value of Φ that locally approximates the target spectral density

SD(ω, θ) if frequency bands are omitted by setting certain λ(ωj)’s equal to zero.

Alternatively, consider the mode of the prior developed in Section 4. Let ψ = [vec(Φ)′, vech(Σ)′]′

and denote the mode of the prior by ψ̃. At the mode, the following first-order conditions

are satisfied (for all j)

0 =

∫
λ(ω)tr

[(
SV (ω, Φ̃, Σ̃) − SD(ω, θ)

)
∂S−1

V (ω, Φ̃, Σ̃)

∂ψj

]
dω = 0.

Hence, at the prior mode we minimize a weighted discrepancy between the spectral density

of the DSGE model and the VAR. Notice that in general the prior does not peak at the band-

spectrum estimate, the exception being the case in which at the band-spectrum estimate

[check this]

SV (ω, Φ̂B , Σ̂B) = SD(ω, θ) whenever λ(ω) > 0.
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Intercepts, Trends, and Nonstationarities. The VAR(p) model in (12) was specified

without intercept and trend component, which are important in applications. To include

deterministic trends we re-write the VAR as follows:

yt = Ψ0 + Ψ1t + ỹt, ỹt = Φ1ỹt−1 + . . . + Φpỹt−p + ut. (37)

The specification of (37) is consistent with the DSGE model. The intercept Ψ0 captures

model implied steady-state ratios for the observables, and the trend term Ψ1t picks up

deterministic trend components, induced, for instance, by the drift in the random walk

technology process of the model outlined in Section 2 or simply by a deterministic labor

augmenting trend. In our subsequent application, we will apply the dummy observation

prior to the autoregressive coefficient matrices Φ1, . . . ,Φp, and use a separate prior, also

centered at the DSGE model predictions, for the coefficient matrices Ψ0 and Ψ1.

So far we assumed that the DSGE model implies that y∗
t , or ỹ∗

t in the notation of (37),

is stationary. However, many macroeconomic time series including output, consumption,

and investment, are highly persistent and often better characterized as difference stationary

processes. Non-stationary behavior of endogenous variables in DSGE models is typically

generated by assuming that some of the exogenous processes, for instance the technology

process, have unit roots. If some elements of y∗
t are difference-stationary then the autoco-

variance matrices that appear in (15) are not defined. Del Negro, Schorfheide, Smets, and

Wouters (2006) circumvent the problem by rewriting the VAR in vector error correction

(VECM) form. However, the VECM specification has a major disadvantage: it dogmati-

cally imposes the DSGE model’s potentially misspecified common trend restrictions onto

the VAR representation.

The frequency domain dummy observation approach allows for much more flexibility.

Suppose we start from the spectrum for ∆yt, denoted by S∆
D(ω). Let D(z) = I(1 − z) be

the difference filter such that its inverse “integrates” ∆yt. Then we can define

SD(ω, θ) = D−1(e−iω)S∆
D(ω, θ)D−1′

(eiω) =
1

2 − 2 cos ω
S∆

D(ω, θ).

As long as λ(ω) is zero in a neighborhood of ω = 0, the quasi-spectral density SD(ω, θ) and

hence the restriction functions Φ∗(θ) and Σ∗(θ) are well defined for a vector autoregressive

model that is specified in terms of the levels of yt. By putting little weight on near zero
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frequencies we can assign less weight on the common trend restrictions of the DSGE model

to account for non-stationarities of the great ratios in the data and more weight on its

business cycle implications.

A Modified Prior Distribution. From a computational perspective the proposed prior

density is rather awkward. The normalization constant is unknown and it is not possible

to generate independent draws from the prior. As an alternative, we will consider a prior

for Φ that is Gaussian conditional on Σ, based on a quadratic approximation of the log

adjustment term ln fλ,T∗(Φ). This approximation is provided in Appendices B.3 and B.4.

5 Examples

This section provides two numerical examples that illustrate some of the features of the

proposed prior distribution. The first example consists of a prior distribution for an AR(1)

model, that is derived from a target spectral density that corresponds to the sum of two

AR(1) process with different degrees of autocorrelation. We consider three weight functions

λ(ω), generate parameter draws from the prior distribution, and show how the implied spec-

tral density changes as a function of λ(ω). In the second example we consider a bivariate

vector autoregression. We estimate the VAR under the frequency domain dummy obser-

vation prior and compare the implied posterior distribution of the spectrum under various

weight functions λ(ω). The data used in the estimation of the VAR are generated from a

process that relative to the target spectral density SD(ω) has an additional low frequency

component, which renders SD(ω) misspecified at low frequencies. We also compute marginal

data densities for the VAR under the various prior distributions.

5.1 An AR(1) Model

Consider the simple AR(1) model yt = φyt−1 + ut with spectral density function

SV (ω, φ, σ) =
1

2π

σ2

1 + φ2 − 2φ cos ω
. (38)

We assume that the DSGE model does not depend on any unknown parameters and hence

let SD(ω, θ) = SD(ω). From (27) it is straightforward to verify that the mode of the prior
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distribution, [φ̃, σ̃]′, minimizes the weighted discrepancy between the AR(1) implied spectral

density and the DSGE model spectral density function, that is,

[φ̃, σ̃]′ = argminφ,σ

∫
λ(ω)

S2
V (ω, φ̃, σ̃)

[SV (ω, φ, σ) − SD(ω)]2.

Thus, the prior density implicitly penalizes parameterizations of the AR(1) model that yield

spectral densities that are very different from that implied by the DSGE model.

Now define the weighted spectrum of yt and the cross-spectrum of yt and yt−1

γλ,0 =

∫ 2π

0

λ(ω)SD(ω)dω, γλ,1 =

∫ 2π

0

λ(ω) cos(ω)SD(ω)dω.

The prior distribution (27) therefore simplifies to

p(φ, σ2) = c(λ, T ∗)I{|φ|<1}fλ,T∗(φ)pIG−N

(
φ, σ2

∣∣∣∣ φ∗
λ, σ∗2

λ , γλ,0, T
∗

)
, (39)

where

φ∗
λ = γ−1

λ,0γλ,1, σ∗2

λ = γλ,0 − γ2
λ,1/γλ,0.

and

fλ,T∗(φ) = exp

{
T ∗

2 · 2π

∫ 2π

0

λ(ω) ln(1 + φ2 − 2φ cos ω)dω

}
.

We can generate dependent draws from the prior distribution using a Metropolis-within-

Gibbs algorithm.

Algorithm 1: MCMC Algorithm for Prior Distribution. For s = 1 to nsim iterate over the

following two steps:

1. Draw σ(s) conditional on φ(s−1) from an inverse Gamma distribution:

σ(s) ∼ IG
(

T ∗(1 + φ(s−1))2γλ,0 − 2φs−1γλ,1, T
∗

)
.

2. Draw ϑ from a normal distribution N (φ(s−1), σ2
(s)[T

∗γλ,0]
−1). Let

φ(s) =





ϑ with probability min

[
1,

p(ϑ,σ2
(s))

p(φ(s−1),σ2
(s)

)

]

φ(s−1) otherwise

.

Here p(φ, σ) is given in (39). ¤
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To illustrate the properties of this prior distribution we provide a numerical example.

Let

SD(ω) =
1

2π

1

1 + 0.52 − 2 · 0.5 cos(ω)
+

1

2π

0.05

1 + 0.92 − 2 · 0.9 cos(ω)
. (40)

Hence, SD(ω) is the spectral density matrix associated with the sum of two AR(1) processes

with different degrees of autocorrelation.

Parameter draws are plotted in Figure 2, whereas Figure 3 depicts 90% bands for draws

of the implied spectral density functions. The (1,1) panels correspond to the benchmark

case of λ(ω) = 1. The weight function for (1,2) emphasizes the low frequencies whereas the

λ(ω)’s in panels (2,1) and (2,2) amplify the high frequencies. While the prior means of the

parameters are fairly similar in all four cases, the correlation between φ and σ differs sub-

stantially. There is a strong negative correlation if the low frequencies are heavily weighted,

whereas the correlation is slightly positive if emphasis is placed on the high frequencies. We

see in panels (2,1) and (2,2) that the prior places a lot of weight on spectral densities that

match the target spectrum SD(ω) at high frequencies. At the same time, the low frequency

behavior is allowed to deviate substantially from the target density. The picture reverses if

we use a weight function that emphasizes low frequencies, as can be seen from Panel (1,2)

of Figure 3.

The drawback of our prior is that due to the adjustment term the normalization constant

cannot be calculated analytically. Knowledge of the normalization constant is important

to compute marginal data densities and use the prior in a hierarchical setting in which the

target spectral density matrix is indexed by a parameter θ. We consider an alternative prior,

which we refer to as “approximate,” in which we approximate the conditional density

p(φ|σ2) ∝ I{|φ|<1}fλ,T∗(φ)pIG−N

(
φ, σ2

∣∣∣∣ φ∗
λ, σ∗2

λ , γλ,0, T
∗

)
,

by a normal density. More specifically, we approximate ln p(φ|σ2) by a quadratic function of

φ around the mode φ̃(σ2) = argmax ln p(φ|σ2). Details of this approximation are provide in

Appendix C.3. Parameter and spectral density draws from the prior distribution are plotted

in Figures 4 and 5. These draws look very similar to the ones obtained under the “exact”

prior and have the same qualitative features.

Finally, we plot draws from the prior (of the parameters and the spectral densities)

obtained if we use the bandpass-filtered dummy observations, ignoring the term fλ,T∗(φ) in
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Figures 6 and 7. It turns out that the prior is quite different from the one that is obtained

if the adjustment term from the frequency domain likelihood function is included due to

the inconsistency of the band spectrum estimator in dynamic models as discussed in Engle

(1980). In particular, the implied prior of the spectrum from the bandpass-filtered dummy

observations does not always concentrate near the target spectrum in areas of the spectral

bands where the weight function λ(ω) is large. Engle (1980, p. 400) provides some analytical

calculations for the AR(1) model.

5.2 A Bivariate VAR

Let yt now be a 2 × 1 vector such as consumption and investment. Suppose that according

to a DSGE model the short-run dynamics of yt are described by the following detrended

variables

ỹt = Ψỹt−1 + ut. (41)

Hence, the spectrum is given by

SD(ω) =
1

2π
(I − Ψe−iω)−1Σu(I − Ψ′eiω)−1. (42)

Suppose according to the DGP there is a stochastic trends that influences consumption and

investment:

xt = ρxt−1 + ηt. (43)

According to the DGP the relationship between the observables yt, the detrended variables

ỹt and the trends xt is of the form

yt = Ξxt + ỹt, (44)

where Ξ = [1, 1]′. Moreover, we assume that ηt and ut are independent at all leads and lags.

The “true” spectrum of yt is therefore given by

Sy(ω) =
1

2π
(I − Ψe−iω)−1Σu(I − Ψ′eiω)−1 +

1

2π

σ2
η

1 + ρ2 − 2ρ cos(ω)
ΞΞ′. (45)

We consider the following parameterization:

Ψ =


 0.7 0.3

−0.1 0.8


 , Σu =


 1 0.4

0.4 1


 , ρ = 0.98, σ2

η = 0.1.
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Figure 8 depicts the spectral densities for the (misspecified) DSGE model and the DGP.

Under the DGP and the DSGE the spectra peak at the origin due to the near random

walk component. The spectrum of the detrended DSGE matches that of the DGP and the

non-detrended DGP for frequencies ω > 0.08π.

We proceed by specifying the weight function λ(ω). Frequencies below ω = 0.001 are

suppressed: λ(ω) = 0. The low frequency band ω ∈ [0.001, 0.08π] are scaled by λ1, and all

other frequencies (business cycle and higher frequencies) are scaled by λ2. Since the weights

have to normalize to one, we parameterize the step function in terms of λ = λ1/λ2 and

consider three values λ ∈ {1/10, 1, 10}. Moreover, we set T ∗ = 120.

Using the frequency domain dummy observations we now construct a prior distribution

for a bivariate VAR with p = 4 lags. We are generating draws from this prior distribution

using a Metropolis-within-Gibbs algorithm for four different choices of λ(ω).

Algorithm 2: MCMC Algorithm for Prior Distribution. For s = 1 to nsim iterate over the

following two steps:

1. Draw Σ(s) conditional on Φ(s−1) from an inverse Wishart distribution:

Σ(s) ∼ IW
(

T ∗(Γλ,Y Y − 2Γλ,Y XΦ + Φ′Γλ,XXΦ), T ∗

)
.

2. Draw ϑ from a normal distribution N (Φ(s−1), Σ(s) ⊗ [T ∗Γλ,XX ]−1). Let

φ(s) =





ϑ with probability min
[
1, p(ϑ,Σ(s))

p̃(Φ(s−1),Σ(s))

]

Φ(s−1) otherwise
.

Here p(Φ, Σ) is given in (27). ¤

Parameter draws from the prior distribution are converted into spectral densities and

are plotted in Figure 9. We also depict the weight functions λ(ω) and the spectral densities

of the DSGE model SD(ω) for the two elements of yt. As in Example 1, the prior is fairly

diffuse on the low frequency behavior for λ = 1/10. Vice versa, if we set λ = 10, the spectral

density draws are tightly concentrated around SD(ω) for ω < 0.08π.

We now simulate T = 120 observations from the data generating process (44) and

generate draws from the posterior distribution of the VAR(4) using a modified version of

Algorithm 2. This implies that the hyperparameter ζ = 0.5.
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Algorithm 3: MCMC Algorithm for Posterior Distribution. Obtained by straightforward

modification of Algorithm 2 based on Equations (32).

Figure 10 depicts draws from the posterior distribution of the spectral densities. For

λ = 1/10 (top panel) our prior shrinks only toward the correctly specified business cycle /

high frequency restrictions of the DSGE model. Hence, in the posterior distribution we are

able to correctly pick up the low frequency behavior of the DGP. As the weight on the low

frequency restrictions is increased (middle and bottom panels), the VAR estimates more

and more reflect the misspecified low frequency behavior of the DSGE model. Marginal

data densities are reported in Table 2.

6 DSGE Model Application

So far:

• Condition on the posterior mean estimate of θ obtained in Section 2, under the prior

that fixes ρg = ρφ = 0.9 (Posterior (II) in Table 1). The joint estimation of the DSGE

model and VAR parameters is not yet operational.

• The VAR has 4 lags and is specified in log levels of output, consumption, investment,

and hours. All variables are scaled by 100, such that log differences can be interpreted

as quarter-to-quarter percentage changes.

• We use Algorithm 2 to generate draws from the prior distribution of the VAR param-

eters. For each draw, we simulate 300 observations from the estimated VAR, using

actual U.S. data from QIV:2005 to initialize the VAR lags for the estimation. The

first 100 draws are discarded, and we construct univariate parametric spectral density

estimates for the simulated data based on estimated AR(4) models. Before computing

the density estimates, we standardize the simulated samples to have variance one. We

consider the following series: output growth, consumption growth, investment growth,

log hours worked, log consumption-output ratio, and log investment-output ratio.

• Figures 11, 12, and 13 depicts the DSGE-VAR prior implied distribution of the sam-

ple spectral densities together with the actual sample densities. We use the class of
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weight functions λ(ω) described in Section 5.2. The prior that weighs all frequencies

equally looks similar to the one that emphasizes the long-run frequencies. For output,

consumption, and investment growth the prior works as expected: if we emphasize the

business cycle frequencies then the prior predictive distribution becomes more diffuse

at the low frequencies. Unfortunately, this effect is less pronounced for the great ratios

and hours worked.

7 Conclusions

(to be written)
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Fernández-Villaverde, Jesús, Juan Rubio-Ramı́rez, and Thomas Sargent (2004): “A, B,

C’s (and D’s) for Understanding VARs,” Manuscript, University of Pennsylvania.

Gallant, A. Ronald and Robert E. McCulloch (2005): “On the Determination of General

Scientific Models, Manuscript, Duke University.

Geweke, John (1999): “Using Simulation Methods for Bayesian Econometric Models: In-

ference, Development and Communication,” Econometric Reviews, 18, 1-126.

Gourieroux, Christian, Eric Renault, and Alain Monfort (1993): “Indirect Inference,” Jour-

nal of Applied Econometrics, 8, S85-S118.

Greenwood, Jeremy, Zvi Hercovitz, and Per Krusell (1998): “Long-Run Implications of

Investment-Specific Technological Change,” American Economic Review, 87(3), 342-

362.

Ingram, Beth and Charles Whiteman (1994): “Supplanting the Minnesota prior – Fore-

casting macroeconomic time series using real business cycle model priors,” Journal of

Monetary Economics, 34, 497-510.



This Version: February 12, 2008 25

King, Robert G., Charles I. Plosser, and Sergio T. Rebelo (1988): “Production, Growth,

and Business Cycles II: New Directions,” Journal of Monetary Economics, 21, 309-

341.

Klein, Lawrence R. and Richard F. Kosobud (1961): ”Some Econometrics of Growth:

Great Ratios of Economics,” Quarterly Journal of Economics, 75(2), 173-198.

Schorfheide, Frank (2000): “Loss Function-Based Evaluation of DSGE Models,” Journal

of Applied Econometrics, 15, 645-670.

Sims, Christopher (2002): “Solving Linear Rational Expectations Models,” Computational

Economics, 20, 1-20.

Smets, Frank and Raf Wouters (2003): “An Estimated Stochastic Dynamic General Equi-

librium Model for the Euro Area,” Journal of the European Economic Association, 1,

1123-1175.

Smith, Anthony (1993): “Estimating Nonlinear Time-Series Models Using Simulated Vec-

tor Autoregressions,” Journal of Applied Econometrics, 8, S63-S84.

Theil, Henry and Arthur S. Goldberger (1961): “On Pure and Mixed Estimation in Eco-

nomics”. International Economic Review, 2, 65-78.

Watson, Mark (1993): “Measures of Fit for Calibrated Models,” Journal of Political Econ-

omy, 101, 1011-1041.

Whelan, Karl (2000): “Balanced Growth Revisited: A Two-Sector Model of Economic

Growth,” Manuscript, Board of Governors.



This Version: February 12, 2008 26

A The Data

All data are obtained from Haver Analytics (Haver mnemonics are in italics). Real output, con-

sumption of nondurables and services, and investment (defined as gross private domestic investment

plus consumption of durables) are obtained by dividing the nominal series (GDP, C - CD, and I +

CD, respectively) by population 16 years and older (LN16N), and deflating using the chained-price

GDP deflator (JGDP). Our measure of hours worked is computed by taking total hours worked

reported in the National Income and Product Accounts (NIPA), which is at annual frequency. We

interpolate the annual observations using growth rates computed from hours of all persons in the

non-farm business sector (LXNFH). We divide hours worked by LN16N to convert them into per

capita terms. Our broad measure of hours worked is consistent with our definition of output in the

economy. All growth rates are computed using quarter-to-quarter log differences and then multi-

plied by 100 to convert them into percentages. Our data set ranges from QIII:1954 to QIV:2005.

Growth rates are computed starting from QIV:1954, and we use the first four observations to

initialize the lags of the VAR. Hence, the estimation sample ranges effectively from QIV:1955 to

QIV:2005.

B The Model

The following transformation induces stationarity:

ct = Ct

Zt
, yt = Yt

Zt
, it = It

Zt
, kt = Kt

Zt
, k̄t = K̄t

Zt
,

wt = Wt

Zt
, ξt = ΞtZt, ξk

t = Ξk
t Zt, z∗

t = ln(Zt/Zt−1),
(46)

In terms of the detrended variables, the steady states are as follows (we take L∗ as given and

solve for the implied structural parameter φ). Return on capital:

rk
∗ = β−1eγ − (1 − δ). (47)

Wages:

w∗ =

ţ
1

1 + λf
αα(1 − α)(1−α)rk −α

∗

ű 1
1−α

(48)

Capital stock:

k∗ =
α

1 − α

w∗

rk
∗

L∗. (49)

Output:

y∗ = kα
∗ L1−α

∗ − Φ. (50)

Physical capital and investment

k̄∗ = eγk∗, i∗ =
ą
1 − (1 − δ)e−γ ć

k̄∗. (51)
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Consumption:

c∗ =
y∗

g∗
− i∗. (52)

Marginal utility of consumption:

ξk
∗ = ξ∗ = c−1

∗ (ez∗

∗ − h)−1(ez∗

∗ − hβ), β =
1

r∗
eγ (53)

Labor supply:

φ =
w∗ξ∗

(1 + λw)L
νl
∗

. (54)

We conduct a first-order (log-linear) approximation of the model dynamics around the steady-

state in terms of the detrended variables. Marginal product of capital:

brk
t = byt − bKt. (55)

Marginal product of labor

bwt = byt − bLt +
2Φ

1 − α

h
βe−z∗

IEt[bLt+1] − (1 + βe−z∗

)bLt + bLt−1

i
. (56)

Marginal utility of consumption:

(ez∗ − hβ)(ez∗ − h)bξt = −(e2z∗

+ βh2)bct + hez∗

bct−1 − hez∗

bzt

+βhez∗

IEt[bct+1] + βhez∗

IEt[bzt+1]. (57)

Capital utilization:

bkt = but − z∗
t + b̄kt−1. (58)

Capital accumulation:

b̄kt = −(1 − i∗

k̄∗
)bzt + (1 − i∗

k̄∗
) b̄kt−1 +

i∗

k̄∗
µt +

i∗

k̄∗

bit. (59)

Investment:

1

S′′e2z∗

bξk
t +

1

S′′e2z∗
bµt − 1

S′′e2z∗

bξt = bzt −bit−1 + (1 + β)bit − βIE[bzt+1] − βIE[bit+1]. (60)

Consumption Euler equation:

bξk
t = −IEt[bzt+1] +

rk
∗

rk
∗ + (1 − δ)

IEt[ξt+1]

+
rk
∗

rk
∗ + (1 − δ)

IEt[r
k
t+1] +

1 − δ

rk
∗ + (1 − δ)

IEt[ξ
k
t+1]. (61)

Utilization and return on capital:

rk
∗brk

t = a′′ut. (62)

Labor supply:

bwt = bφt + νl
bLt − bξt (63)

Resource constraint:

byt = bgt +
c∗

c∗ + i∗
bct +

i∗
c∗ + i∗

bit +
rk
∗k∗

c∗ + i∗
but. (64)
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Aggregate production function:

byt = αbkt + (1 − α)bLt (65)

This system of linear rational expectations difference equations can be solved using, for instance,

Sims’ (2002) method. We re-normalize the investment-specific technology shock as follows:

µ̃t =
1

(1 + β)e2z∗

∗S′′
bµt.
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C Derivations

C.1 Frequency Domain Likelihood Function

We begin by defining the T ∗ × T ∗ unitary matrix W with elements

Wj,t =
1√
T

eiωjt

It can be verified that W †W = WW † = IT∗ . We use † to denote the complex conjugate of the

transpose of a complex matrix. We define the finite fourier transform Ỹ = WY . The sample

periodogram of Y can be expressed as

FY Y (ωj) =
1

2π
Ỹ †

.j Ỹj.,

where Ỹ †
.j is the j’th column of the matrix Ỹ † and Ỹj. is the j’th row of Ỹ .

We write the VAR(p) as

Y = XΦ + ZB + U, (66)

where the matrix X contains the lagged yt’s, Z contains deterministic regressors such as intercepts

and time trends, and U is the T ∗ × n matrix of reduced form disturbances in the VAR. According

to our assumptions

vec(U) ∼ N (0, Σ ⊗ IT∗).

Let Ũ = WU and notice that

vec(Ũ) = (In ⊗ W )vec(U) ∼ N (0, Σ ⊗ WW †)

Since WW † = IT∗ the joint distributions of U and Ũ are the same and the likelihood function for

Ũ is given by

p(Ũ |Σ) = (2π)−nT∗/2|Σ|−T∗/2 exp

¡
−1

2
tr[Σ−1Ũ†Ũ ]

¿
. (67)

We will now apply the fourier transform to (66) to obtain a relationship between Ũ and Ỹ :

Ũj. = Ỹj. − X̃j.Φ − Z̃j.B.
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Now let us analyze X̃j.:

X̃j. =
1√
T ∗

T∗X

t=1

eiωjt[y′
t−1, . . . , y

′
t−p]

=

"
1√
T ∗

T∗X

t=1

eiωjty′
t−1, . . . ,

1√
T ∗

T∗X

t=1

eiωjty′
t−p

#

=

"
1√
T ∗

T∗X

t=1

eiωj(t+1)y′
t +

1√
T ∗

eiωj y′
0 −

1√
T ∗

eiωj(T+1)y′
T , . . . ,

1√
T ∗

T∗X

t=1

eiωj(t+p)y′
t +

1√
T ∗

pX

l=1

eiωj y′
1−l −

1√
T ∗

pX

l=1

eiωj(T+l)y′
T+l−p

#

=
1√
T ∗

T∗X

t=1

eiωjty′
t

h
Ineiωj , . . . , Ineiωjp

i
+ small terms

= Ỹj.M(eiωj ) + small terms

Thus, we obtain the approximation

Ũj. ≈ Ỹj.(In − M(eiωj )Φ) − Z̃j.B

and can write

p(Ũ |Σ) ≈ (2π)−nT∗/2|Σ|−T∗/2 (68)

exp

(
−1

2
tr

"
T∗−1X

j=0

Σ−1(Ỹj.(In − M(eiωj )Φ) − Z̃j.B)†(Ỹj.(In − M(eiωj )Φ) − Z̃j.B)

#)
.

= (2π)−nT∗/2|Σ|−T∗/2

exp

¡
− 2π

2
tr

ů T∗−1X

j=0

(In − M(eiωj )Φ)Σ−1(In − Φ′M ′(e−iωj ))FY Y (ωj)

ÿ

+
2π

2
tr

ů T∗−1X

j=0

BΣ−1B′FZZ(ωj)

ÿ
+ 2πtr

ů T∗−1X

j=0

BΣ−1(In − Φ′M ′(e−iωj ))FY Z(ωj)

ÿ ¿

Taking into account the Jacobian of the transformation from Ũ to Ỹ we obtain

p(Ỹ |Φ, Σ) ≈ (2π)−nT∗/2|Σ|−T∗/2
T∗−1Y

j=0

|In − M(eiωj )Φ|

exp

¡
− 2π

2
tr

ů T∗−1X

j=0

(In − M(eiωj )Φ)Σ−1(In − Φ′M ′(e−iωj ))FY Y (ωj)

ÿ

+
2π

2
tr

ů T∗−1X

j=0

BΣ−1B′FZZ(ωj)

ÿ
+ 2πtr

ů T∗−1X

j=0

BΣ−1(In − Φ′M ′(e−iωj ))FY Z(ωj)

ÿ ¿
.

Finally, in the absence of deterministic trend components and using

S−1
V (ωj , Φ, Σ) = 2π(In − M(eiωj )Φ)Σ−1(In − Φ′M ′(e−iωj ))

and the fact that the Jacobian of the transformation from Ỹ to Y is one, we obtain

p(Ỹ |Φ, Σ) ∝
Ã

T∗−1Y

j=0

|2πS−1
V (ωj , Φ, Σ)|

!1/2

exp

(
−1

2

T∗−1X

j=0

tr[S−1
V (ωj , Φ, Σ)FY Y (ωj)]

)
.
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C.2 No Adjustment under Equal Weights

Let ωj = 2πj/m for j = 0, . . . , m − 1. We express the integral of interest as Riemann sum

Z 2π

0

ln

ŕŕŕŕ
1

2π
S−1

V (ω, Φ, Σ)

ŕŕŕŕ dω = lim
m−→∞

2π

m

m−1X

j=0

ln

ŕŕŕŕ
1

2π
S−1

V (ωj , Φ, Σ)

ŕŕŕŕ

and will study the right-hand-side limit. The subsequent calculations are conducted for a VAR(1).

They can be easily generalized by re-writing a VAR(p) in companion form.

The calculation is based on an argument by Espasa (1977) as reproduced in Engle (1980). We

write the VAR as

yt = Φ1yt−1 + ut. (69)

The system can be transformed through a complex Schur decomposition of Φ1. There exist matrices

Q and Λ such that QΛQ′ = Φ1, Q′Q = QQ′ = I, and Λ is uppertriangular. Moreover, Let xt = Qyt

and premultiply the above equation by Q to obtain:

xt = Λxt−1 + Qut (70)

Since yt = Q′xt we deduce that

SV (ωj , Φ, Σ) = Q′Sx
V (ωj , Λ, QΣQ′)Q,

where Sx
V (·) denotes the spectral density matrix of the transformed endogenous variables xt. Hence,

S−1
V (ω, Φ, Σ) = Q[Sx

V (ω, Λ, QΣQ′)]−1Q′

= 2πQ[I − Λeiω]Q′Σ−1Q[I − Λ′e−iω]Q′

and

1

m

m−1X

j=0

ln

ŕŕŕŕ
1

2π
S−1

V (ωj , Φ, Σ)

ŕŕŕŕ =
1

m

m−1X

j=0

ln

ŕŕŕŕ Q[I − Λeiωj ]Q′Σ−1Q[I − Λ′e−iωj ]Q′

ŕŕŕŕ

=
1

m

m−1X

j=0

ů
− ln |Σ| + 2 ln |I − Λeiωj |

ÿ

= − ln |Σ| + 2

m

nX

l=1

ů
ln

m−1Y

j=0

|1 − Λlle
iωj |

ÿ

where Λll is the l’th diagonal term of Λ. Now consider the second term. Notice that

m−1Y

j=0

(X − eiωj ) = Xm − 1.

Therefore, as m −→ ∞
nX

l=1

ů
ln

m−1Y

j=0

(1 − Λlle
iωj )

ÿ
=

nX

l=1

ů
lnΛm

ll

m−1Y

j=0

(1/Λll − eiωj )

ÿ

=

nX

l=1

ů
ln(1 − Λm

ll )

ÿ
−→ 0
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and we deduce that
1

m

m−1X

j=0

ln
ŕŕ S−1

V (ωj , Φ, Σ)
ŕŕ −→ − ln |Σ|

as long as the eigenvalues of Λll of the matrix Φ1 are less than one in absolute value. ¤

C.3 Quadratic Expansion of Adjustment Term

We begin by presenting two Lemmas that will be helpful for the subsequent analysis. Define the

symmetric n2 × n2 matrix D as

D = [In ⊗ ι1, . . . , In ⊗ ιn]

where ιj is a j × 1 unit vector with the j’th element equal to one.

Lemma 1 Let A be a n × k real matrix and B be a k × n real matrix. Then

tr[ABAB] = vec(B)′(In ⊗ A′)D(In ⊗ A)vec(B) ¤

Proof of Lemma 1: Notice that vec((AB)′) = Dvec(AB). It can be verified by direct matrix

multiplication that

tr[ABAB] = [vec((AB)′)]′vec(AB).

Hence, we obtain the desired result:

tr[ABAB] = [vec(AB)]′Dvec(AB)

= vec(B)′(In ⊗ A′)D(In ⊗ A)vec(B). ¤

Lemma 2 Let C = A + iB be a n × n complex matrix. Then

tr[CC] + tr[C†C†] = 2tr[AA] − 2tr[BB]. ¤

Proof of Lemma 2: follows from direct matrix manipulations:

tr[CC] + tr[C†C†] = tr[(A + iB)(A + iB)] + tr[(A′ − iB′)(A′ − iB′)]

= tr[AA] + 2itr[AB] − tr[BB] + tr[A′A′] − 2itr[A′B′] − tr[B′B′]

= 2tr[AA] − 2tr[BB]. ¤

We now proceed with an expansion of the term

ln |S−1
V (ωj , Φ, Σ)|

around Φ = Φ̃. First, we will take derivatives of S−1
V (ωj , Φ, Σ) with respect to Φ:

dS−1
V (ωj , Φ, Σ) = −2πM(eiωj )dΦΣ−1(In − Φ′M ′(e−iωj )) − 2π(In − M(eiωj )Φ)Σ−1dΦ′M ′(e−iωj )

d2S−1
V (ωj , Φ, Σ) = 4πM(eiωj )dΦΣ−1dΦ′M ′(e−iωj )
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Second, we take derivatives of ln |S−1
V (ωj , Φ, Σ)| with respect to S−1

V (ωj , Φ, Σ):

d ln |S−1
V (ωj , Φ, Σ)| = tr[SV (ωj , Φ, Σ)dS−1

V (ωj , Φ, Σ)]

d2 ln |S−1
V (ωj , Φ, Σ)| = −tr[SV (ωj , Φ, Σ)dS−1

V (ωj , Φ, Σ)SV (ωj , Φ, Σ)dS−1
V (ωj , Φ, Σ)].

Define dΦ = Φ − Φ̃. Hence, we obtain

ln |S−1
V (ωj , Φ, Σ)| = ln |S−1

V (ωj , Φ̃, Σ)|

−tr

ů
2πΣ−1(In − Φ̃′M ′(e−iωj ))SV (ωj , Φ̃, Σ)M(eiωj )dΦ

ÿ

−tr

ů
2πΣ−1dΦ′M ′(e−iωj )SV (ωj , Φ̃, Σ)(In − M(eiωj )Φ̃)

ÿ

+
1

2
tr

ů
4πΣ−1dΦ′M ′(e−iωj )SV (ωj , Φ̃, Σ)M(eiωj )dΦ

ÿ

−1

2
tr

ů
SV (ωj , Φ̃, Σ)dS−1

V (ωj , Φ̃, Σ)SV (ωj , Φ̃, Σ)dS−1
V (ωj , Φ̃, Σ)

ÿ

+small

= ln |S−1
V (ωj , Φ̃, Σ)|

−tr

ů
(In − M(eiωj )Φ̃)−1M(eiωj )dΦ

ÿ
− tr

ů
dΦ′M ′(e−iωj )(In − Φ̃′M ′(e−iωj ))−1

ÿ

+
1

2
tr

ů
4πΣ−1dΦ′M ′(e−iωj )SV (ωj , Φ̃, Σ)M(eiωj )dΦ

ÿ

−1

2
tr

ů
SV (ωj , Φ̃, Σ)dS−1

V (ωj , Φ̃, Σ)SV (ωj , Φ̃, Σ)dS−1
V (ωj , Φ̃, Σ)

ÿ

+small.

Now consider the last term (omitting tildes):

tr

ů
SV (ωj , Φ, Σ)dS−1

V (ωj , Φ, Σ)SV (ωj , Φ, Σ)dS−1
V (ωj , Φ, Σ)

ÿ

= tr

ů
(2π)2SV (ωj , Φ, Σ)

ţ
M(eiωj )dΦΣ−1(In − Φ′M ′(e−iωj )) + (In − M(eiωj )Φ)Σ−1dΦ′M ′(e−iωj )

ű

×SV (ωj , Φ, Σ)

ţ
M(eiωj )dΦΣ−1(In − Φ′M ′(e−iωj )) + (In − M(eiωj )Φ)Σ−1dΦ′M ′(e−iωj )

ű ÿ

= tr

ů
(2π)2SV (ωj , Φ, Σ)M(eiωj )dΦΣ−1(In − Φ′M ′(e−iωj ))SV (ωj , Φ, Σ)M(eiωj )dΦΣ−1(In − Φ′M ′(e−iωj ))

ÿ

+tr

ů
(2π)2SV (ωj , Φ, Σ)M(eiωj )dΦΣ−1(In − Φ′M ′(e−iωj ))SV (ωj , Φ, Σ)(In − M(eiωj )Φ)Σ−1dΦ′M ′(e−iωj )

ÿ

+tr

ů
(2π)2SV (ωj , Φ, Σ)(In − M(eiωj )Φ)Σ−1dΦ′M ′(e−iωj )SV (ωj , Φ, Σ)M(eiωj )dΦΣ−1(In − Φ′M ′(e−iωj ))

ÿ

+tr

ů
(2π)2SV (ωj , Φ, Σ)(In − M(eiωj )Φ)Σ−1dΦ′M ′(e−iωj )SV (ωj , Φ, Σ)(In − M(eiωj )Φ)Σ−1dΦ′M ′(e−iωj )

ÿ

= tr

ů
(In − M(eiωj )Φ)−1M(eiωj )dΦ(In − M(eiωj )Φ)−1M(eiωj )dΦ

ÿ

+tr

ů
dΦ′M ′(e−iωj )(In − Φ′M ′(e−iωj ))−1dΦ′M ′(e−iωj )(In − Φ′M ′(e−iωj ))−1

ÿ

+2tr

ů
2πΣ−1dΦ′M ′(e−iωj )SV (ωj , Φ, Σ)M(eiωj )dΦ

ÿ
.
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We will focus on the first two terms in this expression. Notice that dΦ is a real k × n matrix,

whereas

F (ωj , Φ) = (In − M(eiωj )Φ)−1M(eiωj )

is a n×k complex matrix. Let C = re(F (ωj , Φ))dΦ+ iim(F (ωj , Φ))dΦ and apply Lemmas 1 and 2.

Define dφ = vec(dΦ). Hence,

tr

ů
SV (ωj , Φ, Σ)dS−1

V (ωj , Φ, Σ)SV (ωj , Φ, Σ)dS−1
V (ωj , Φ, Σ)

ÿ

= 2dφ′

ů ţ
In ⊗ re(F (ωj , Φ))′

ű
D

ţ
In ⊗ re(F (ωj , Φ))

ű
−

ţ
In ⊗ im(F (ωj , Φ))′

ű
D

ţ
In ⊗ im(F (ωj , Φ))

ű ÿ
dφ

+2tr

ů
2πΣ−1dΦ′M ′(e−iωj )SV (ωj , Φ, Σ)M(eiωj )dΦ

ÿ

Combining terms and using the definition of F (ωj , Φ), we obtain the desired quadratic expansion:

ln |S−1
V (ωj , Φ, Σ)|

= ln |S−1
V (ωj , Φ̃, Σ)| − tr

ů
F (ωj , Φ̃)dΦ

ÿ
− tr

ů
dΦ′F †(ωj , Φ̃)

ÿ

−dφ′

ů ţ
In ⊗ re(F (ωj , Φ̃))′

ű
D

ţ
In ⊗ re(F (ωj , Φ̃))

ű
−

ţ
In ⊗ im(F (ωj , Φ̃))′

ű
D

ţ
In ⊗ im(F (ωj , Φ̃))

ű ÿ
dφ

+small

= ln |S−1
V (ωj , Φ̃, Σ)| − 2vec

ů
re(F ′(ωj , Φ̃))

ÿ ′

dφ

−dφ′

ů ţ
In ⊗ re(F (ωj , Φ̃))′

ű
D

ţ
In ⊗ re(F (ωj , Φ̃))

ű
−

ţ
In ⊗ im(F (ωj , Φ̃))′

ű
D

ţ
In ⊗ im(F (ωj , Φ̃))

ű ÿ
dφ

+small.
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C.4 Gaussian Approximation of the Conditional Prior of Φ

We proceed with a quadratic approximation of the “regular” exponential term in the frequency

domain likelihood function around Φ̃ :

1

2π
tr[S−1

V (ωj , Φ, Σ)SD(ωj , θ)]

= tr

ů
(In − M(eiωj )Φ)Σ−1(In − Φ′M ′(e−iωj ))SD(ωj , θ)

ÿ

= tr

ů ţ
In − M(eiωj )Φ̃ − M(eiωj )dΦ

ű
Σ−1

ţ
In − Φ̃′M ′(e−iωj ) − dΦ′M ′(e−iωj )

ű
SD(ωj , θ)

ÿ

= tr

ů
Σ−1(In − Φ̃′M ′(e−iωj ))SD(ωj , θ)(In − M(eiωj )Φ̃)

ÿ

−tr

ů
Σ−1(In − Φ̃′M ′(e−iωj ))SD(ωj , θ)M(eiωj )dΦ

ÿ

−tr

ů
Σ−1dΦ′M ′(e−iωj )SD(ωj , θ)(In − M(eiωj )Φ̃)

ÿ

+dφ′

ţ
Σ−1 ⊗

ů
M ′(e−iωj )SD(ωj , θ)M(eiωj )

ÿ ű
dφ

= tr

ů
Σ−1(In − Φ̃′M ′(e−iωj ))SD(ωj , θ)(In − M(eiωj )Φ̃)

ÿ

−2vec

ů
re(M ′(e−iωj ))SD(ωj , θ)

ÿ ′ ţ
Σ−1 ⊗ Ik

ű
dφ + 2φ̃

ţ
Σ−1 ⊗ M ′(e−iωj )SD(ωj , θ)M(eiωj )

ű
dφ

+dφ′

ţ
Σ−1 ⊗

ů
M ′(e−iωj )SD(ωj , θ)M(eiωj )

ÿ ű
dφ.

Therefore,

− 1

2π
ln |S−1

V (ωj , Φ, Σ)| + 1

2π
tr[S−1

V (ωj , Φ, Σ)SD(ωj , θ)]

= − 1

2π
ln |S−1

V (ωj , Φ̃, Σ)| + tr

ů
Σ−1(In − Φ̃′M ′(e−iωj ))SD(ωj , θ)(In − M(eiωj )Φ̃)

ÿ

+2
1

2π
vec

ů
re(F ′(ωj , Φ̃))

ÿ ′ ţ
In ⊗ Ik

ű
dφ

−2vec

ů
re(M ′(e−iωj ))SD(ωj , θ)

ÿ ′ ţ
Σ−1 ⊗ Ik

ű
dφ + 2φ̃

ţ
Σ−1 ⊗ M ′(e−iωj )SD(ωj , θ)M(eiωj )

ű
dφ

+
1

2π
dφ′

ů ţ
In ⊗ re(F (ωj , Φ̃))′

ű
D

ţ
In ⊗ re(F (ωj , Φ̃))

ű
−

ţ
In ⊗ im(F (ωj , Φ̃))′

ű
D

ţ
In ⊗ im(F (ωj , Φ̃))

ű ÿ
dφ

+dφ′

ţ
Σ−1 ⊗

ů
M ′(e−iωj )SD(ωj , θ)M(eiωj )

ÿ ű
dφ.

Now define

V −1(ωj , Φ̃, Σ, θ) =

ţ
Σ−1 ⊗

ů
M ′(e−iωj )SD(ωj , θ)M(eiωj )

ÿ ű

+
1

2π

ţ
In ⊗ re(F (ωj , Φ̃))′

ű
D

ţ
In ⊗ re(F (ωj , Φ̃))

ű

− 1

2π

ţ
In ⊗ im(F (ωj , Φ̃))′

ű
D

ţ
In ⊗ im(F (ωj , Φ̃))

ű
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and

µ(ωj , Φ̃, Σ, θ) =

ţ
Σ−1 ⊗ Ik

ű
vec

ů
re(M ′(e−iωj ))SD(ωj , θ)

ÿ
−

ţ
Σ−1 ⊗ M ′(e−iωj )SD(ωj , θ)M(eiωj )

ű
φ̃

− 1

2π

ţ
In ⊗ Ik

ű
vec

ů
re(F ′(ωj , Φ̃))

ÿ

Hence,

Z
λ(ω)V −1(ω, Φ̃, Σ, θ)dω =

ţ
Σ−1 ⊗ ΓXX,λ(θ)

ű

+
1

2π

Z
λ(ω)

ţ
In ⊗ re(F (ω, Φ̃))′

ű
D

ţ
In ⊗ re(F (ω, Φ̃))

ű
dω

− 1

2π

Z
λ(ω)

ţ
In ⊗ im(F (ω, Φ̃))′

ű
D

ţ
In ⊗ im(F (ω, Φ̃))

ű
dω

and

Z
λ(ω)µ(ω, Φ̃, Σ, θ)dω =

ţ
Σ−1 ⊗ Ik

ű
vec[ΓXY,λ(θ)] −

ţ
Σ−1 ⊗ ΓXX,λ(θ)

ű
φ̃

− 1

2π

ţ
In ⊗ Ik

ű
vec

ů Z
λ(ω)re(F ′(ω, Φ̃))dω

ÿ

We can therefore deduce that the posterior of Φ given Σ and θ can be approximated by

φ|Σ, θ ∼ N
ţ

φ̃+

ů Z
λ(ω)V −1(ω, Φ̃, Σ, θ)dω

ÿ −1 Z
λ(ω)µ(ω, Φ̃, Σ, θ)dω,

ů Z
λ(ω)V −1(ω, Φ̃, Σ, θ)dω

ÿ −1 ű
.

To guarantee that the conditional prior distribution of Σ given Φ belongs to the inverted

Wishart family after we have replaced fλ,T∗(Φ) by a quadratic expansion, we must choose a Φ̃ that

is independent of Σ, but at the same attains a high posterior density. We construct Φ̃ as follows.

Recall that in the absence of approximations our prior density is of the form

p(Φ, Σ|θ) ∝ I{Φ∈P}|Σ|−(T∗+n+1)/2fλ,T∗(Φ)

× exp

¡
−T ∗

2
tr

č
Σ−1 ą

Γλ,Y Y (θ) − 2Γλ,Y X(θ)Φ + Φ′Γλ,XX(θ)Φ
ć ď ¿

.

Define

S = T ∗ ą
Γλ,Y Y (θ) − Γλ,Y X(θ)Φ − Φ′Γλ,XY + Φ′Γλ,XX(θ)Φ

ć

and notice that the conditional density p(Σ|Φ, θ) is of the inverted Wishart form. Using the fact

that an inverted Wishart distribution with parameters S and T ∗ has a density that is proportional

to

|S|T∗/2|Σ|−(T∗+n+1)/2 exp

¡
−1

2
tr[Σ−1S]

¿

we deduce that

p(Φ|θ) ∝ I{Φ∈P}fλ,T∗(Φ)

ů
Γλ,Y Y (θ) − Γλ,Y X(θ)Φ − Φ′Γλ,XY + Φ′Γλ,XX(θ)Φ

ÿ −T∗/2

and define

Φ̃ = argmax p(Φ|θ).

We then replace ln fλ,T∗(Φ) by a quadratic approximation around Φ̃.
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Example: Consider the case of the AR(1) model. The inverse spectral density is given by

S−1
V (ω, φ, σ2) =

2π

σ2
(1 + φ2 − 2φ cos ω).

Moreover, M(z) = 1 and D = 1. It can be verified by straightforward algebraic manipulations that

F (ω, φ) =
cos ω − φ

1 + φ2 − 2φ cos ω
+ i

sin ω

1 + φ2 − 2φ cos ω
.

Hence,

ln |S−1
V (ω, φ, σ2)| ≈ ln |S−1

V (ω, φ̃, σ2)

−2

ů
cos(ω) − φ̃

1 + φ̃2 − 2φ̃ cos ω

ÿ
(φ − φ̃)

−
ů

φ̃2 − 2φ̃ cos ω + 2 cos2 ω − 1

(1 + φ̃2 − 2φ̃ cos ω)2

ÿ
(φ − φ̃)2

Moreover,

1

2π
tr[S−1

V (ω, φ, σ2)SD(ω)] =
SD(ω)

σ2
(1 + φ̃2 − 2φ̃ cos ω)

−2
SD(ω)

σ2
(cos ω − φ̃)(φ − φ̃)

+
SD(ω)

σ2
(φ − φ̃)2

To approximate

− 1

2π
ln |S−1

V (ω, φ, σ2)| + 1

2π
tr[S−1

V (ω, φ, σ2)SD(ω)]

we define the variance and mean function

V −1(ω, φ̃, σ2) =
SD(ω)

σ2
+

1

2π

ů
φ̃2 − 2φ̃ cos ω + 2 cos2 ω − 1

(1 + φ̃2 − 2φ̃ cos ω)2

ÿ

µ(ω, φ̃, σ2) =
SD(ω)

σ2
(cos ω − φ̃) − 1

2π

cos ω − φ̃

1 + φ̃2 − 2φ̃ cos ω

Using the notation

γλ,0 =

Z 2π

0

λ(ω)SD(ω)dω, γλ,1 =

Z 2π

0

λ(ω) cos(ω)SD(ω)dω

we can write

Z
λ(ω)V −1(ω, φ̃, σ2)dω =

1

σ2
γλ,0 +

1

2π

Z
λ(ω)

ů
φ̃2 − 2φ̃ cos ω + 2 cos2 ω − 1

(1 + φ̃2 − 2φ̃ cos ω)2

ÿ
dω

Z
λ(ω)µ(ω, φ̃, σ2)dω =

1

σ2
(γλ,1 − φ̃γλ,0) − 1

2π

Z
λ(ω)

cos ω − φ̃

1 + φ̃2 − 2φ̃ cos ω
dω

C.5 Models with Intercepts and Trends

Consider the VAR given in (37). Let Ψ = [Ψ0, Ψ1]
′, ψ = vec(Ψ′), and z′

t = [1, t]. Moreover, define

ỹ′
t(Ψ) = y′

t − z′
tΨ and let Ỹ (Ψ) be the T × n matrix with rows ỹ′

t(Ψ) and X̃(Ψ) be the T × np

matrix with rows

x̃′
t(Ψ) = [ỹ′

t−1(Ψ), . . . , ỹ′
t−1(Ψ)]′.
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Using this notation,

ỹ′
t(Ψ) = x̃′

t(Ψ) · Φ + u′
t.

Now define:

Γ̂Y Y (Ψ) = Ỹ (Ψ)′Ỹ (Ψ)/T, Γ̂Y X(Ψ) = Ỹ (Ψ)′X̃(Ψ)/T, Γ̂XX(Ψ) = X̃(Ψ)′X̃(Ψ)/T.

The likelihood function can then be written as

p(Y |Ψ, Φ, Σ) = (2π)−
nT
2 |Σ|−T/2 exp

¡
−T

2
tr[Σ−1(Γ̂Y Y (Ψ) − 2Γ̂Y X(Ψ)Φ + Φ′Γ̂XXΦ)]

¿
. (71)

We combine the likelihood with a prior of the form

p(Ψ, Φ, Σ|θ) = p(Φ, Σ|θ)p(Ψ|θ) (72)

where

p(Φ, Σ|θ) ∝ I{Φ∈P}|Σ|−(T∗+n+1)/2fλ,T∗(Φ)

× exp

¡
−T ∗

2
tr

č
Σ−1 ą

Γλ,Y Y (θ) − 2Γλ,Y X(θ)Φ + Φ′Γλ,XX(θ)Φ
ć ď ¿

p(Ψ|θ) ∝ |V ψ
0 |−1/2 exp

¡
−1

2
(ψ − µψ

0 (θ))′(V ψ
0 )−1(ψ − µψ

0 (θ))

¿
.

We use the following mean vector and covariance matrix for ψ:

µψ′

0 =

ů
yadj , yadj + ln(c∗/y∗), yadj + ln(i∗/y∗), hadj , γ, γ, γ, hadj

ÿ

V ψ
0 =

2
6666666666666666664

τ0,1 τ0,1 τ0,1 0 0 0 0 0

τ0,1 τ0,1 + τ0,2 τ0,1 0 0 0 0 0

τ0,1 τ0,1 τ0,1 + τ0,3 0 0 0 0 0

0 0 0 τ0,4 0 0 0 0

0 0 0 0 τ1,1 τ1,1 τ1,1 0

0 0 0 0 τ1,1 τ1,1 + τ1,2 τ1,1 0

0 0 0 0 τ1,1 τ1,1 τ1,1 + τ1,3 0

0 0 0 0 0 0 0 τ0,4

3
7777777777777777775

.

In turn, we will derive the conditional posterior densities that can be used in a Gibbs sampling

scheme.

Using the notation that, for instance,

eΓλ,ζ,Y Y (θ, Ψ) = ζΓλ,Y Y (θ) + (1 − ζ)Γ̂Y Y (Ψ)

we define

eΦλ,ζ(θ, Ψ) = eΓ−1
λ,ζ,XX(θ, Ψ)eΓλ,ζ,XY (θ, Ψ),

eΣλ,ζ(θ, Ψ) = eΓλ,ζ,Y Y (θ, Ψ) − eΓλ,ζ,Y X(θ, Ψ)eΓ−1
λ,ζ,XX(θ, Ψ)eΓλ,ζ,XY (θ, Ψ).
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and write the conditional posterior density as

p(Φ, Σ|Y, Ψθ) ∝ I{Φ∈int(P)}fλ,T∗(Φ) (73)

×pIW−N

ţ
Φ, Σ

ŕŕŕŕ eΦλ,ζ(θ, Ψ), eΣλ,ζ(θ, Ψ), eΓλ,ζ,XX(θ, Ψ), T ∗ + T

ű
.

To study the posterior density of Ψ it is convenient to rewrite the likelihood function as follows.

Define ψ = vec(Ψ′) and notice that the VAR can be expressed as

yt −
pX

j=1

Φjyt−j =

Ã
I −

pX

j=1

Φj

!
Ψ0 +

Ã
I · t −

pX

j=1

Φj(t − j)

!
Ψ1 + ut

or

ŷt = Atψ + ut,

where

ŷt = yt −
pX

j=1

Φjyt−j and At =

ů Ã
I −

pX

j=1

Φj

!
,

Ã
I · t −

pX

j=1

Φj(t − j)

! ÿ
.

Hence, we can express the kernel of the likelihood function as

−1

2
tr

ů
Σ−1(Ỹ (Ψ) − X̃(Ψ) · Φ)′(Ỹ (Ψ) − X̃(Ψ) · Φ)

ÿ

= −1

2

TX

t=1

(ŷt − Atψ)′Σ−1(ŷt − Atψ)

= −1

2

"
TX

t=1

ŷ′
tΣ

−1ŷt − 2

Ã
TX

t=1

ŷ′
tΣ

−1At

!
ψ + ψ′

Ã
X

t=1

A′
tΣ

−1At

!
ψ

#
.

We deduce that

ψ|Y, Φ, Σ, θ ∼ N
ţ

µψ
T , V ψ

T

ű
, (74)

where

V ψ
T =

ţ
(V ψ

0 )−1 +

Ã
X

t=1

A′
tΣ

−1At

! ű −1

µψ
t = V ψ

T

ţ
(V ψ

0 )−1µψ
0 +

Ã
TX

t=1

ŷ′
tΣ

−1At

!′ ű
.

D Computational Issues

Computation of Adjustment Term. Let Λll, l = 1, . . . , np be the possibly complex eigenvalues

of the matrix of autoregressive coefficients for the VAR(p) (written in companion form). We

approximate the log adjustment term as follows:

ln fλ,T∗(Φ) =
T ∗

2 · 2π

Z 2π

0

λ(ω) ln |(I − Φ′M ′(eiω))(I − M(e−iω)Φ)|dω

≈ T ∗

2

npX

l=1

ů
2

m

m−1X

j=0

λ(ωj) ln |1 − Λlle
iωj |

ÿ

=
T ∗

2

npX

l=1

ů
1

m

m−1X

j=0

λ(ωj) ln(1 + |Λll|2 − 2re(Λll) cos(ωj)) − 2im(Λll) sin(ωj)

ÿ
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Table 1: DSGE Model’s Parameter Estimates

Prior Posterior (I) Posterior (II)

Domain Distr. P(1) P(2) Interval Mean Interval Mean Interval

α [0, 1) Beta 0.33 0.10 [ 0.17, 0.49] 0.23 [ 0.21, 0.27] 0.27 [ 0.26, 0.29]

Φ IR+ Gamma 33.00 15.00 [ 9.51, 55.40] 5.88 [ 3.20, 8.65] 30.50 [19.85, 42.86]

s′ IR+ Gamma 4.00 1.50 [ 1.61, 6.31] 1.30 [ 0.51, 2.02] 0.98 [ 0.39, 1.58]

h [0, 1) Beta 0.70 0.05 [ 0.62, 0.78] 0.78 [ 0.73, 0.82] 0.79 [ 0.74, 0.84]

a′′ IR+ Gamma 0.20 0.10 [ 0.05, 0.35] 0.31 [ 0.14, 0.46] 0.28 [ 0.12, 0.44]

νl IR+ Gamma 2.00 0.75 [ 0.81, 3.16] 3.68 [ 2.40, 4.92] 3.17 [ 1.44, 4.93]

γ IR+ Gamma 2.00 1.00 [ 0.48, 3.49] 1.06 [ 0.62, 1.51] 1.47 [ 0.99, 1.94]

g∗ [0, 1) Beta 0.30 0.10 [ 0.14, 0.46] 0.18 [ 0.08, 0.26] 0.24 [ 0.23, 0.25]

Ladj IR Normal 252 10.0 [235, 269] 248 [235, 261] 251 [242, 261]

ρφ [0, 1) Beta 0.90 0.05 [ 0.83, 0.98] 0.97 [ 0.95, 1.00] 0.90 fixed

ρµ [0, 1) Beta 0.90 0.05 [ 0.83, 0.98] 0.97 [ 0.95, 1.00] 0.90 fixed

ρg [0, 1) Beta 0.90 0.05 [ 0.83, 0.98] 0.99 [ 0.99, 1.00] 0.90 fixed

σz IR+ InvGamma 0.75 2.00 [ 0.31, 2.35] 1.09 [ 1.00, 1.19] 1.14 [ 1.04, 1.24]

σφ IR+ InvGamma 4.00 2.00 [ 1.55, 12.4] 8.51 [ 7.13, 10.0] 21.9 [16.9, 27.9]

σµ IR+ InvGamma 0.50 2.00 [ 0.20, 1.57] 2.22 [ 1.31, 3.07] 2.73 [ 1.76, 3.72]

σg IR+ InvGamma 0.75 2.00 [ 0.30, 2.32] 0.36 [ 0.33, 0.40] 0.58 [ 0.52, 0.63]

Marginal Likelihood -1043.70 -1098.34

Notes: B is Beta, G is Gamma, IG is Inverse Gamma, and N is Normal distribution. P (1)

and P (2) denote means and standard deviations for Beta, Gamma, and Normal distribu-

tions; s and ν for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs2/2σ2

.

The effective prior is truncated at the boundary of the determinacy region and the prior

probability interval reflects this truncation. All probability intervals are 90% credible. The

following parameters are fixed: δ = 0.025 and β = 1/(1 + 0.005). Estimation results are

based on the sample period QIV:1955 - QIV:2005.
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Table 2: Example 2: Log Marginal Data Densities

ln p(Y )

λ MCMC Approx Exact

ζ = 1/4

1/10 -356.39 N/A

1 -356.63 -356.58

10 -360.06 N/A

ζ = 1/2

1/10 -353.24 N/A

1 -353.89 -353.90

10 -357.28 N/A

ζ = 3/4

1/10 -353.23 N/A

1 -355.58 -355.56

10 -357.51 N/A

Notes: Results are based on a VAR(4), estimated with T = 120 model generated data. For

the MCMC Approx the prior density is set to zero for values of Φ that imply non-stationarity.
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Figure 1: The “Great Ratios” and Hours Worked: Predictive Distributions

Notes: Figure depicts smoothed periodgrams for the three normalized time series over the

interval ω/π ∈ [0.005, 0.200]: solid lines correspond to the actual data and dashed lines

signify 90% probability bands from the prior and posterior predictive distributions under

the DSGE model presented in Section 2.
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Figure 2: Example 1: Parameter Draws (Exact)

Notes: Figure depicts 200 draws from prior distribution for 4 different choices of λ(ω).

Intersection of solid lines indicates prior mean. Panel (1,1) corresponds to a uniform λ(ω),

in Panel (1,2) we emphasize frequencies below 0.16π, in Panel (2,1) we emphasize frequencies

above 0.16π, and in Panel (2,2) we emphasize frequencies above 0.08π.
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Figure 3: Example 1: Spectral Density Draws (Exact)

Notes: Figure depicts pointwise 90% probability intervals based on draws from the prior

distribution of the spectral densities (short dashes) for 4 different choices of λ(ω) (long

dashes). The solid line indicates the target density SD(ω).
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Figure 4: Example 1: Parameter Draws (Approx)

Notes: Figure depicts 200 draws from prior distribution for 4 different choices of λ(ω).

Intersection of solid lines indicates prior mean. Panel (1,1) corresponds to a uniform λ(ω),

in Panel (1,2) we emphasize frequencies below 0.16π, in Panel (2,1) we emphasize frequencies

above 0.16π, and in Panel (2,2) we emphasize frequencies above 0.08π.



This Version: February 12, 2008 46

Figure 5: Example 1: Spectral Density Draws (Approx)

Notes: Figure depicts pointwise 90% probability intervals based on draws from the prior

distribution of the spectral densities (short dashes) for 4 different choices of λ(ω) (long

dashes). The solid line indicates the target density SD(ω).
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Figure 6: Example 1: Parameter Draws (Bandpass-filtered Dummies)

Notes: Figure depicts 200 draws from prior distribution for 4 different choices of λ(ω).

Intersection of solid lines indicates prior mean. Panel (1,1) corresponds to a uniform λ(ω),

in Panel (1,2) we emphasize frequencies below 0.16π, in Panel (2,1) we emphasize frequencies

above 0.16π, and in Panel (2,2) we emphasize frequencies above 0.08π.
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Figure 7: Example 1: Spectral Density Draws (Bandpass-filtered Dummies)

Notes: Figure depicts pointwise 90% probability intervals based on draws from the prior

distribution of the spectral densities (short dashes) for 4 different choices of λ(ω) (long

dashes). The solid line indicates the target density SD(ω).
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Figure 8: Example 2: DSGE and DGP Spectral Densities
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Figure 9: Example 2: Prior Distribution of Spectrum

Notes: Figure depicts pointwise 90% probability intervals based on draws from the prior

distribution of the spectral densities (short dashes) for 3 different choices of λ(ω) (right

column). The solid line indicates the target spectrum SD(ω) and the long dashes show the

spectrum of the DGP.
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Figure 10: Example 2: Posterior Distribution of Spectrum

Notes: Figure depicts pointwise 90% probability intervals based on draws from the prior

distribution of the spectral densities (short dashes) for 3 different choices of λ(ω) (right

column). The solid line indicates the target spectrum SD(ω) and the long dashes show the

spectrum of the DGP.
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Figure 11: DSGE-VAR: Prior for Spectrum, Emphasize Business Cycle

Notes: Figure depicts pointwise 90% probability intervals of the prior predictive distribution

(short dashes). The solid line indicates the sample spectrum.
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Figure 12: DSGE-VAR: Prior for Spectrum, Equal Weights

Notes: Figure depicts pointwise 90% probability intervals of the prior predictive distribution

(short dashes). The solid line indicates the sample spectrum.
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Figure 13: DSGE-VAR: Prior for Spectrum, Emphasize Long-Run

Notes: Figure depicts pointwise 90% probability intervals of the prior predictive distribution

(short dashes). The solid line indicates the sample spectrum.


