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Abstract: With the growing number of heterogeneous resource-constrained devices connected to the
Internet, it becomes increasingly challenging to secure the privacy and protection of data. Strong but
efficient cryptography solutions must be employed to deal with this problem, along with methods to
standardize secure communications between these devices. The PRISEC module of the UbiPri middleware
has this goal. In this work, we present the performance of the AES (Advanced Encryption Standard),
RC6 (Rivest Cipher 6), Twofish, SPECK128, LEA, and ChaCha20-Poly1305 algorithms in Internet of
Things (IoT) devices, measuring their execution times, throughput, and power consumption, with the
main goal of determining which symmetric key ciphers are best to be applied in PRISEC. We verify that
ChaCha20-Poly1305 is a very good option for resource constrained devices, along with the lightweight
block ciphers SPECK128 and LEA.

Keywords: cryptography; IoT; privacy; UbiPri

1. Introduction

With the rapid growth of the IoT (Internet of Things), more devices are connected to the Internet,
resulting in bigger data exchanges. In turn, this generates more security and privacy risks for the users of
these devices, which is currently one of the biggest challenges of the IoT [1–3]. Another problem comes
from the fact that IoT devices are often limited in terms of computing power, energy, and memory capacity.
The standard Internet protocols and cryptography algorithms require many of these resources, which can
potentially make them unsuitable for IoT devices [4]. To deal with these problems, lightweight block
ciphers can be used to protect data [5]. There is also a lack of standards for heterogeneous technologies
and limited resource environments, which is the case of IoT devices. This opens further privacy risks and
makes the IoT especially vulnerable to DDoS (distributed denial of service) attacks [6].

A popular protocol in the IoT is CoAP (constrained application protocol). It is intended to be used
in limited resource environments, which makes it a good choice for IoT devices. It is a customized and
compressed version of HTTP (hypertext transfer protocol). However, CoAP is susceptible to many types
of attacks as studied in [7], including but not limited to parsing attacks (where a remote node can be
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crashed by executing arbitrary code), amplification attacks (an attacker can use end devices to convert
small packets into larger packets), and spoofing attacks. This shows how IoT protocols still have many
vulnerabilities, and it is becoming increasingly important to protect them against attacks.

In [8], the authors introduced a Cloud-based IoT architecture along with a series of security and
privacy requirements to ensure the safety of data. These requirements included identity privacy (the user’s
real identity has to be protected from the public), location privacy (the user’s location has to be protected as
to not disclose their living habits), node compromise attack (to prevent an attacker from extracting private
data from the devices), layer-removing/adding attack (to mitigate packet forwarding attacks), forward
and backward security (meaning that new users can only decipher encrypted messages after joining the
cluster and that revoked users cannot decipher encrypted messages after leaving), and semitrusted and/or
malicious cloud security (meaning that input, output, and function privacy must be achieved). In [9],
a privacy-preserving outsourced calculation toolkit was proposed for Cloud-based IoT. The main goal
was to allow its users to outsource their data in cloud storage in a secure manner. A fully homomorphic
encryption scheme was used, achieving efficient integer computations on encrypted data. These works
took important steps in ensuring the safety of data in Cloud-based IoT.

The IoT has also been making its way to e-health systems, allowing a more efficient monitoring of
patients with severe illnesses. The work developed in [10] analyzed the challenges of preserving the
privacy in these systems. To handle these issues, a fusion of IoT and big data was designed to construct
a system to secure communications and confidential medical data. An authenticated key distribution
procedure was modeled for use in the medical network along with an algorithm which verifies the source
of encrypted messages. The tests showed that this system is more efficient than other related works.
The same authors developed in [11] a smart IoT-based healthcare big data storage with self-adaptive access
control. Unlike other related systems, it combines attribute-based encryption to achieve fine-grained access
control over encrypted data, cross-domain to allow several medical institutes to be in the network and
share medical files, break-glass access to provide emergency access to encrypted medical files when the
owner’s authorization is not present, and a password-based break-glass key, which is preset by the patient
and a contact holds it for emergency situations when break-glass access has to be activated.

Another good way to solve the security and privacy problems in the IoT is through the use of
middleware. Middleware can be defined as an interface between the hardware and the application
with the main goal of managing the problem of heterogeneity. This way, the applications can run on
many different devices and apply similar protocols and standards to all of them, enhancing security,
performance, and reliability. Many middleware solutions have been developed over the years with the
goal of standardizing the IoT [12]. However, a big number of these solutions still have problems related to
security and privacy. A survey made in [13] analyzed 10 middleware solutions and found that four did not
address security and privacy. Similarly, in [14], 22 middleware solutions were studied, and it was verified
that 12 did not have a security model defined. Furthermore, 14 of the solutions did not have a tangible
security architecture.

In [15], the middleware UbiPri (ubiquitous privacy) was developed with the main goal of managing
and controlling the privacy of its users in ubiquitous environments automatically. Users are given an access
level when they enter a new environment taking into account several factors, including but not limited to
time of the day, if it is a working day or if the environment is public or private.

A practical example of UbiPri could be its users entering a theater to watch a play. Being a public
environment where noise and interruptions are undesirable, the middleware would grant a low access
level to the users and automatically silence their devices, block notifications or even limit their access
to the Internet. Another example could be the apartment of a user. The apartment would be a private
environment and the user its owner; therefore, they would have the highest access level (Admin). If the
user receives guests in their apartment, the guests would have lower access levels, and the Admin could
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limit some of their devices’ functionalities, such as disabling Internet access inside that environment.
The other access levels defined in UbiPri are Blocked, Guest, Basic, and Advanced.

The architecture of this middleware has security in mind with its PRISEC module [16]. This module
controls and manages the security of its users and environments, applying the necessary cryptography
and protocols to protect data. Figure 1 shows the different modules of UbiPri and how they interact with
each other.

Figure 1. (Ubiquitous privacy) UbiPri privacy modules, Leithardt et al. [16].

Each module is responsible for controlling and managing the privacy of different aspects of the
middleware. For instance, the PRIPRO module, developed in [17,18], controls the privacy of user profiles
and access levels. PRIHIS, which was developed in [19], contains the usage history of the middleware.
Another module which was also developed is PRISER [20,21], managing the notifications of the users’
devices and the services of each environment.

Motivation

The PRISEC module is still under development. On its first phase, we intend to analyze different
symmetric key algorithms to determine their efficiency and apply them on the middleware based on those
results. Since UbiPri will be used in an IoT context, we must choose secure cryptography algorithms while
assuring fast execution times and low energy consumption. Taking into account some of the challenges
and problems related to security in the IoT, and with many middleware solutions lacking security models
as we have seen previously, it becomes important to have a robust cryptographic base in the middleware
that we are developing. Furthermore, the tests presented here are not only relevant to our middleware but
also to other systems using similar hardware and software. Thus, this paper contributes with performance
evaluations of different symmetric key algorithms in IoT devices.

The chosen symmetric key block ciphers to be tested were AES, RC6, Twofish, SPECK, and LEA in
GCM (Galois/counter mode) mode with all supported key sizes (128, 192 and 256 bits). For SPECK,
the 128 bit block size version was chosen since the other block ciphers also use 128 bit blocks. Additionally,
the authenticated encryption scheme ChaCha20-Poly1305 was included in the tests. None of these
algorithms have efficient attacks published that can potentially break them, being thus considered
secure. AES, RC6, and Twofish were finalists of the Advanced Encryption Standard competition, with the
former algorithm winning it. SPECK and LEA are lightweight block ciphers meant to be used in resource
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constrained environments, being suitable for IoT devices. ChaCha20-Poly1305 is a fast stream cipher
which was added to the TLS (transport layer security) 1.3 protocol, becoming thus a standard in symmetric
key cryptography. Encryption time, decryption time, throughput, and power consumption will be the
units to be measured.

AES is the most widely used symmetric key block cipher in computer security due to its
standardization by the NIST (National Institute of Standards and Technology) and all the cryptanalysis
published on this algorithm, having resisted many types of attacks. Over the years, many optimizations to
its original implementation have been published, with several CPUs also supporting hardware acceleration
for its operations, as is the case of the specialized AES-NI instructions. Not only does this make the
algorithm more resistant to side-channel attacks, it also improves its efficiency significantly. The block
size of this cipher is 128 bits, with supporting key sizes of 128, 192, and 256 bits. The number of rounds is
dependent on key size, with 10 rounds for a 128 bit key, 12 rounds when using a 192 bit key, and 14 rounds
for a 256 bit key. It is based on a substitution–permutation Network structure, with its main operations
being SubBytes, ShiftRows, MixColumns, and AddRoundKey. The current best attack on full round AES is
a biclique attack, but it is only slightly better than brute force, with the algorithm remaining secure [22].

RC6 is a symmetric key block cipher which was one of the finalists of the AES competition, being an
improvement of the RC5 algorithm. Similarly to AES, it uses a 128 bit block size with key sizes of 128, 192,
and 256 bits. It is based on a Feistel network, using many rotations, XOR operations and additions as its
main operations. It also includes integer multiplications to increase diffusion, with the standard number
of rounds being 20 [23].

Twofish was another finalist of the AES competition, being the successor of BLOWFISH. Like RC6,
it is based on a Feistel network, using a 128 bit block size and supporting key sizes of 128, 192, and 256 bits.
The number of rounds is 16. The best attack on full round Twofish was found with truncated differential
cryptanalysis, requiring 251 chosen plaintexts [24].

SPECK is one of the lightweight block ciphers developed by the NSA, along with SIMON.
While SPECK is aimed at software implementations, the SIMON algorithm is intended to be used in
hardware implementations. SPECK is an Add–Rotate–XOR (ARX) cipher, supporting many block and key
sizes. The number of rounds is also dependent on both block and key size. The best attacks on SPECK
used differential cryptanalysis, breaking around 70% of the rounds of the different SPECK variants [25].

LEA is another lightweight block cipher using an ARX design. Similarly to the AES competition
algorithms, it uses a 128 bit block size and key sizes of 128, 192, and 256 bits with 24, 28, and 32 rounds,
respectively. It was designed for high-speed software implementations. The work developed in [25]
also applied the attack to LEA, breaking 14 rounds for 128 and 192 bit keys and breaking 15 rounds out of
32 for a 256 bit key size. Additionally, in [26], a side-channel power analysis attack allowed the retrieval of
a 128 bit key in a hardware implementation of LEA. Countermeasures should be considered to avoid side
channel attacks on hardware implementations of this cipher.

ChaCha20 is a high-speed stream cipher based on the Salsa20 cipher developed by Daniel J. Bernstein.
These ciphers are also based on ARX operations, having 20 rounds and supporting key sizes of 256 bits.
There are variants of these ciphers which use fewer rounds and a key size of 128 bits. ChaCha20 is
often used with the MAC (message authentication code) Poly1305 to authenticate the encrypted messages,
also developed by Bernstein. Additionally, this stream cipher was designed with side-channel cache-timing
attack resistance in mind [27].

The rest of the paper is structured as follows. Section 2 discusses related works and the new
performance evaluations this study brings in comparison with the research literature. Section 3 describes
the test environment and the developed application to run the tests. Section 4 presents the results of
the tests performed. In Section 5, we discuss the results obtained from the tests. Section 6 shows the
conclusions drawn from this study. Finally, Section 7 presents the work we intend to develop in the future.
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2. Related Works

The research literature often compared cryptography algorithms which are deemed no longer safe to
use, such as DES (Data Encryption Standard), 3-DES, and BLOWFISH. These ciphers have block sizes of
64 bits which make them susceptible to collision attacks [28]. Further, some of these studies were often
performed in non-IoT devices. An algorithm which is almost always present in cryptography benchmarks
is AES, the standard of symmetric key cryptography, but authenticated encryption modes such as GCM
are often not used. In [29], the AES, DES, and RSA (Rivest-Shamir-Adleman) algorithms were used to
encrypt and decrypt medical images in tablets and smartphones, measuring their power consumption.
As expected, AES obtained the best results for encryption/decryption speeds and power usage. However,
the encryption mode used and key sizes were not specified.

A study made in [30] compared the execution times of the AES, DES, 3-DES, E-DES, BLOWFISH,
and RSA algorithms in four messages of varying lengths. Once again, AES got the best results overall, but it
would have been more interesting to compare it with more modern algorithms. The key sizes used in this
study are also not clear, nor is the block cipher mode of operation specified. A similar scenario can be seen
in [31], where the AES algorithm obtained a better performance than DES, RSA, and BLOWFISH. In [32],
BLOWFISH got slightly better results than AES, but the latter was recommended for increased security.

In [33], the power consumption of the RC4, AES, DES, and RSA algorithms was measured on a WSN
(wireless sensor network). The CBC (cipher block chaining) mode of operation was used for AES and DES.
Keys of 128, 192, and 256 bits were used for AES, while for RSA, the key sizes used were 128, 256, 512,
and 1024 bits. RC4 had, in general, the best power consumption, but this algorithm is no longer deemed
safe due to the numerous attacks performed on it over the years [34–37]. RFC 7465 [38] also prohibited the
use of RC4 in TLS. The CBC mode used for DES and AES should also be avoided since the message is not
authenticated, allowing an attacker to tamper with the encrypted message.

The power consumption of the AES finalists RC6, Twofish, Serpent, and Mars was measured on
an Android smartphone device in [39]. File sizes of 1, 2, 3, 4, and 5 megabytes were used for encryption
and decryption of data. The Twofish and RC6 algorithms consumed the least power, followed by Mars
and Serpent, respectively. Once again, key sizes and block cipher modes of operation were not specified.
It is also unclear why the Rijndael algorithm, which would become the AES, was left out of the study.
It would have also been interesting to have included the execution times of each algorithm to compare it
with the power consumption.

The RC6, AES, 3-DES, and RSA algorithms were compared in [40], analyzing their execution time and
memory used to store code, data, and constants. The RC6 algorithm obtained the best results. However,
the ECB (electronic codebook) mode of operation was used, which is considered unsafe since the cipher
text can leak information about the plain text due to the lack of pseudo randomness. A similar study was
made in [41], comparing the RC6 and AES algorithms in ECB mode, with key sizes of 128, 192, and 256
bits. Packets of 128, 256, 512, and 1024 kB were tested. A BeagleBone Black device was used, which is very
popular in the IoT. The RC6 algorithm got up to 10 times faster execution times in this study, but the AES
hardware acceleration was disabled on the CPU of this device. It would have been interesting to show the
execution times with hardware acceleration enabled and see how the RC6 execution times would compare
to that.

In [42], many symmetric and public key algorithms and hash functions were tested on a Raspberry

Pi 3 Model B and on a Raspberry Pi Zero W, boards commonly used in the IoT. The symmetric key
algorithms included in the tests were AES in CTR (Counter) and GCM modes, using 128 and 256 bit keys,
and RC6 and Twofish in CTR mode, using a 128 bit key. The performance was evaluated analyzing the
throughput in MiB/second and power consumption in µWh/MiB. It was verified that RC6-128-CTR had
the best throughput and power consumption in both boards in comparison with Twofish-128-CTR and
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AES-128-CTR. It also got better results than AES-256-CTR and AES-GCM, but the comparison here is
unfair since the key sizes and mode of operation are different. With this, the study should have tested RC6
and Twofish in GCM mode with 256 bit keys as well.

Since its adoption in version 1.3 of the TLS protocol, the ChaCha20 stream cipher has been gaining
the attention of security researchers. This algorithm can also achieve very fast encryption and decryption
speeds, outperforming AES in CPUs without hardware acceleration. The study made in [43] shows that
the authenticated encryption scheme ChaCha20-Poly1305 is faster than AES-128 in GCM, EAX, and CCM
authenticated encryption modes on the ARM Cortex-M4 CPU used to run the rests, which does not have
AES hardware acceleration.

The study in [44] made a quite exhaustive performance evaluation of different C/C++ cryptography
libraries, among them Crypto++, Botan, OpenSSL, LibgCrypt, Nettle, and LibTomCrypt. The tested
block ciphers included AES, Twofish, Serpent, Camellia, BLOWFISH, SEED, IDEA, DES, and 3-DES.
Different key sizes were used, but once more, the CBC mode of operation was chosen. Pack sizes of 1, 4,
and 8 megabytes were tested. The encryption and decryption speed was measured in MB/second. AES
outperformed all of the algorithms due to the AES-NI instruction set, except on the LibTomCrypt library,
which does not compile to the AES-NI instructions, and the Nettle library, as the authors of the study did
not enable hardware acceleration support for it.

The survey made in [45] analyzed a study where the battery consumption and encryption speed
of the BLOWFISH, DES, 3-DES, RC2, RC6, and AES algorithms were measured in laptops in a wireless
network. Text, image, and audio files were encrypted with these algorithms. A 256 bit key was used for
AES, RC6, and BLOWFISH. For DES and RC2, 64 bit keys were used. For 3-DES, the key size was 192 bits.
The modes of operation are not specified for the block ciphers. BLOWFISH had the best results for text
and audio files, followed by RC6. For image files, AES had better results than RC6, but DES outperformed
all of the algorithms included in the study.

The time to set up the key and IV (initialization vector) and encryption speed in MiB/second of the
Twofish, Camellia, Serpent, CAST-256, BLOWFISH, TEA, SHACAL-2, and Kalyna-128 were tested in
an ARMv8-a CPU in [46], an architecture often used in IoT devices. A key with size 128 bits was used for
all tested block ciphers in CTR mode. SHACAL-2 had the fastest encryption speed, followed by Twofish.
TEA and Camellia had the lowest time to setup key and IV.

In [47], we started the performance evaluation of several symmetric key algorithms, among them AES,
RC6, and Twofish, all in GCM mode. All supported key sizes were tested (128, 192, and 256 bits). However,
only encryption and decryption times were measured. The tests were made in a laptop with an Intel CPU
and in an emulated ARMv7-a CPU. The emulation was ran on the same laptop. We verified that AES had
the best execution times for the Intel device due to hardware acceleration, but in the emulated ARMv7-a
CPU, RC6 had the best results.

Recently, lightweight block ciphers have been studied frequently by researchers. These ciphers are
intended to be used in resource-constrained devices, usually having simple key schedules (reducing
memory requirements), running on elementary operations such as XOR or AND, and also supporting
different block sizes (such as 32, 48, 64, 96, and 128 bit) [48]. Most of these lightweight ciphers are
also usually targeted for either software or hardware implementations. Software-oriented lightweight
cryptography includes SPECK, LEA, and Chaskey, while SIMON, LED, Piccolo, and PRESENT are among
hardware-oriented lightweight ciphers [49]. Most of these ciphers have been found secure enough to
be used in real world applications, with the exception of KLEIN, KTANTAN, Noekeon, and SKIPJACK,
which have attacks on every or almost every round published on them and can be risky to use [48].
Otherwise, none of these ciphers are effectively broken.

In [48], many lightweight block ciphers were analyzed, among them SIMON, SPECK, HIGHT,
and KATAN. Several key and block sizes were tested. The AES algorithm was also included in the study.
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The test device was an MSP430 16 bit microcontroller. It was verified that in software implementations,
AES stood up very well to the lightweight ciphers, achieving 647 cycles per byte during encryption. SPECK
with a 64 bit block size outperformed AES, with 548 cycles per byte. For a 128 bit block size, SPECK was
only faster than AES during decryption. Most of the tested lightweight ciphers were also better than AES
in memory usage, specially to store code and data on the stack.

A similar study was made in [49]. In addition to an MSP430 16 bit microcontroller, the tests were also
ran in an 8 bit AVR and 32 bit ARM. The tested ciphers were implemented in Assembly. For encryption
and decryption of 128 bytes of data in CBC mode, Chaskey was the fastest algorithm in all devices. SPECK
showed some of the best results in memory usage.

In [50], the MSP430 microcontroller was once again used to test software implementations of
lightweight block ciphers along with AES. TEA, XTEA, and DIRnoekeon were faster than AES for
encryption and decryption. Hardware-oriented ciphers such as LED, KATAN, and PRESENT had very
poor results when implemented in software.

Both hardware and software implementations were analyzed in [51]. SIMON had the overall best
results for hardware implementation of the tested ciphers, with low memory requirements and decent
execution times. The fastest in hardware was SEA, but it also used more memory. SPECK had the best
results for software implementations.

A survey made in [52] presents a rather complete study of block ciphers, with many different
algorithms and hardware and software implementations being analyzed. Ciphers like AES, Camellia,
KATAN, SIMON, SPECK, and LEA were included in the survey. Hardware implementations used 0.09, 0.13,
0.18, and 0.35 µm technologies, while the software implementations were deployed in microncontrollers
of 8, 16, and 32 bits. Several metrics were analyzed, including throughput and power consumption. In the
hardware implementations, Piccolo got the overall best results, with SPECK, PRESENT, and TWINE being
other algorithms with efficient hardware solutions. For software implementations, SPECK and PRIDE
performed the best, closely followed by Fantomas, Robin, AES, and SEA.

We can see that most studies made in cryptography benchmarks have some problems,
where important details about the tests were not specified or where old and unsafe ciphers were tested.
Some works measured power consumption, others execution time, but few measured both. Most of these
benchmarks would also only use a single test sample, providing less accurate measures. For instance,
the authors of [29] tested sets of 1000 and 10,000 images, which provides more accurate results.

Table 1 shows a summary of the comparison between the research literature with the work developed
in this study. If a column item is marked, the work in that row addresses it. If it is not marked, then the
work either does not specify or does not address that item. The items of the table are as follows:

1. Work—Contains a reference to the study;
2. Unsafe—If the work tested unsafe ciphers. This is considered by us to be a negative factor, as the use of

older and unsafe ciphers should not be motivated nor compared with modern and secure ciphers;
3. Large Samples—Whether the study used several samples to improve the accuracy of the measures;
4. Light—Informs if the study tested lightweight ciphers;
5. Key Sizes—If the work specified all of the key sizes tested and if the same key sizes were used

for all algorithms, when applicable. For instance, AES and DES cannot have the same key sizes
(128/192/256 bits vs. 56 bits), so in these cases, the item is marked if the key size is specified;

6. Auth Modes—Informs if the study used authenticated encryption modes for all ciphers;
7. Time—If the work tested encryption/decryption times or not;
8. PC—If power or battery consumption was measured in the work or not;
9. THP—Informs whether the study specifies encryption/decryption throughput (whether in

bytes/second or cycles/byte);
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10. IoT—If the tests were performed in IoT devices or not.

Table 1. Comparison of related work with the study made in this paper.

Work Unsafe Large Samples Light Key Sizes Auth Modes Time PC THP IoT

[29] X X X X X
[30] X X
[31] X X X X
[32] X X X
[33] X X
[39] X X
[40] X X X X
[41] X X X
[42] X X X X
[43] X X X
[44] X X X
[45] X X X X
[46] X X X X
[47] X X X
[48] X X X X
[49] X X X X
[50] X X X X
[51] X X X X X
[52] X X X X X X

This work X X X X X X X X

3. Test Environment and Developed Application

Since the focus of this study was evaluating the performance of symmetric key algorithms in
IoT devices, the tests were performed on two smartphones with ARM CPUs, which are widely used
in the IoT. These devices are also constrained energy-wise, since they depend on a limited battery.
Furthermore, an Android application for the UbiPri middleware is being developed, with having the
ciphers benchmarked in this platform becoming relevant.

1. Samsung Galaxy Core Prime

• Operating System: Android 5.0.2 Lollipop
• CPU: ARMv7-a Cortex-A7, 4 cores, 1.2 GHz
• RAM: 1 GB

2. Xiaomi Redmi Note 3

• Operating System: Android 6.0.1 Marshmallow
• CPU: ARMv8-a Cortex-A53, 4 cores, 1.4 GHz + ARMv8-a Cortex-A72, 2 cores, 1.8 GHz
• RAM: 3 GB

The Xiaomi device, having an ARMv8-a architecture, has support for AES hardware acceleration.
The Samsung device does not have hardware acceleration. This way, the AES algorithm was tested on the
Xiaomi device with hardware acceleration turned on and off.

An Android application was developed to run the tests. We can choose the packet size to be encrypted
and decrypted, the algorithm to be used, and the access level of the user, which will determine the size
of the key. The Basic access level uses a 128 bit key, the Advanced level uses a 192 bit key, and the Admin
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packets are encrypted with a 256 bit key. The block ciphers which can be chosen are AES, RC6, Twofish,
SPECK128, and LEA, all in GCM mode. Additionally, the authenticated stream cipher ChaCha20-Poly1305
can be picked. Only 256 bit keys are supported for this cipher; therefore, the access level will not impact
the size of the key for this algorithm. Packet sizes of 1, 5, and 10 MiB were tested for all algorithms and
available key sizes. Figure 2 shows the devices used to run the tests executing the developed application
for this study.

Figure 2. Devices used running the developed application.

The interface was implemented in Java, while the functions which encrypt and decrypt the
packets were implemented in C++ using the Android Native Development Kit. The Crypto++
8.2 library was used since it has the implementations of all the cryptography algorithms we
intended to test. It was cross-compiled to the ARMv7-a and ARMv8-a architectures with the
arm-linux-androideabi-g++ and aarch64-linux-android-clang++ compilers, respectively. The -O3 -marm

-mfpu=neon-vfpv4 compiler flags were used for the ARMv7-a compilation. When compiling for ARMv8-a,
we used the -O3 -march=armv8-a+crc+simd+crypto compiler flags. To compile with the AES special
instructions in the ARMv8-a device, the Crypto++ -DCRYPTOPP_ARM_AES_AVAILABLE=1 flag was also
included. To compile without these instructions, and thus turning off AES acceleration, the flag
-DCRYPTOPP_ARM_AES_AVAILABLE=0 was specified instead.

A packet with the user specified size is filled with random bytes in the Java backend. The C++
method is then called passing that packet (a byte array), algorithm chosen, and access level as arguments.
The packet is encrypted and decrypted 100 times, and the encryption and decryption times are measured
on each run. This is done not only to warm up the CPU cache but also to get more reliable measures.
A new key and IV are generated each time the packet is encrypted, but the key and IV generation time
is not measured. The IV is always 12 bytes long. For ChaCha20-Poly1305, additional authenticated data
(AAD) are needed. This AAD is 16 bytes long. The encryption and decryption times are measured with
the <chrono> C++ library. The results are exported to a CSV file, with an average of the encryption and
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decryption times being obtained from them. In Appendix A, in Figures A1 and A2, example codes of
AES-GCM encryption time measurement and of the Java backend can be found.

To measure battery consumption, we used the batterystats dumpfile which Android provides.
To get this file, the command adb shell dumpsys batterystats was run on a laptop connected to
the devices. This file shows battery consumption in mAh per application. The average throughput,
in MiB/s, can be obtained by dividing the encrypted/decrypted mebibytes by the encryption/decryption
time. Figure 3 shows a diagram of the work flow of the developed application.

Java frontend

Input packet size (MiB),
access level

and algorithm

Application exited

Test Button
pressed

Java backend

Convert MiB
to bytes

Generate random
packet with

specified bytes

«structured»
Loop

i = 0

Setup

Call native method

Test
i < 100

Body true

i++

Native backend

Generate key
and IV

Get current
time

Encrypt packet Get elapsed
encryption time

Get current time Decrypt packet

Get elapsed
decryption time

Write times
to CSV file

return (void)

return (void)

Figure 3. Application flow diagram.

4. Results

4.1. ARMv7-a Results

For encryption and decryption times in the ARMv7-a CPU, we verified that RC6 and Twofish
performed faster than AES, with the 256 bit key variants being 42% faster for a packet size of 10 MiB.
Furthermore, bigger key sizes in RC6 and Twofish did not affect execution times significantly, while in
AES, key size had a noticeable effect on performance. Figure 4 shows the average encryption time in
seconds for AES, RC6, Twofish, and ChaCha20-Poly1305 in the Samsung device.

The lightweight block ciphers SPECK128 and LEA performed better than the other block ciphers.
SPECK128 had slightly better encryption times than LEA for key sizes of 192 and 256 bits. However,
ChaCha20-Poly1305 got the overall best results, being even faster than SPECK128-128-GCM and
LEA-128-GCM despite using a 256 bit key. Figure 5 shows the average encryption time in seconds
for these ciphers in the Samsung device. The average decryption time, which was similar as expected from
symmetric key cryptography, can be seen in Appendix B.1, Figures A3 and A4.

Table 2 shows the average encryption throughput in MiB/s for each algorithm for the tested packet
sizes. We can see more clearly here that Twofish had a slightly better encryption speed than RC6.
However, the ChaCha20-Poly1305 authenticated stream cipher has a significant decrease in execution times,
which makes it a very appealing cipher for devices with limited resources. For the average decryption
throughput, see Appendix B.1, Table A1.
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Figure 4. Average encryption time (seconds) in the ARMv7-a Samsung device.

Figure 5. Average lightweight block cipher encryption time (seconds) in the ARMv7-a Samsung device.

As mentioned in Section 3, the Android batterystats file was used to check the battery drain of each
application. The battery consumption is presented in mAh. The Samsung device’s battery has a total
capacity of 2000 mAh. Table 3 shows the battery drain for each algorithm for the given access levels.
Note that this is the battery drain after running each access level test for all packet sizes. As an example,
AES Basic shows the battery drain after running the tests for packet sizes of 1, 5, and 10 MiB. The command
adb shell dumpsys batterystats --reset was executed after running such tests to reset the battery
drain readings for each access level and algorithm. ChaCha20-Poly1305 only supports key sizes of 256 bits,
being thus under Admin.
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Table 2. Average encryption throughput (MiB/s) in the ARMv7-a Samsung device.

Algorithm/Pack Size 1 MiB 5 MiB 10 MiB

AES-128-GCM 12.538 12.935 12.989
AES-192-GCM 11.872 12.069 12.125
AES-256-GCM 11.073 11.286 11.313
RC6-128-GCM 16.950 17.304 17.328
RC6-192-GCM 16.755 17.251 17.306
RC6-256-GCM 16.738 17.237 17.290

Twofish-128-GCM 17.094 17.324 17.372
Twofish-192-GCM 16.802 17.284 17.336
Twofish-256-GCM 16.593 17.258 17.309

SPECK128-128-GCM 23.539 23.888 24.145
SPECK128-192-GCM 23.280 23.777 23.848
SPECK128-256-GCM 22.776 23.518 23.847

LEA-128-GCM 23.801 24.242 24.214
LEA-192-GCM 22.674 23.268 23.363
LEA-256-GCM 22.125 22.523 22.677

ChaCha20-Poly1305 36.805 38.777 38.951

Table 3. Battery drain (mAh) in the ARMv7-a Samsung device.

Algorithm/Access Level Basic Advanced Admin

AES 10.40 12.30 13.40
RC6 7.17 8.18 8.68

Twofish 7.75 8.74 8.77
SPECK128 5.59 6.16 6.32

LEA 5.18 6.49 6.65
ChaCha20-Poly1305 – – 3.90

As we can see from the results, AES had the biggest battery drain. While Twofish was slightly
faster than RC6, it also consumed more battery. LEA started draining more battery at access level
Advanced (192 bit key) while being slower than SPECK128. ChaCha20-Poly1305 also had an impressive
result. Not only is it faster than all other algorithms, it also consumed much less battery than the tested
block ciphers.

4.2. ARMv8-a Results

In the ARMv8-a CPU, we got slightly different results, with RC6 being faster than Twofish.
Provided hardware acceleration is off, both these block ciphers have faster encryption and decryption
speeds than AES. However, with hardware acceleration turned on, AES outperformed all of the other
algorithms. Figure 6 shows the average encryption time for AES, RC6, Twofish, and ChaCha20-Poly1305
in the Xiaomi device. The average decryption time, which was, once again, close to the average encryption
time, can be found in Appendix B.2, Figure A5.
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Figure 6. Average encryption time (seconds) in the ARMv8-a Xiaomi device.

For the lightweight block ciphers in this device, SPECK128 was always faster than LEA. Once more,
both were considerably faster than the other tested block ciphers, except AES with hardware acceleration.
In this device, LEA-128-GCM managed to be faster than ChaCha20-Poly1305. SPECK128 was also faster
than the stream cipher, except for block sizes of 10 MiB starting at a key size of 192 bits. Figure 7 presents the
average encryption time in seconds for SPECK128 and LEA in the Xiaomi device. The average decryption
time can be seen in Appendix B.2, Figure A6.

Figure 7. Average lightweight block cipher encryption time (seconds) in the ARMv8-a Xiaomi device.

Table 4 shows the average encryption throughput in MiB/s for each algorithm and packet size in the
Xiaomi device. RC6 was considerably faster than Twofish. AES key size also impacted the encryption
and decryption speeds much more than in the RC6 and Twofish algorithms. For the average decryption
throughput in the Xiaomi device, see Appendix B.2, Table A2.
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Table 4. Average encryption throughput (MiB/s) in the ARMv8-a Xiaomi device.

Algorithm/Pack Size 1 MiB 5 MiB 10 MiB

AES-128-GCM 77.539 78.058 77.586
AES-192-GCM 65.843 68.793 69.190
AES-256-GCM 59.882 61.793 61.670

AES-128-GCM-HW 325.789 414.087 426.964
AES-192-GCM-HW 300.811 411.769 409.741
AES-256-GCM-HW 299.368 399.009 391.087

RC6-128-GCM 87.089 89.975 89.785
RC6-192-GCM 86.925 89.861 88.907
RC6-256-GCM 86.615 89.799 87.939

Twofish-128-GCM 78.893 80.747 77.799
Twofish-192-GCM 78.625 79.945 77.031
Twofish-256-GCM 77.632 79.691 75.361

SPECK128-128-GCM 160.958 168.215 150.211
SPECK128-192-GCM 151.627 166.054 132.117
SPECK128-256-GCM 149.843 162.750 131.935

LEA-128-GCM 140.370 144.275 142.345
LEA-192-GCM 124.138 128.719 124.099
LEA-256-GCM 113.247 116.402 115.250

ChaCha20-Poly1305 134.081 137.656 138.336

When analyzing power consumption, we verified that RC6 drained less battery than Twofish in
the Xiaomi device while also having faster encryption and decryption speeds. In the Samsung device,
Twofish drained more battery than RC6, but it was also faster. Without hardware acceleration, AES drained
the most battery, but when using the optimized instructions, it was the most battery-efficient algorithm.
SPECK128 drained less battery than ChaCha20-Poly1305 for all supported key sizes, which did not happen
in the Samsung device. Table 5 shows the battery drain for all tested algorithms. The Xiaomi device’s
battery has a total capacity of 4000 mAh.

Table 5. Battery drain (mAh) in the ARMv8-a Xiaomi device.

Algorithm/Access Level Basic Advanced Admin

AES 2.52 2.82 3.14
AES HW 0.877 0.887 0.919

RC6 2.33 2.36 2.38
Twofish 2.57 2.63 2.73

SPECK128 1.54 1.68 1.69
LEA 1.60 1.81 1.97

ChaCha20-Poly1305 – – 1.73

5. Discussion

From the results described in the previous section, we can see that we have good cryptographic
solutions for resource constrained devices. The results show that the CPU architecture of these devices
has a considerable effect in the performance of the algorithms. For the ARMv7-a architecture, the tested
lightweight block ciphers consume few resources while keeping good execution times. However, if one
prefers to use one of the AES finalists instead of lightweight cryptography, either RC6 and Twofish can be
good alternatives. In the emulated ARMv7-a device in [47], RC6 had faster encryption and decryption
times than Twofish, which did not happen in the physical device tested here. Twofish was faster than RC6
but drained the battery slightly more.
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The authenticated stream cipher ChaCha20-Poly1305 performed even better than the block ciphers,
consuming less battery while being faster. It is also supported by the most recent version of the TLS
protocol, along with AES, making it a robust solution security-wise.

In the ARMv8-a device, the trend verified in the Samsung device was not very similar. RC6 was
up to 15% faster than Twofish, and the lightweight block ciphers managed to perform better than
ChaCha20-Poly1305 in some scenarios. LEA was faster than the stream cipher for key sizes of 128 bits,
while SPECK128 was faster for packet sizes smaller than 10 MiB, in addition to consuming less
battery for all tested key sizes. AES-128-GCM without hardware acceleration also managed similar
speeds to Twofish-128-GCM, and it drained the battery 0.05 mAh less. However, for bigger key sizes,
Twofish outperformed AES without hardware acceleration.

Hardware-accelerated AES was more efficient than every other algorithm, achieving a very good
encryption throughput of 426.964 MiB/s with a 128 bit key and a packet size of 10 MiB. The battery drain
was also minimal, being below 1 mAh for every supported key size. From [48], we know that AES has
high memory requirements, so unless our device has very limited memory resources, AES seems to be one
of the best solutions in terms of speed and energy efficiency, provided the CPU has support for hardware
acceleration. Otherwise, a lightweight block cipher should be used. From our tests, SPECK seems to
be the overall best option when compared to LEA for a software implementation, since it was faster
in most scenarios and drained less battery. SPECK also supports smaller block sizes, making it more
flexible than LEA, but block sizes smaller than 128 bits should be used with care and only if the device is
very constrained memory-wise to better protect against collision attacks [28]. It is also worth noting that,
for block sizes other than 128 bits, the standard encryption modes of operation like GCM cannot be used
as they are only defined for 128 bit block sizes. With this, other ways of authenticating the encrypted data
must be explored.

6. Conclusions

This study has presented a more complete cryptography benchmark than previous works.
Several symmetric key algorithms were evaluated with all supported key sizes and using an authenticated
encryption mode. Several metrics were measured for all tested ciphers, among them execution times,
throughput, and battery drain.

Care was also taken to only evaluate secure ciphers without known efficient attacks that can potentially
break them. It is important to use such ciphers since they have been scrutinized over the years by
the cryptography community. This not only enhances the trust we can put into any given cipher,
but it also gives rise to new and more optimized implementations, saving considerable computational
resources, as is the case of hardware-accelerated AES. This also gives us fewer reasons to use older and
obsolete ciphers, which, while they can use fewer resources (as was the case of BLOWFISH, as seen in
Section 2), are also susceptible to attacks and should be avoided. This way, modern ciphers with optimized
implementations will be preferred.

7. Future Work

With the performance of these ciphers evaluated, we intend to implement cryptography in the UbiPri
middleware based on these results. The PRISEC module will detect the characteristics of the device and
decide which cipher is best in terms of security, execution times, and power consumption. The environment
and access level of the user will also be considered, since access level determines the key size to be used.
When it comes to the environment, the fact that it can be public or private can also have an impact on the
level of cryptography to be applied, with public environments making the user’s data privacy potentially
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more vulnerable and thus needing stronger protection. This way, we intend to ensure the security of
constrained resource IoT devices in an efficient and seamless way.

Additionally, these algorithms should also be tested in 8 bit and 16 bit microcontrollers, as the results
can vary greatly from ARM CPUs as seen in [49]. The UbiPri middleware should be prepared to handle
cryptography in these types of devices as they are increasingly popular in the IoT.

The CAESAR competition also introduced new authenticated cryptography solutions for many scenarios.
The final portfolio announced recently in February 2019 defines three use cases. The first use case is cryptography
for resource constrained environments, the second one is cryptography for high-performance applications,
and the final use case is for defense in depth, with slower but stronger cryptography.

In use case 1, the finalist algorithms were Ascon and ACORN. Ascon can be implemented efficiently
in hardware, being resistant to side channel attacks, and also has some degree of resistance to nonce
misuse [53]. ACORN is the second choice for use case 1. Like Ascon, its focus is to be implemented
efficiently in hardware, but it is also flexible enough to be implemented in software, having a small code
size [54]. We hereby intend to evaluate the performance of these two authenticated encryption algorithms
in several constrained resource devices, testing both hardware and software implementations with the
goal of supporting them in the UbiPri middleware.

Finally, it is important to continue the research on the PRIPRO module. Since it manages the access
levels of the users, it becomes an important auxiliary of the PRISEC module, as access level has a big impact
on the cryptography applied to each user and environment. With the work developed in [17,18], we want
to find new methods of automatically managing and assigning access levels to each user, taking into
account several variables and environment characteristics. The final goal is to ensure maximum privacy
and security for each user wherever the user is located and in all devices whilst consuming a minimum
amount of computational resources.
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Appendix A. Example Code

Figure A1. AES-Galois/counter mode (GCM) encryption with time measurement.

Figure A2. Java Backend.

Appendix B. Decryption Results

Appendix B.1. ARMv7-a Decryption Results

In this appendix, the figures for the average decryption time and the table for the average decryption
throughput in the Samsung device can be found. Since they were similar to the encryption results, and to
prevent cluttering the main text with too many figures and tables, they were placed here.
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Figure A3. Average decryption time (seconds) in the ARMv7-a Samsung device.

Figure A4. Average lightweight block cipher decryption time (seconds) in the ARMv7-a Samsung device.

Table A1. Average decryption throughput (MiB/s) in the ARMv7-a Samsung device.

Algorithm/Pack Size 1 MiB 5 MiB 10 MiB

AES-128-GCM 12.839 12.928 12.943
AES-192-GCM 12.019 12.059 12.062
AES-256-GCM 11.237 11.254 11.269
RC6-128-GCM 17.295 17.340 17.340
RC6-192-GCM 17.172 17.287 17.326
RC6-256-GCM 17.162 17.277 17.324

Twofish-128-GCM 17.304 17.364 17.385
Twofish-192-GCM 17.233 17.351 17.368
Twofish-256-GCM 17.130 17.303 17.357

SPECK128-128-GCM 23.706 24.010 24.190
SPECK128-192-GCM 23.693 23.936 23.904
SPECK128-256-GCM 23.477 23.726 23.829

LEA-128-GCM 23.953 24.251 24.244
LEA-192-GCM 23.208 23.379 23.345
LEA-256-GCM 22.579 22.679 22.734

ChaCha20-Poly1305 38.407 39.197 39.147
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Appendix B.2. ARMv8-a Decryption Results

Similarly to Appendix B.1, the figures and table of the decryption tests in the ARMv8-a Xiaomi device
can be found here. For this architecture, the decryption results were also similar to the encryption process.
They are nonetheless provided here.

Figure A5. Average decryption time (seconds) in the ARMv8-a Xiaomi device.

Figure A6. Average lightweight block cipher decryption time (seconds) in the ARMv8-a Xiaomi device.
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Table A2. Average decryption throughput (MiB/s) in the ARMv8-a Xiaomi device.

Algorithm/Pack Size 1 MiB 5 MiB 10 MiB

AES-128-GCM 77.002 77.871 77.852
AES-192-GCM 66.671 68.541 69.026
AES-256-GCM 60.668 61.555 61.517

AES-128-GCM-HW 312.240 416.162 416.910
AES-192-GCM-HW 293.926 412.598 399.584
AES-256-GCM-HW 289.693 401.251 395.472

RC6-128-GCM 86.884 89.742 89.188
RC6-192-GCM 86.841 89.440 88.428
RC6-256-GCM 86.345 89.296 87.231

Twofish-128-GCM 78.870 80.252 77.642
Twofish-192-GCM 78.337 79.892 76.677
Twofish-256-GCM 77.980 79.794 75.040

SPECK128-128-GCM 158.101 169.930 149.765
SPECK128-192-GCM 148.910 167.075 132.916
SPECK128-256-GCM 148.604 163.716 131.265

LEA-128-GCM 137.897 145.423 142.530
LEA-192-GCM 122.688 129.230 122.834
LEA-256-GCM 112.028 117.177 114.701

ChaCha20-Poly1305 133.612 136.527 136.207
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