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Abstract. In a chemical kinetics calculation a solution-mapping procedure is

applied to parametrize the solution of the initial-value ordinary differential equation

system as a set of algebraic polynomial equations. To increase the accuracy, the para-

metrization is done piecewise, dividing the multi-dimensional chemical composition

space into hypercubes and constructing polynomials for each hypercube. A differen-

tial equation solver is used to provide the solution at selected points throughout a

hypercube, and from these solutions the polynomial coefficients are determined. Fac-

torial design methods are used to reduce the required number of computed points.

The polynomial coefficients for each hypercube are stored in a data structure for

subsequent re-use, since over the duration of a flame simulation it is likely that a

particular set of concentrations and temperature will occur repeatedly at different

times and positions.

The method is applied to H2-air combustion using an 8-species reaction set. Af-

ter N2 is added as an inert species and enthalpy is considered, this results in a

10-dimensional chemical composition space. To add the capability of using a variable

time-step, time-step is added as an additional dimension, making an 11-dimensional

space. Reactive fluid dynamical simulations of a 1-D laminar premixed flame and a

2-D turbulent non-premixed jet are performed. The results are compared to iden-

tical control runs which use an ordinary differential equation solver to calculate the

chemical kinetic rate equations. The resulting accuracy is very good, and a factor of

10 increase in computational efficiency is attained.

1 Introduction

The study of combustion through finite-difference numer-
ical simulations typically involves a marriage of computa-
tional fluid dynamics (CFD) and computational chemical
kinetics. The role of the CFD includes determination of
velocities, pressure, convection across cell boundaries, the
equation of state, the modelling of turbulence, and the
diffusion of chemical species across cell boundaries. The
responsibility of the chemistry portion is to determine the
changes in concentration of each chemical species and en-
thalpy in response to the chemical source terms. This is
usually accomplished through the solution of a system of
coupled ordinary differential equations (ODE’s), one for
each of the chemical species and one for the enthalpy. It
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often proves to be computationally expensive depending
on the size of the reaction set and the method of solution.
Some numerical codes simultaneously solve the diffusion,
convection and chemical source terms for the species rate
equations, while others solve them sequentially, in a pro-
cedure called operator-splitting. The approach that we
formulate in this paper is suited for an operator-split cal-
culation.

Although it would appear that the CFD bears the
brunt of the computational effort, it is in fact the chem-
istry which demands the most CPU time. For example,
a 2-dimensional calculation with the CFD portion per-
forming all of the above-mentioned tasks, and with the
chemistry of a H2-air mixture, using a reaction set of 9
chemical species and 29 reactions, 85 to 90% of the CPU
time is spent on the chemistry.1 Yet this hydrogen reac-
tion set is a comparatively simple one. Considering that
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reaction sets with 500-800 chemical species are envisioned
in future studies of diesel combustion the fraction of CPU
time spent on chemistry will then be a matter of deter-
mining the number of “9”s following the decimal point in
99.9%.

A brute-force calculation with a large number of species
and reactions and wide ranges in time-scales is not prac-
tical on today’s computers. In order to reduce the sever-
ity of a brute-force approach to chemical kinetics prob-
lems varied approaches are used, often in combination
with one another, for example: 1) reduction of the reac-
tion set, both in the number of chemical species and the
number of reactions, in a systematic way after examin-
ing sensitivities and reaction fluxes;2–6 2) steady-state
and partial equilibrium approximations;7, 8 3) intrinsic
low dimensional manifolds;9 4) computational singular
perturbation;10 and 5) principal component analysis.11

These methods reduce the severity of the computational
problem, but still require the solution of differential equa-
tions.

The basic function of a chemical ODE solver is to
take a set of Ns input chemical species concentrations,
Cti , and temperature, T t, at the beginning of a time-
step, evolve them over a time interval ∆t, and return a
set of output species concentrations, Ct+∆t

i , and temper-
ature, T t+∆t. In essence it has mapped an input point,
rt(Ct1, C

t
2, . . . , C

t
Ns
, T t), in Ns + 1 dimensional space onto

an output point, rt+∆t(Ct+∆t
1 , Ct+∆t

2 , . . . , Ct+∆t
Ns

, T t+∆t),
giving the answer which corresponds to the evolution of
the system after time ∆t. Our goal is to parametrize the
numerical solutions of the ODE and replace them with
a set of algebraic expressions. The simpler algebraic ex-
pressions have a limited domain of validity. Covering all
of chemical composition space requires multiple expres-
sions, each valid over a different portion of composition
space, calculated and stored in a data structure.

Methods which retrieve and re-use existing results can
be used either independently or in combination with some
of the previous methods. A parametrization method by
itself does nothing to reduce the number of species and
reactions; however because of calculational speedup it can
make other methods unnecessary. Since most of the other
methods require some effort and intuition, it is preferable
to use the parametrization method. Past and current ap-
proaches that utilize storage and re-use of chemical cal-
culations include: 1) solution mapping5, 12 – parametriz-
ation of kinetic model output as a polynomial of input
variables developed with the computer runs arranged in
factorial designs; 2) fifth to eighth order polynomial alge-
braic representation of the ODE solutions;13 3) laminar
flamelet libraries;14 and 4) dynamically increasing ta-
ble, with calculations performed only for those parts of

chemical composition space actually visited and using lin-
ear extrapolation about the point neighborhood to obtain
solutions over a range.15, 16 In an earlier application of
the solution mapping method, the dependence of output
species concentrations was developed as a second-order
polynomial of input species concentrations using a single
response surface.12 The use of a single response surface
was possible in that case because of rather limited ranges
of species concentrations and constant reaction temper-
ature. Attempts to apply this technique to a laminar
premixed flame encountered difficulties.17

In the present work we implement a combination of
solution mapping and data structure organization of re-
sponse surfaces as a computer code we call PRISM: Piece-
wise Reusable Implementation of Solution Mapping. Second-
order polynomial expressions are used, with relatively
large regions of validity, 0.25–0.5 of an order of magni-
tude along each species concentration axis. Entries are
constructed only for those parts of chemical composition
space actually accessed by the reaction trajectory. The
latter part of the present approach has some similarity to
the approach of Pope and co-workers.15 Unique features
of our approach are that the individual data entries are
not point-slope data but a set of polynomials covering a
region of chemical composition space, and the use of dif-
ferent basic data structures. In addition, whereas existing
methods are restricted to fixed time-step ∆t, in PRISM
∆t is declared as an extra dimension in the input space
(thus now Ns +2 dimensions), included in the polynomial
expression, and treated as a variable. This is important
because most chemistry packages are subroutines of CFD
programs in which the time-step is determined by stabil-
ity criteria and hence varies from cycle to cycle.

In Section 2 we discuss in more detail the method
used to construct the polynomials, the retrieval and eval-
uation methods, as well as the data structure used. We
also discuss performance from the standpoint of accu-
racy and economy, the systematics of varying the oper-
ational parameters, and the result of applying a posteri-
ori enthalpy and elemental mass conservation to improve
the solution. In Section 3 we describe performance of
the PRISM method for three reactive flow applications,
a burn of premixed H2-air in zero spatial dimensions, a
premixed H2-air 1-dimensional laminar flame, and a non-
premixed 2-dimensional turbulent jet with coaxial H2 and
air flows. The H2-air mechanism details are shown in Ta-
ble 1. The concern is for propagation of small errors with
time, which are quantified by a comparison between the
final solutions obtained from an ODE solver and from
PRISM. Finally we provide discussion of the results and
computational speedup.
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Table 1: Hydrogen mechanism containing the reactions and Arrhenius parameters.
forward rate coefficienta

reaction A n E

2O+M ⇀↽ O2+M 1.200×1017 -1.000

O+H+M ⇀↽ OH+M 5.000×1017 -1.000

O+H2 ⇀↽ H+OH 5.000×104 2.670 6290.00

O+HO2 ⇀↽ OH+O2 2.000×1013

O+H2O2 ⇀↽ OH+HO2 9.630×106 2.000 4000.00

H+O2+M ⇀↽ HO2+M 2.800×1018 -.860

H+2O2 ⇀↽ HO2+O2 3.000×1020 -1.720

H+O2+H2O ⇀↽ HO2+H2O 9.380×1018 -.760

H+O2 ⇀↽ O+OH 8.300×1013 14413.00

2H+M ⇀↽ H2+M 1.000×1018 -1.000

2H+H2 ⇀↽ 2H2 9.000×1016 -.600

2H+H2O ⇀↽ H2+H2O 6.000×1019 -1.250

H+OH+M ⇀↽ H2O+M 2.200×1022 -2.000

H+HO2 ⇀↽ O+H2O 3.970×1012 671.00

H+HO2 ⇀↽ O2+H2 2.800×1013 1068.00

H+HO2 ⇀↽ 2OH 1.340×1014 635.00

H+H2O2 ⇀↽ HO2+H2 1.210×107 2.000 5200.00

H+H2O2 ⇀↽ OH+H2O 1.000×1013 3600.00

OH+H2 ⇀↽ H+H2O 2.160×108 1.510 3430.00

2OH(+M) ⇀↽ H2O2(+M) 7.400×1013 -.370

2OH ⇀↽ O+H2O 3.570×104 2.400 -2110.00

OH+HO2 ⇀↽ O2+H2O 2.900×1013 -500.00{
OH + H2O2

OH + H2O2

⇀↽
⇀↽

HO2 + H2O

HO2 + H2O

1.750× 1012

5.800× 1014

320.00

9560.00{
2HO2

2HO2

⇀↽
⇀↽

O2 + H2O2

O2 + H2O2

1.300× 1011

4.200× 1014

−1630.00

12000.00

a The forward rate coeffiecents k = ATne−E/RT ; R is the universal gas constant, T is the

temperature in K, the units of E are cal/mol.

2 Method

We partition chemical composition space into non-overlapping
block-shaped volumes (hypercubes), each adjacent to an-
other, with edges and corners permitted only at regular
intervals along the axes. This allows for a simple index-
ing of each hypercube, which permits fast and efficient
searching. Although hypercube placement is determined
at the beginning of a simulation, polynomial expression
calculations are performed for a hypercube only when
the reaction trajectory enters it for the first time. The
first hypercube for which polynomial expressions are con-
structed is that containing the initial point t=t0:

rt0 ≡ [Ct01 , C
t0
2 , . . . , C

t0
Ns
, T t0 ]

where Ct01 is the concentration of species 1 at time t0. Of-
ten for a few time-steps (t1=t0+∆t0, t2=t1+∆t1, t3=t2+∆t2,
. . .) the polynomials of this hypercube will map successive
points, rt1=φ(rt0 ,∆t0), rt2=φ(rt1 ,∆t1), rt3=φ(rt2 ,∆t2),. . .
all the while remaining in the same hypercube (see Fig-
ure 1 for a two dimensional example), but at some time
t = tn, the solution rtn+1 = φ(rtn ,∆tn) will fall outside

the hypercube. When this occurs we determine the loca-
tion of the hypercube where rtn+1 lies and construct poly-
nomials for it. Once constructed, hypercube and polyno-
mial information is stored in a data structure complex.
The stored data is reused by searching for an existing
entry before attempting to construct new polynomials.

2.1 Polynomial Construction

The Ns+2 dimensional space is divided into hypercubes
of a predetermined size, with one axis assigned to each
species, one to temperature, and one to the time-step ∆t.
The concentrations and the time-step are transformed
into their logarithms and temperature into its reciprocal,
reflecting the Arrhenius form of the reaction rate equa-
tion. This transformation produces a better quadratic
parametrization; for instance, use of reciprocal tempera-
ture results in error reduction of approximately 30%.

Determination of the polynomial expression begins by
locating the hypercube that contains a given input point.
Tests showed that the hypercube sides can be relatively
large, 0.25 to 0.5 of an order of magnitude in concentra-
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Figure 1: The temporal progress of a 2-dimensional reac-
tion trajectory.

tion and time-step, and 10 to 20 K for temperature. To
parametrize the response of the ODE solver, the solver
needs to be called repeatedly at selected points about
the hypercube. Each point corresponds to a set of con-
centrations, a temperature and a time-step length. The
concentrations and temperature are propagated by the
ODE solver for the length of time specified, returning a
set of concentrations and temperature.

At first glance, the number of selected points required
is 2Ns+2, a quickly intractible number for multidimen-
sional systems. However, using the methods of surface
response theory, the number of points can be reduced to
a manageable level. This is accomplished by defining the
variables along some of the dimensions as functions of
the variables along other dimensions using orthogonality.
The optimal placement of these points in our problem is
determined by the use of orthogonal composite designs
based on the 211−4

V , 211−5
IV and 211−6

IV fractional factorial
designs.18 The points are largely on corners of the hyper-
cube, with an additional point at the hypercube center
and one more outside each face, known as a star point (see
Fig. 2 for a diagramatic 3 D representation). The number
of points on the corners is specified by the superscript on
the design nomenclature. The Roman numeral subscript
is a measure of the mixing of the polynomial coefficients.
The first design, 211−4

V , has 211−4 = 128 points on the
corners. The hypercube center point and star points in-
crease this to 151. The three factorial designs specified
above use 151, 87, and 55 points, respectively. A de-
tailed example of the procedure is provided in previous
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Figure 2: A diagramatic respresentation of the points
about a hypercube used to generate the polynomials. The
circle is at the center and the crosses are the corners of
the hypercube. The star points are also shown.

work.19 Orthogonal designs have an important numerical
advantage. Determination of the polynomial expressions
from the computed data points is streamlined because the
covariance matrix is diagonal, thus avoiding the general
solution of the normal equations.

We found it useful to slightly shift the corner points
toward the hypercube center because placing a point ex-
actly at a corner wastes resources by unnecessarily parametriz-
ing space outside the physical hypercube. By trial and
error reducing the distance of these points to the hyper-
cube center by 25% maximized the accuracy.

To obtain the concentrations, Ct+∆t
i , and tempera-

ture, T t+∆t, at the end of a time-step, the construction
process results in a polynomial expression composed of
quadratic terms of each species concentration, Cti , the
temperature, T t, and time-step, ∆t. Thus the concentra-
tion of species i, Ct+∆t

i , is given by:

lnCt+∆t
i = ai,0 +

Ns∑
j

ai,j lnCtj + ai,Ns+1
1
T t

+ai,Ns+2 ln ∆t+
Ns∑
j

Ns∑
k≤j

ai,jk lnCtj lnCtk

+ai,[Ns+1][Ns+1]
1
T t
.

1
T t

+ ai,[Ns+2][Ns+2] ln ∆t . ln ∆t

+ cross terms (1)
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where ai are the polynomial coefficients determined in
this procedure. It is now possible to evaluate the Ns+1
polynomials and obtain the time evolution of any input
point within the hypercube.

2.2 Storage and Retrieval

We now organize hypercube information for placement
into a data structure for future re-use. First the hyper-
cube is indexed via the coordinates at its center (con-
centrations, temperature and ∆t) and because we have
restricted hypercubes to lie only at regular positions the
indices take simple integer values. A key is constructed by
concatenating the indices in each dimension in a way that
is reproducible and unique. The information placed in the
data structure consists of this key, the hypercube size and
position, and the polynomial coefficients for Np=Ns+1
polynomials in Nv=Ns+2 variables. These coefficients
account for the major portion of the entry size. The num-
ber of coefficients

Np ×
[
1 + (Nv) +

(Nv)(Nv + 1)
2

]
(2)

times the floating point representation size (8 bytes) makes
the entry in the order of 8 kilobytes for Ns=9.

The data structure complex consists of a memory-
resident binary search tree, a memory-resident doubly
linked list and a direct access disk file, all associated
through cross-referencing pointers. The binary tree has
at each node the key of a hypercube. During a search
for a hypercube, when a key is matched, the polynomial
coefficients are retrieved from either the memory-resident
list or the disk file. The memory-resident list feature of
PRISM was added to enhance retrieval speed as we are
working on a MPP machine (CRAY T3E) with no paging
of random access memory onto disk-resident virtual mem-
ory. Because only a limited number of hypercubes can be
held in active memory we implement an algorithm, based
on time since last use, to keep only the most-frequently
used as a memory-resident list, while the less frequently
used hypercubes slowly drift toward the tail of the list and
finally “fall off the edge.” Since copies of all hypercubes
exist on the disk file from the moment they are created,
they can always be brought back if needed. Additionally,
the hypercubes can be stored on disk between simula-
tions and reused in subsequent runs which have the same
reaction set, a substantial saving on repeat calculations.

In summary, given a point rt(C1
1 , C

t
2, . . . , C

t
Ns
, T t) and

a time-step, ∆t the PRISM procedure is comprised of the
following steps:

1. Determine within which hypercube it lies and cal-
culate the key

2. Traverse binary search tree until a successful key
match is made

3. Retrieve the coefficients from either memory or disk,
and

4. Evaluate the polynomials to obtain
rt+∆t(Ct+∆t

1 , Ct+∆t
2 , . . . , Ct+∆t

Ns
, T t+∆t) = φ(rt,∆t).

2.3 Accuracy

For our method to be useful it needs two qualities: ac-
curacy and economy. The second is quite obvious: a sig-
nificant calculational speedup is all that is required, and
we discuss this in Section 4. The question of accuracy is
more difficult to quantify. What is an acceptable error
per time-step? Do these errors propagate in simulation
time giving inaccurate results? If so, can these errors be
reduced to provide accurate results? Care must be taken
for time-dependent problems as we will not know whether
our solution is unacceptable unless it appears physically
implausible.

A measure of accuracy available at the moment of
construction would be very helpful to gauge the validity
of a hypercube’s polynomial expressions. Since we deter-
mined the exact solution at many points within the hy-
percube, we evaluated the polynomials at the same points
and obtained a mean-square difference to use as a mea-
sure of accuracy of the hypercube. This value was useful
for a coarse screening of hypercubes with poorly fitted
polynomials, however, it was not effective at smaller er-
ror levels. The use of a single mean-square value does
not provide us with an adequate quality gauge. This was
not pursued further during the current study. Instead a
conservative approach was taken, setting the operational
parameters of all hypercubes to levels where there is an
acceptable error per time-step. The procedure used to
determine the operational parameters and investigate the
errors per time-step is to first run a combustion simula-
tion with an ODE solver, and write to file thousands of
sample points in chemical composition space at the begin-
ning and end of a time-step. We then input these points
to PRISM, treating each one independently, propagating
each for just one time-step, and comparing with the ODE
solver “exact” solution. The error for the concentrations
is expressed as

(CPRISM
j −Cexact

j )

Cexact
j

with a similar expression for temperature. In this way
we isolate the error per time-step from the effects of er-
ror accumulation over time and evaluate accuracy of the
method over a large region of chemical composition space.
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Table 2: Dependence of accuracy on variation of operational parameters. Concentration bin is log10 of concentration,
eg. 0.5 implies a bin width of half an order of magnitude. T bin is in Kelvin. The ∆ quantities are relative errors, ie
((PRISM - Exact)/Exact) and are shown for temperature, one major species and one minor species. The temperature
enters the polynomials as a reciprocal in all cases except line 8 for which it is linear.

number of bin width accuracy ( × 103)
data points log10(conc) T (K) ∆T ∆H2O ∆OH

1 87 0.5 20 1.02 6.34 9.46

2 87 0.25 20 0.15 1.09 1.86
3 87 1.0 20 2.89 40.64 41.35

4 87 0.5 10 1.00 6.44 11.06
5 87 0.5 40 1.13 7.03 9.49

6 151 0.5 20 0.79 4.70 9.12
7 55 0.5 20 3.00 23.71 38.74

8 87 0.5 20 1.29 6.35 9.46

9 151 0.25 20 0.091 0.658 0.678

The factors that influence the accuracy of the poly-
nomial expression are:
Hypercube size: Accuracy improves as hypercube size
decreases and parametrization becomes more accurate.
The hypercube should be as large as possible without
accuracy being sacrificed because this reduces the total
number of hypercubes, e.g., filling a given region of space
with hypercubes of half the size would require 2Ns+2 as
many hypercubes! With respect to expense of generation
as well as storage requirements, larger sides are advan-
tageous. The trend of decreasing error with decreasing
edge size can be seen in lines 1,2, & 3 of Table 2 where
the size is varied from 0.25 to a full order of magnitude.
Independently we have varied the temperature interval,
(see lines 1,4 & 5) and see the same behaviour.
Number of points: The accuracy also depends on the
number of points used in the polynomial fitting proce-
dure. Details on the decisions that affect the number
and placement of these points are described earlier in
sub-section 2.1. Lines 1,6 & 7 of Table 2 show the degra-
dation of accuracy as the number of points is decreased.
For our 11-dimensional application we changed the num-
ber of points used and considered 151, 87 and 55 points.
Increasing from 87 to 151 points slightly improves accu-
racy, and decreasing to 55 points reduces accuracy signif-
icantly. Note that these accuracies are obtained with far
fewer than the 2Ns+2 = 2048 points that one has without
the benefit of surface response theory.
Enthalpy and elemental mass conservation: The

problems that we consider have the property of being con-
strained by conservation relations, of which we take ad-
vantage. The mapping of a point over a time-step should
conserve both total enthalpy and number of atoms of each
element involved. While the ODE solver that supplies the
points conserves these quantities very well, the resulting
fitted polynomials do not always do so. Part of the er-
ror inherent in using a parametrized polynomial may be
reduced by enforcing conservation. Our final solution is
mapped a small distance from the exact final solution.
In Ns+1 space the exact reaction trajectory of the sys-
tem will always follow a hypersurface on which enthalpy
and mass are conserved. By applying mass and enthalpy
conservation our final point is shifted back onto that hy-
persurface, not necessarily onto the exact final point but
hopefully closer to it. (We have an under-determined sys-
tem with Ns+1 variables but only Nelem+1 conservation
equations where Nelem is the number of elements in the
system.) We impose conservation after the polynomial
has been evaluated by adjusting the final values of the
species concentrations using a simple approach consist-
ing of the following steps: Set up Nelem+1 conservation
equations; allow Nelem+1 species concentrations to vary,
requiring that the remaining concentrations be constant;
and finally solve the resulting Nelem+1 simultaneous lin-
ear equations.
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3 Results

We test PRISM on three different combustion simulations
and compare the result at the end of the each simula-
tion (several milli-seconds) to that obtained from using
an ODE solver directly. All simulations use the same
8-species H2 reaction set with inert N2, (see Table 1)
evolve with time and allow for the investigation of the
temporal propagation of errors. Based on the errors in
Table 2 we have chosen a set of operational parameters
(line 9) that give an error per time-step of approximately
1.0×10−3. When constructing hypercubes we use 151
points for the polynomial fitting procedure, with hyper-
cube sides of 0.25 of order of magnitude for species con-
centrations and ∆t, and 20 K for temperature. For the
latter two simulations described below the CFD was done
with Coyote20 within which the chemistry calculation
used the DVODE differential equation solver21 and the
CHEMKIN thermodynamic library.22

3.1 Zero-Dimensional

In the first example we consider premixed combustion
that takes place purely in chemical composition space,
with zero physical dimensions so that the reaction tra-
jectory is determined solely by chemical kinetics. The
initial concentration corresponds to a mixture of stoichio-
metric H2-air with an initial temperature of 1200 K, high
enough for burning to commence. The time-step is fixed
at 1 µs. The simulation is started, the fuel is consumed
and the system comes to rest adiabatically at an equilib-
rium temperature of 2819 K after 0.1 ms (100 time-steps).
We continue the simulation for an additional 1.9 ms (1900
time-steps). Figure 3 shows the progress of the tempera-
ture and concentrations of H2O and OH with time. The
final temperatures in Fig. 3a are 2819 K and 2815 K for
PRISM and the ODE solver respectively. Similarly for
H2O in Fig. 3b the final concentrations are 2.475×10−6

and 2.480×10−6 moles/cm3 respectively. The agreement
in rise time, final temperature and concentrations, and
the fact that the final equilibrium state stays correct for
a long period indicate that errors are not accumulating
over simulation time.

3.2 1-Dimensional Laminar Flame

In the second example we consider a more complex simu-
lation that includes the influence of inter-cellular convec-
tion and diffusion: a propagating premixed laminar flame
in an open 1-dimensional tube. The physical configura-
tion is a 1 cm long (200 cells) tube, closed at one end and
open at the other end to atmospheric pressure. A small
portion of the tube near the open end is filled with hot
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Figure 3: Comparison of results from ODE solver (solid
line) to PRISM (symbol) in a zero-dimensional burn
showing the temporal progress (ms) of (a) temperature
(K), (b) one major species concentration (moles/cm3),
(c) one minor species concentration (moles/cm3), and (d)
data structure size.

burned gas, while the remainder is filled with stoichio-
metric H2-air at room temperature. A flame forms at the
interface between the two gas mixtures and propagates
toward the closed end. Panels a and b of Fig. 4 show
snap-shots of the flame front (temperature and species
concentration profiles) for both a direct ODE run and a
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PRISM run. The flame speed is reproduced very closely.
More importantly, no error accumulation is evident even
after 90,000 time-steps. We also see from Fig. 4c that
most of the required polynomials have been constructed
by the time the flame front has reached 0.2 cm (1 ms).
Thereafter, PRISM proceeds mostly by retrieving poly-
nomials from the established data structure.

3.3 2-D Axisymmetric Turbulent Jet

In the final example we have simulated a non-premixed 2-
dimensional turbulent jet with coaxial H2 and air inflows,
starting from a quiescent non-combusting state and pro-
ceeding until a quasi-steady turbulent flame is attained.
The physical configuration is a cylindrical chamber of ra-
dius 8 cm and height 20 cm, open at the top to atmo-
spheric pressure with two concentric inlets at the cen-
ter of the base. The conditions are H2 at 21 m/s and
300 K in the inner jet of radius 0.35 cm, and air at 1 m/s
and 300 K in the outer jet, which has radial extent from
0.5 to 8 cm. The chamber is initially filled with air at
1600 K to initiate combustion. We run for sufficient
time that fuel initially entering the chamber has made
a transit to the upper (exhaust) boundary, and until the
quasi-steady state is reached. The elapsed problem time
is about 275 ms. Once again the direct ODE is compared
to PRISM. The emphasis is on the similarity between
ODE and PRISM profiles, and not on any features of
the profiles themselves, which are a result of our physical
configuration and initial conditions. Panels a and b of
Fig. 5 show a snapshot of the profiles of temperature and
several species from the direct ODE solver and PRISM.
This profile is taken at a horizontal slice half-way up the
chamber, at an intermediate time of 45 ms. Figure 5c
shows the time variation of major species concentrations
from 0 to 275 ms taken at a sample point midway up the
chamber. The agreement again is very good. The overall
ranges in species concentrations that occurred over the
duration of this simulation are shown on Fig. 6. The pre-
diction of PRISM follows that of the ODE solver over
time across 5–6 orders of magnitude. The growth of the
data structure (Fig. 5d) levels off at about 150 ms with
a size of 140000 entries, 125 ms before steady state is
reached.

4 Discussion

For the PRISM method to be successfully used in chemi-
cal kinetic calculations, it requires ease of setup, accuracy,
and run-time economy.
Ease of setup: The computer codes have been writ-
ten modularly and documented with the expectation of
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Figure 4: Comparison of results from ODE solver (solid
line) to PRISM (symbol) in a 1-D laminar flame tube
showing the temporal progress of the flame front by ob-
serving the (a) temperature (K) profile and (b) H2O
mass-fraction profile. (c) The size of the data structure
vs simulation time (seconds) is also plotted.

future improvement and inclusion of interfaces to generic
operator-split CFD codes.
Accuracy: The results of Section 3 make it evident that
a full turbulent initial condition simulation can be run
for 275 ms without perceptible differences. We see from
Fig. 5c that species concentrations begin to deviate from
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Figure 5: Comparison of results from ODE solver (solid
line) to PRISM (symbols) in a 2-D turbulent jet. (a),(b)
Profile snapshots of temperature (K) and several species
mass-fractions taken at a horizontal slice midway up the
chamber at time=45 ms. (c) Time variation (seconds) of
major species concentrations (g/cm3) taken at a sample
point midway up the chamber. (d) Size of data structure
vs simulation time (seconds) (e) CPU time (seconds) per
cycle vs simulation time (seconds) over the course of an
ODE run and 2 PRISM runs.
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the ODE solution only at orders of 1.0×10−10 g/cm3.
Run-time economy: Whether the method is economi-
cal or not entails weighing the expense of using an ODE
solver against factors such as the expense of the construc-
tion of the polynomials, the retrieval time, the evalua-
tion time, and the re-use of existing polynomials. There
is the additional question of whether a particular com-
bustion simulation is to be run repeatedly with a few
CFD parameter changes between runs. In such a case,
a data structure written to disk would be read back and
re-used. Below we present some benchmarks for the 9-
species H2 reaction set, run on a single Alpha processor
of a Cray T3E:

The construction expense has contributions from re-
peatedly calling the ODE solver for all the points as
well as the parametrization and storage of the coeffi-
cients. The mean CPU time for one ODE solver call
is 3.7×10−3 seconds. The mean CPU time for generating
and storing one hypercube is about 1 sec if 87 ODE calls
are made and 1.7 sec for 151 ODE calls.

Retrieval consists of searching the binary tree for the
correct hypercube and then recalling its polynomial coef-
ficients from either the memory-resident list or the direct-
access file. A disk file access incurs a real-time penalty
which cannot be seen in the CPU numbers. This de-
pends on the system load from other users and can take
between a factor of 4 to 400 times longer than a memory
load. The memory-resident list is sufficiently large that
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disk accesses are few. We find that CPU time used has
only a weak dependence on the depth of the binary search
tree: 0.25×10−3 + 1.5×10−6 NL where NL is the number
of tree levels descended. The tree search does not con-
sume significant CPU time until NL approaches 100. A
perfectly balanced binary tree with Ntot nodes will have
about NL ≈ log2Ntot. In the turbulent jet case a balanced
tree depth would have been log2140000 ≈ 17. In practice
the tree is not balanced (perfect balance would require
that nodes be added to the tree in a unique sequence)
hence we periodically call a procedure to dynamically re-
balance the tree when NL exceeds log2Ntot significantly.

Evaluation of the polynomial is done by the algebraic
calculation of Equation 1 followed by the mass/enthalpy
conservation calculation. The mean CPU time for re-
trieval and evaluation is 0.4×10−3 seconds of which one
quarter of the time is used by the mass conservation cal-
culation.

Currently we have a factor of 3.7×10−3÷ 0.4×10−3 ≈
9 decrease in CPU time over the ODE solver per calcula-
tion. Combining this information with the construction
cost, to be economical in a single run, the average re-use
of hypercubes needs to be about 300 before the construc-
tion cost is recouped, a figure which we easily meet in
our applications. Average re-use was 8000 for the lami-
nar flame and 7000 for the turbulent jet. Repeated runs
that make use of the existing hypercubes have even bet-
ter CPU economy. Figure 5e compares the CPU time
used per cycle summed over 1500 CFD cells for an ODE
run and two PRISM runs. PRISM Run 1 is started with
no pre-existing hypercubes, i.e. all hypercubes need to be
generated during the run. Run 2 is a repeat of the sim-
ulation that re-uses the hypercubes generated by Run 1.
The ODE chemical calculation is more or less constant
at 4 s per cycle. In Run 1, chemistry is more expensive
in the beginning but after 20 ms of simulation time it be-
comes more economical, even though the data structure
(Fig. 5d) has only reached one third of its final size. By
150 ms it uses 0.4 s of CPU time per cycle. Run 2 reads in
the data structure disk file generated by Run 1. In prin-
ciple these hypercubes should be sufficient for a repeat
of the simulation, however because of errors, the reac-
tion trajectory wanders into parts of chemical composi-
tion space that it had not visited during Run 1. Thus, for
Run 2, generation of a few new hypercubes raises mean
CPU usage to 0.8 s, that drops to 0.4 s later in the run.
This wandering did not affect the accuracy of the results.
A comparison of the areas under the various curves in
Fig. 5e gives a good idea of the economy of the PRISM
chemistry. The overall economy including the cost of the
CFD (0.6 s per cycle) is 4.0 + 0.6 = 4.6 s for the ODE
case, and 0.6 + 0.6 = 1.2 s for Run 2, a factor of four.

A discussion on economy would not be complete with-
out mention of memory used by the data structure. A
stored hypercube uses about 8KB of memory, mostly used
for polynomial coefficients. This can be reduced by a fac-
tor of two by using 4-bytes of storage per word. At 7
significant digits the accuracy will not be degraded. At
the end of the turbulent jet simulation the data struc-
ture contained 140000 hypercubes using about 1 giga-
byte of disk space, which at US$20/GB is quite man-
ageable. We allowed the most frequently used 15000 hy-
percubes to be memory-resident (120 MByte) which is
what our available processor permitted. The advantage
of dynamically growing the data structure for only those
portions of chemical composition space actually needed
is seen from Fig. 6 which shows the ranges in concentra-
tion observed for each simulation for each species. If a
multi-dimensional “box” was made from these ranges and
filled with hypercubes it would need on the order of 1012

hypercubes instead of the 140000 used for the turbulent
jet case.

The method of using piecewise solution mapping in a
10 dimensional chemical composition space to reproduce
the result of an ODE system for a complex, time-evolving
combustion system, encompassing a wide range of con-
centrations and temperatures provides an accurate and
economical result. The method is particularly attractive
in cases where a series of CFD simulations are required,
differing only slightly in a few parameters, so that an ex-
isting data structure can be reused many times.
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