

PRISM: Platform for Remote Sensing using Smartphones

Tathagata Das Microsoft Research India Bangalore 560080, India tathadas@microsoft.com

Prashanth Mohan
University of California, Berkeley
Berkeley, CA 94720, USA
prmohan@cs.berkeley.edu

Venkata N. Padmanabhan Microsoft Research India Bangalore 560080, India padmnab@microsoft.com Ramachandran Ramjee Microsoft Research India Bangalore 560080, India ramjee@microsoft.com Asankhaya Sharma

Microsoft India Development Center Hyderabad 500046, India asankhs@microsoft.com

3/8/2011 - Steve Kopman

- PRISM Platform for Remote Sensing using Smartphones
- Generic framework that balances generality, security and scalability
- Applications run within PRISM from executable binaries
- Applications are pushed to an appropriate set of users
- Applications run in a sandbox and utilize resource metering and forced amnesia

- Current research focuses on "community sensing"
 - Include computing and communication capabilities as well as sensors (GPS, microphone, etc)
- Two types
 - Participatory
 - Require user actions (e.g. taking photograph)
 - Opportunistic
 - No user action required (e.g. GPS tracking)

- Goal is to reduce application developers need to "reinvent the wheel"
- Three main goals
 - Generality
 - Support a wide range of applications with flexibility to reuse existing code
 - Security
 - Ensure that phones remain secure and that applications do not misuse sensitive sensor data
 - Scalability
 - Allow the system to scale to large (>100,000) number of devices

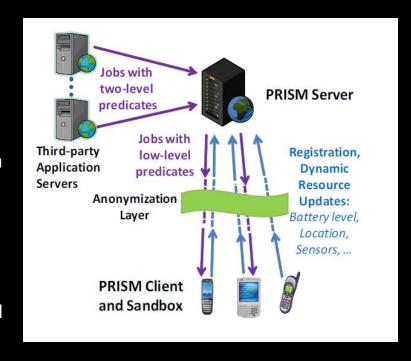
- In addition to standard SW sandboxing, three PRISM specific features are utilized to provide security
- Resource Metering
 - Limits the amount of battery energy an application can consume
 - Limits the "leakage" of sensitive sensor data
- Forced Amnesia
 - Does not allow sensing applications to maintain longterm state info
- Sensor Taint Tracking and Access Control
 - Allows the user to set policies on what applications can do

Implementation Overview

- Currently runs on Windows Mobile
 - Interesting choice since this is an obsolete platform
- Infrastructure components run on Windows 7
- Three implemented applications "showcase" the generality of the PRISM Platform
 - Citizen Journalist
 - Participatory, alerts users based on GPS location when to take pictures
 - Party Thermometer
 - Allows users to query other users to determine how "hot" the party is
 - Senses music to target users that are in a party
 - Road Bump Monitor
 - Opportunistic sensing to locate and detect road bumps

System	Generality	Security	Scalability	Privacy
Bubble-Sensing	No	Yes	Yes	Yes
AnonySense	OK	Yes	No	Yes
Micro-Blog	No	Yes	Yes	No
PRISM	Yes	Yes	Yes	Ok

	AnonySense	PRISM
Application Language	Constrained, AnonyTL	Runs Generic Binaries
Privacy	Uses "pull" approach; does not reveal nodes position in infrastructure	Uses "push" approach; Allows limited tracking of nodes
Sandbox applications	No	Yes


Assumptions

- Users trust the PRISM application and install it on their mobile devices
- Entities that submit applications have identities certified by a trusted authority
- Participating nodes, the OS on the phone and standard OS mechanisms a re trusted
- Nodes have Wireless Wide Area Network (WWAN) access

- Application server (supplied by third parties)
 - Submits jobs to PRISM servers, for deployment onto a desired set of mobile phones
- PRISM server
 - accepts jobs from the application servers and deploys them onto an appropriate set of mobile phones
- PRISM client and sandbox on mobile
 - registers with PRISM servers and supports the execution of the jobs in a specially designed sandbox

- Push-based systems do not require the user or phone to retrieve data from the server
- The server sends data to the phone and provides the following benefits
 - Fast response by tracking phone resources and sending applications immediately when the phone is available
 - Efficiency by eliminating the need for each application to track a phone's resources
 - Scalability Amount of tracking can be modulate to the load of application arrivals and the density of available phones

- Used to track a phone's resources
 - Resource loading is maintained as soft-state and expires after the registration period
 - Authors used one hour to balance privacy and overhead
 - Tracks both static, such as sensors and radios, and dynamic, such as battery and location, resource information
- PRISM, unlike AnonySense, uses a push method that requires tracking of users
 - Tracks users during the registration period only
 - Re-registration occurs after phones wait for a random time
 - Employs independent anonymization service to protect against tracking between registrations

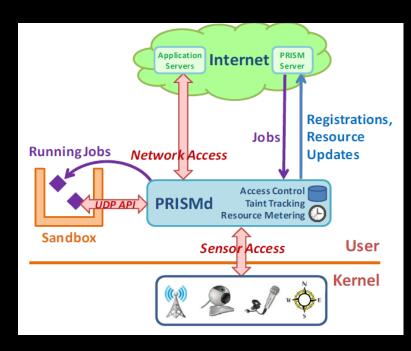
- Designed to allow the server to quickly and accurately identify phones to run the application
- Identification uses a two-level predicate mechanism
 - Top-level is coarse grained and identifies phones where jobs are deployed but not activated
 - Low-level is fine-grained and determines when to activate applications
 - Implemented to reduce the phone's fine-grain updates to the server, to ensure that the sensing opportunity is not missed and to reduce the risk of spam.

- Specifies the number of phones needed, the capabilities of the phones and their coarse grained location
- Server can either supply an application for each hardware/OS platform or use the hardware/OS platform as part of the search criteria

- Can consist of locations or be based on derived attributes
 - Example is speed
- Includes a time-out parameter which determines how long the client monitors for a match to the fine-grain predicate

- Two Types
 - Deploy-or-cancel
 - Deploys the application as soon as a top-level predicate is matched
 - Good when a "large" area is specified for the toplevel predicate
 - Trigger
 - Application Server sets a trigger with the PRISM server for the desired predicate
 - Good for low-density regions

- Mobile client update messages to the server are overhead and need to be reduced
- Two techniques proposed
 - Adaptive Updates
 - $p = min(1, \rho * n/N)$
 - Each client is notified with a parameter p at registration
 - ρ = job arrival rate, n = avg. # of phones requested by a job, N = total # of registered phones
 - The client sends updates with a probability of p that can be adjusted if there is a large # of phones (N) or if there is little application demand (ρ * n)



- Prediction-based Suppression
 - Mobile and server run identical predictors for each resource
 - Mobile only sends updates when the dynamic sensor status has changed significantly from the predictor
 - Two Types
 - Constant Predictor
 - The predictor predicts the new value is the same or "close"
 - Affine Predictor
 - Predicts the new value as an affine function of a quantity (e.g. time) that is shared by the server and client
 - Good for battery energy because exact tracking is not needed

Software Sandbox

- Provides the application binary a standard API to communicate with the PRISMd daemon.
 - Daemon controls access to sensors
- Additional security features including Sensor Access Control, Resource Metering and Forced Amnesia are also used to mitigate privacy risks

Sensor Access Control

- Three policies
 - No sensors
 - Application does not have access to the sensors however the PRISM runtime does have access to the location information
 - Useful with "human" sensor applications
 - Location Only
 - All Sensors
- Sensor Taint Tracking
 - Alternative to coarse-grained policies
 - Diminishes the ability of an application to process or transmit sensitive data
 - Example An app that uses the microphone is tainted with microphone data that is sensitive

- Applications should not drain the battery
 - User is a participant in community sensing project and does not want detrimental affects on their device
- PRISMd mediates access to sensors, tracks resource usage and limits access by not sending up sensor data
- CPU and memory utilization are monitored
 - Applications that exceed their allocation are terminated
- Energy Metering
 - Accomplished by using a simple linear function of the amount of time a resource is busy and the number of data reads/writes
 - Measured actively to ensure resources are not overused
- Bandwidth Metering
 - Limited for privacy and cost (tariffs for data)

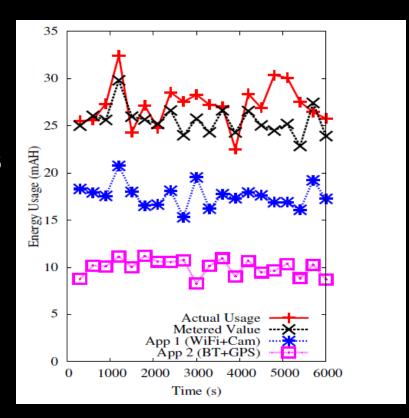
- Bandwidth Metering limits the amount of traffic an application can use
 - Increases privacy by not allowing large amounts of sensitive data to be exported
- What if application buffers the data and sends it out over a period of time?
 - Forced Amnesia clears the state of an application after a fixed period of time (i.e. 1 minute)
 - Most applications are not performing long computations so there is no ill effect

Computing Resources

- 15 Smartphones running Windows Mobile 5.0 or 6.1
 - NOTE: Windows Mobile is a significantly obsolete OS, but research was done by Microsoft
 - All of the phones had GPS, camera, microphone, 802.11b, Bluetooth, and GPRS/EDGE/3G Radios
 - Three phones had external accelerometer sensors attached
- Infrastructure components run on Win7

PRISM Infrastructural and Mobile Phone Components

- Infrastructure
 - Prototyped two-level predicate-based API and deploy-or-cancel and trigger modes
- Mobile Phone
 - Comprises of software sandbox
 - Includes the PRISMd daemon and the system call interposition layer (shim)
 - System call interposition is applied to block network communications except to PRISMd, device access (ioctl), registry access, spawning of child processes and file system calls that return a handle



Energy Metering

- Emulated two applications
 - One cycles through using the camera sensor, performing Wi-Fi scans
 - The second uses the GPS and performs Bluetooth scans
- Linear model tracks actual usage but undershoots on the applications due to system related power that isn't metered by PRISMd

- PRISMd mediates access to the mobile's sensors and needs to have a minimal impact on the system resources
- Used GPS and Microphone sensors to estimate overhead

	Direct	Via PRISMd	Overhead
GPS	804.3 mW	821.2 mW	2.10%
Mic	312.6 mW	315.0 mW	0.76%

- Three applications were implemented
 - Citizen Journalist
 - Participatory, alerts users based on GPS location when to take pictures
 - Party Thermometer
 - Allows users to query other users to determine how "hot" the party is
 - Senses music to target users that are in a party
 - Road Bump Monitor
 - Opportunistic sensing to locate and detect road bumps

- Application sends alert to human users to take a picture or answer a query when they enter a specified location
 - Both high and low latency queries are implemented
- Location is specified by latitude/longitude with a coarsegrained radius for deployment and fine-grained radius for execution
- Benchmarking (35kB executable)
 - Fine-Grained Radius of 30m
 - Black = no success, Grey = partial success

Coarse-grain Radius →	30	m	75	5m	125	m
Network →	2G	3G	2G	3G	2G	3G
User Speed ↓						
Walking (4kmph)	5/5	5/5	5/5	5/5		
Driving (30kmph)			5/5	5/5		
Driving (40kmph)				5/5	2/5	5/5
Driving (50kmph)				3/5		5/5

- Notes on benchmarking
 - 2G networks with a 30m coarse-grained radius often launched the app past the center point of interest
 - Larger coarse-grained radius of 75m is needed for pedestrians on 2G networks
 - 3G networks yield higher success rates due to lower latency and higher bandwidth
 - Coarse-grained radius needs to increase with user speed

Citizen Journalist

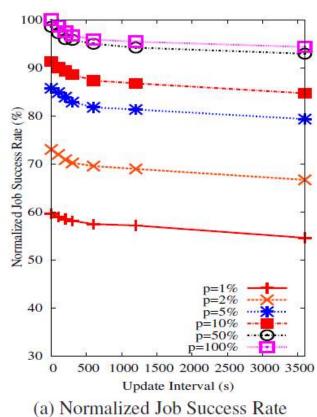
- Small-scale Pilot Deployment
 - Ten users, including three of the authors
 - Used 2G phones with GPRS
 - Total of 30 target locations within the vicinity of the Microsoft Research India lab in Bangalore
 - Fine-grained radius of 30m, Coarse-grained of 75m (speed limit was < 30kmph)
 - Application could be cancelled by user either by ignoring the phone ringing or manually cancelling it

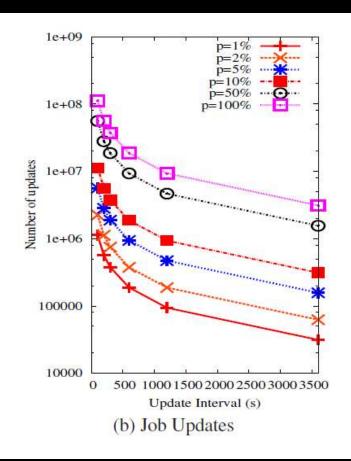
- Results
 - Response time (including deployment) averaged 46s
 - Normalized deployment distance average (relative to coarse-grained radii) was 71%
 - Server does not have precise GPS info
 - Normalized launch distance average (relative to finegrained radii) was 83%
 - Mobile knows precise GPS location

Item	Count
Deployed	417
Launched	274
Total Responses	235
Response Time in seconds (avg., max)	46, 149
Photo Responses	141
Total Cancelled	38
Cancelled (TooFarAway)	9
Normalized Deployed Distance (avg., max)	71%, 443%
Normalized Launched Distance (avg., max)	83%, 100%

- Human-query application to determine if the party is "hot"
- Detects music using microphone application
 - User must be stationary
 - Top-level predicate is a building to limit battery usage
 - Uses a FFT of the audio samples to examine spikes in the frequency domain for harmonics
 - This is the second-level predicate
- Limited testing
 - Verified that is was only deployed to users in the target location and that the music detection worked

- Opportunistic sensing application
- Uses GPS and accelerometer to detects "bumps" in road
- Used a 2.5km long drive through a neighborhood
- 9 bumps, 6 correct within 12m of ground truth




- Simulated a larger scale deployment
- Two key metrics to balance efficiency in resource updates and balancing the needs of applications
 - Total number of resource updates
 - Normalized job success rate
- As expected, smaller update interval the greater the success rate
 - Update interval of 100s yields a success rate within 2% of optimal

Scalability

- Presented a platform for participatory and opportunistic sensing
 - Uses "push" model
- Focused on scalability, security and resource utilization
- Utilizes a sandbox to protect user privacy

