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Abstract

This paper addresses the problem of object detection by means of the Generalised
Hough transform paradigm. The Implicit Shape Model (ISM) is a well-known approach
based on this idea. It made this paradigm popular and has been adopted many times.
Although the algorithm exhibits robust detection performance, its description, i.e. its
probabilistic model, involves arguments which are unsatisfactory from a probabilistic
standpoint. We propose a framework which overcomes these problems and gives a
sound justification to the voting procedure. Furthermore, our framework allows for a
formal understanding of the heuristic of soft-matching commonly used in visual vocabu-
lary systems. We show that it is sufficient to use soft-matching during learning only and
to perform fast nearest neighbour matching at recognition time (where speed is of prime
importance). Our implementation is based on Gaussian Mixture Models (instead of ker-
nel density estimators as with ISM) which lead to a fast gradient-based object detector.

1 Introduction

Most current state-of-the-art object detectors are based on either the sliding-window [6, 7,
8, 19, 25, 27] or the Hough transform [1, 14, 17, 18, 23] paradigm. The former considers
all possible sub-windows of an image and a classifier decides whether they contain an object
of interest or not. For reasons of efficiency, mostly linear classifiers are used (a fast non-
linear approach has been presented recently [19]) and advanced search schemes have been
designed to overcome exhaustive search [12].

The second aforementioned paradigm is inspired by the Generalised Hough Transform
(GHT) [1]. GHT was introduced for finding shapes other than lines. Recent work has shown
how the underlying idea can be extended to object category detection from local features
[14]. It is this extended form which we refer to in this paper. Processing starts with local fea-
ture extraction and each feature subsequently casts probabilistic votes for possible object po-
sitions, where the hypothesis score is obtained as sum over all votes. Such bottom-up voting
schemes seem to be more natural than an exhaustive sliding-window search. Indeed, object
class detectors based on this idea, first introduced by ISM [14], have become increasingly
popular and similar ideas have been adopted in various approaches [4, 10, 17, 18, 23]. How-
ever, we argue that the commonly used ISM formalism is unsatisfactory from a probabilistic
point of view. In particular, the summation of feature likelihoods is explained by marginal-

isation over features. This argument implies that all features are possible realisations of a
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single random variable and, thus, only one feature could really be observed. However, we
do observe all features concurrently. Thus, the argument is not convincing. Nevertheless,
ISM empirically demonstrates robust detection performance. Furthermore, the summation
is crucial for the voting paradigm. Hence, the question is: “How else can this summation be
justified?”. In this paper, we propose a new framework which connects the sliding-window
and the Hough paradigms, thereby giving a sound answer to this question.

The central aspect of our framework is to consider the sliding-window and the Hough
paradigms as two sides of the same coin. This duality is then exploited to define the object
score from a sliding-window point of view, while the actual evaluation follows the Hough
paradigm. The core idea is to compute a (visual) footprint of an object that is compared to an
object model. This footprint represents all features in a canonical reference frame. Contrary
to classical histogram-based approaches [6, 12], we keep a feature-centric view inspired by
the Hough-transform. As such, it is structurally similar to the Implicit Shape Model (ISM)
[14], but overcomes various of its deficiencies (due to the sliding-window based reasoning)
which we will discuss.

In Sec. 3, we derive a concrete object detection system from our framework. Our training
procedure is closely related to the ideas of ISM, i.e., the estimation of spatial occurrence
distributions of visual words. We show how pure ISM can be modelled within our framework
and we thus make direct comparison possible. However, we estimate these spatial occurrence
distributions with Gaussian Mixture Models (GMMs), thereby avoiding the unfavourable
scaling behaviour of the non-parametric kernel density estimators used in ISM. Hence, object
localisation can be performed by means of efficient gradient-based search (similar to mean-
shift in ISM). Such a local refinement strategy may be of particular interest if one already
has prior knowledge about objects (e.g. from object tracking). We demonstrate that the
semi-parametric model makes it possible to speed up the search with no, or only little loss
of accuracy.

Finally, Sec. 4 deals with the common practise of soft-matching for feature quantisation.
We establish a formal understanding of this heuristic within our framework. As a result, we
show that soft-matching can be moved entirely to the training stage, allowing for fast nearest
neighbour matching during recognition.

2 The Framework

The task of object detection can be formulated as a search problem. Given a newly ob-
served image I and a trained object model W , the goal is to find the best hypothesis λ ∗ =
argmaxλ∈Λ S(λ |I,W ), where S is a score function and Λ is the search space of all potential
object hypotheses. As the search space is rather large, finding the best-scoring hypothesis
quickly is of great importance. The structure of S plays an important role when it comes
to defining efficient search algorithms. We believe that feature-centric scores (as introduced
in ISM [14]) offer a powerful approach. In such a framework, local features are matched
to a visual vocabulary and cast votes for possible object positions (the score being the sum
of votes). However, ISM’s probabilistic model has various shortcomings and also does not
allow for discriminative learning. We will now present a framework which overcomes these
problems. We follow a sliding-window based reasoning and derive a feature-centric score
from that. Fig. 1 supports the following derivations in graphical form. ISM’s shortcomings
as well as the connection between the sliding-window and the Hough paradigms will be
discussed thereafter.
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Figure 1: PRISM: From the Sliding-Window (left) to the Hough Transform paradigm (right). 1D ex-

ample with two visual words (blue rectangle, cyan circle). A footprint (a) gets extracted for a fixed

hypothesis λ ∗ (red). The inner product with the weight function (b) results in a sum of point evalua-

tions (red dots). Various features do not affect the score (shaded). Each extracted feature (c) casts a

voting pattern (d) which, summed up, result in the final hypothesis score (e).

2.1 Score Function
The central element of our framework is a footprint φ(λ , I) for a given object hypothesis λ
extracted from the image I. This footprint represents all detected features in a canonical ref-
erence frame and, thus, describes an object independent of its location and scale in the image.
Essentially, it crops out a sub-image which is the key idea of the sliding-window paradigm.
Using a linear model, which is compulsory for the Hough transform, the hypothesis score is
computed by the inner product

S(λ |I,W ) = 〈φ(λ , I),W 〉 (1)

of the footprint and a weight function W , i.e., the object model. Classical sliding-window
detectors [6, 7, 12] represent all features in an object-centric coordinate frame. Often, the
relative position is discretised which leads to a histogram representation [6] for φ and W .
Contrary to previous work, we focus on the definition of the mapping function φ and avoid
the discretisation. This allows us to switch (from the sliding-window standpoint) to a feature-
driven Hough-transform view, which is central to our framework.

Image/Object representation. Before introducing the footprint we should specify the
image representation and hypothesis parametrisation. For the image representation we ex-
tract a set of local features F [20]. Each feature is characterised by a descriptor, position,
and scale, i.e., f = ( fc, fx, fy, fs). Additionally, a feature weight fω > 0 may be defined. In
the remainder, we use Shape-Context [21] features (computed around Hessian-Laplace inter-
est points [20]) and fc is an index to the best-matching visual word in a learned vocabulary.
As object parametrisation we use λ = (λx,λy,λs), i.e., the object’s position and size, resp.

Invariant Space. It is important to define an invariant, which relates the position of
a feature and the target object in an invariant manner. It is the building block from which
the final detector inherits its invariance properties (e.g. shift- and scale-invariance). Possible
mappings of the observables (λ , f ) into a x-translation- and scale-invariant space are

I f (λ , f ) =

[
λx − fx

fs

, log
λs

fs

]

, Iλ (λ , f ) =

[
fx −λx

λs

, log
fs

λs

]

. (2)

For brevity’s sake, we dropped the y-coordinate as it is analogous to x. In this definition,
I f considers a feature-centric coordinate frame, while the Iλ opts for an object-centric one.
Using the logarithm accounts for the multiplicative nature of the scale ratio and will be
helpful later. The difference of object and feature location relates the two invariants i.e.,

(
fsI f ,x

I f ,s

)

︸ ︷︷ ︸

=

(
λx − fx

logλs − log fs

)

︸ ︷︷ ︸

= −

(
λsIλ ,x

Iλ ,s

)

,

︸ ︷︷ ︸
de f
= I f ( f ) λ − f

de f
= Iλ (λ )

(3)
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Figure 2: Analysis of deformations caused during the Hough voting process. Approaches which use

invariant Iλ (left, middle) or I f (middle, right) are shown. The middle frame shows the contour lines

of a single Gaussian of a learned mixture model. The left (right) frame depicts the hypothesis space

along with the position of two features (dots). Given a feature, the Gaussian (in the invariant space)

can be mapped into the hypothesis space. This is the act of voting. This mapping strongly depends

on the chosen invariant. In case of I f , the resulting contours are still elliptic (i.e., again a Gaussian),

while Iλ leads to complicated, non-linear distortions.

where the subscripts x and s refer to the first and second coordinate of the invariants, respec-
tively. Despite the close relation, there is a subtle difference due to the dependency on fs or
λs, which suggests the preferable usage: predicting objects λ ∼ I f ( f )+ f given a feature f

or sampling features f ∼ Iλ (λ )+ λ to verify an object hypothesis λ . The former approach
is taken by the Generalised Hough Transform (e.g. [1, 14]), while the latter corresponds to
a sliding window classifier scenario (e.g., [6, 12]). The converse use is unfavourable, due to
complicated couplings (e.g., fx = λx −λs exp(−I f ,s)I f ,x), but not impossible (see Fig. 2).

Footprint. Given an invariant I, we define the joint mapping of an object-feature pair
(λ , f ) as a weighted Dirac delta function fω δ fc,I(λ , f ) which is zero everywhere but at the
4D-point [ fc,I(λ , f )], and which integrates to fω . The object footprint is the superposition
of all features,

φ(λ , I) = ∑
f∈F

fω δ fc,I(λ , f ). (4)

In classical sliding-window systems, this 4D function is discretised and represented by a
histogram. We avoid the discretisation and plug it directly into the score (Eq. (1)). Thus, the
inner product of the two functions evaluates as

〈φ(λ , I),W 〉 = ∑
f∈F

fωW ( fc,I(λ , f )), (5)

i.e., as point evaluations of the weight function. This form makes the connection to the
feature-driven Hough-transform explicit. The summand fωW ( fc,I(·, f )) represents the “vote”
cast by each feature. Although no longer really visible, this formulation is equivalent to a
standard sliding-window classifier (e.g., [6]) when considering the object-centric invariant Iλ

and a histogram for W . Note that we are however not restricted to this choice and even more
general invariants than Eq. (2) are possible. They may account for e.g. variable aspect ratio,
view-point changes, etc. A nice property of our framework is that the modelling of such
geometric transformations is made explicit (i.e., through the definition of I) and decoupled
from the rest of the system.

Non-Contributing Features. Objects have a finite extent. Thus, the weight function W

has a compact support and is zero outside that range. As a consequence, many (far away)
features do not contribute to the score, i.e., W ( fc,I(λ , f )) = 0. In practice, identifying and
excluding such features reduces runtime significantly. Doing that properly is not a detail, but
an important aspect of an algorithm. As it strongly depends on the representation of W , we
postpone further discussions to Sec. 3.



LEHMANN, LEIBE, VAN GOOL: PRISM: PRINCIPLED IMPLICIT SHAPE MODEL 5

Sliding Window Hough Transform
for λ ∈ Λ

for f ∈{W̄ (λ , f ) 6= 0}
S(λ )+=W̄ (λ , f )

end

end

for f ∈ F

for λ ∈{W̄ (λ , f ) 6= 0}
S(λ )+=W̄ (λ , f )

end

end

Figure 3: Pseudo-code for sliding-window and Hough transform. We use the shortcut W̄ (λ , f ) :=
W ( fc,I(λ , f )). Sliding-window detectors process all hypotheses sequentially. For each hypothesis, the

entire score function is evaluated at once which involves finding contributing features. Contrarily, the

Hough transform is feature driven and processes all objects in parallel: each feature adds its non-zero

contributions to the corresponding objects, i.e., an accumulation of voting patterns in the search space.

2.2 Discussion

Bottom-up? Sliding-Window vs. Hough-Transform. Often, sliding-window detec-
tors are considered fundamentally different from Hough-transform approaches. The former
reasons top-down, while the latter is assumed to work bottom-up. An attempt to relate the
two concepts has also been investigated by Williams et al. [28], but their approach relies
on a Taylor approximation. In our framework, the duality of the two approaches emerges
naturally, as can be seen from Eq. (5). The left hand side represents the object-centric view
taken by sliding-window detectors. There, the complete footprint φ (usually a histogram) is
extracted and compared to the model. The right hand side expresses the feature-centric for-
mulation of Hough-transform based systems. Note that both views are equivalent. The actual
difference is more of an algorithmic nature, i.e., how the score is evaluated for all possible
object hypotheses. This difference can be explained by an interchange of loops as illustrated
in Fig. 3. Thus, in our opinion, both approaches follow the same top-down reasoning and
only feature extraction (as pre-processing) should be seen as a bottom-up process.

Implicit Shape Model (ISM) [14]. The score function of the Implicit Shape Model
(ISM) [14] (without the Minimum Description Length (MDL) post-processing) is defined as
a probability density over the whole search space, i.e.

p(λ |I) = ∑
f∈F

p(λ | f )p( f |I). (6)

As mentioned in the introduction, this formulation bears various problems which we will
discuss now. We argue that marginalisation is not justified. It implies that all features f are
possible realisations of a single random variable. Hence, only one feature could actually be
observed. However, we do observe all features concurrently. Thus, each feature should be
modelled with a separate random variable, i.e., p(λ , f1, f2, . . . fn), as done correctly in other
probabilistic setups [26]. For tractability, features are assumed to be independent which then
leads to the factorisation p(λ )∏i p( fi|λ ), i.e., a multiplicative combination instead of the
additive one of ISM. The summation is however crucial for the voting concept. Moreover, as
pointed out by Kittler et al. [11], additive combination of evidence is more robust than mul-
tiplicative ones, which is in line with the empirically observed robust detection performance
of ISM. Thus, the question is then how to still justify the summation. A second problem is
due to the normalisation constraint of the density p(λ |I). This (global) normalisation im-
plies that every feature affects the score of every hypothesis. Unless contextual information
is explicitly modelled (which is not the case), such long-range interactions are not justified.

Our framework overcomes these issues by reasoning in a sliding-window manner. Each
hypothesis is scored independently, i.e., there is no global normalisation, and the compact
support of W ensures that the features have only local influence. The summation of feature
contributions results from the definition of the footprint and the linear model (which both are
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valid modelling choices). Last but not least, notice that there is no restriction on the function
W . Thus, we are free to choose any suitable representation and learning algorithm. In partic-
ular, discriminative learning (e.g. with SVMs, c.f . [13]) may be used which was not possible
in the ISM. An extension to ISM which allows for discriminative learning has also been pre-
sented in [18]. However, our framework is more general in two ways. Their discriminative
learning is restricted to a per-visual-word re-weighting (i.e., all spatial positions encounter
the same re-weighting) and the final weights remain positive. Moreover, they also adopt the
questionable marginalisation argument. In our framework, the only restriction is that the
features contribute linearly which is inherent in the Hough transform paradigm. However,
this is not a huge burden since most (fast) detectors rely on linear models [6, 7, 12, 14].

Multiple Objects. Detection of multiple objects is another point where, in our opinion,
the sliding-window reasoning (underlying our framework) is cleaner. Eq. (6) (i.e., ISM with-
out MDL) answers the question “Where is the object?” and completely ignores the important
questions “Is there an object?”1 or “How many objects are there?”. Sliding-window reason-
ing on the other hand answers for each position independently if it contains an object or not,
and postpones model selection (i.e. “How many objects are there?”) to later components
in the object detection pipeline. Thus, sliding-window allows for multiple detections, but
it does not account for already explained evidence. Hence, it tends to re-detect the same
object. A possible way to resolve this problem is to limit each feature to support only one
single object. In this work, we consider a greedy strategy: once the best object is found we
eliminate all features which explain this object and restart the search for more objects. This
procedure automatically suppresses the score of nearby hypotheses and relates to the usual
non-maximum suppression post-processing. Clearly, the MDL based optimisation strategy
implemented in ISM [14] is more powerful as all hypotheses compete for evidence. This is
an advantage in situations with strongly overlapping objects. However, MDL is applied as
post-processing and only considers hypotheses found by greedy detection.

3 Gaussian Mixture Model & Gradient Search

So far, we have presented an abstract framework. A concrete system is obtained by specify-
ing the geometric invariant and the representation of the weight function W . In this paper we
will use I f and a Gaussian Mixture Model (GMM) representation, which allows for efficient
gradient-based search. Concerning learning we follow a generative approach inspired by
ISM [14]. For each visual word c, we learn a generative model W (c,I(λ , f )) = pc(I(λ , f )),
i.e., the occurrence distribution in ISM terminology. Learning is performed by mapping
all features from the training objects into the invariant space, where the distribution can be
estimated. ISM considers non-parametric kernel density estimators for this. Their strong
dependence on the training data (in terms of storage requirement and evaluation time) is a
clear downside. Instead, we consider GMMs2, which overcome this limitation. Search can
be performed using local gradient-based search methods [3], analogue to mean-shift in ISM.
The mixture model is learned using an Expectation-Maximisation (EM) implementation3,
which automatically adapts the number of mixture components using a split/merge heuristic.

Voting. In this setup, the feature centric-invariant I f has two advantages. The reason
is the simple relation λ = I f ( f )+ f , which leads to just a translation and scaling given an
observed feature f . Hence, each mixture component in the invariant space can be mapped

1 Assuming that an object is present may be reasonable in a tracking context, but not for object detection.
2 Using logλs/ fs is important here, as the positivity constraint of λs/ fs > 0 could not be satisfied with GMM.
3http://www.npt.nuwc.navy.mil/Csf/software.html
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into the hypothesis space by adapting mean and covariance of each Gaussian (c.f . Fig. 2).
This is the actual voting. Note that such voting is not possible with Iλ , because its non-linear
distortion breaks the algebraic structure of a Gaussian. Moreover, also the computation of
the (score-)gradient (with respect to λ ) is simpler than with Iλ . A final remark concerns a
connection to ISM. In [15], a scale-adaptive version of mean-shift is introduced. This scale-
adaptation actually accounts for the above-mentioned scaling. Thus, ISM implicitly operates
in the invariant space (which is not defined in ISM [15]) instead of the hypothesis space.

Contributing Features & Candidate Generation. In this setup, the idea of contribut-
ing features translates to mixture components which contribute significantly to the score.
We assume that Gaussians contribute significantly within two times the standard deviation.
Thus, we keep a coarse 3D-(location,scale) grid over the hypothesis space. Each grid cell
keeps a list of contributing mixture components. Note that each such cell corresponds to a
set of object hypotheses. We adopt the idea of computing score bounds [12] (on such sets) to
initialise the local search. We consider a crude estimate by summing the peak contribution
(i.e., the value at the mean) of each Gaussian in a given cell. Local maxima of this bound
serve as starting points for the gradient-based, local refinement [3].

Algorithm. Our algorithm keeps a list of candidates that is populated as described
above. After gradient-based refinement, the best candidate is reported as detection, and can-
didates with a score below a threshold are removed from the list. Features with a significant
contribution to the detected object are eliminated from the system (i.e., the corresponding
Gaussians are removed from the cells and the bound is updated). Then, the algorithm restarts
to find more objects. Keeping a list of candidates helps saving computation in subsequent
iterations. The reason is that feature removal only changes the score function locally. Hence,
the refinement of most candidates is likely to converge quickly.

Modified GMM. Contrary to the ISM [14], we are not forced to use a density pc(I). We
exploit this freedom and consider a simple re-scaling, i.e. W (c,I) = pc(I)/(maxI pc(I))),
which shows significant performance improvements. The aim is that the maximal weight
(of every visual word) is approximately one. An intuitive explanation is as follows. The
maximal weight of multi-modal occurrence distributions tends to be smaller than the one of
rather peaked distributions. Thus, depending on which visual words are activated, the object
score may be lower, which is undesirable. Learning good re-weightings is also possible [18].

3.1 Experiments

Datasets. We evaluate our system on two benchmark datasets consisting of motorbikes
[9] and side views of pedestrians [14]. The former includes 153 training and 115 test images,
whereas the latter consists of 426 training and 205 test images. In order to compare our re-
sults to the published baseline, we use the same evaluation criterion as in [9, 14]. A detection
is accepted as correct if its bounding-box overlap with the ground-truth annotation is above
50%; multiple detections on the same object are counted as false positives. Performance is
measured using precision-recall curves which is the common measure for these datasets.

GMM vs. modified GMM. The probabilistic argument given in [16] defines the sum of
densities as the objective function to hypothesise object positions. This roughly corresponds
to the GMM without modification. Fig. 4(center) illustrates the effect of using the modified
GMM. The results are reported along with the baseline performance from [9, 14, 16]. The
difference between the two objective functions is actually fairly small, i.e. only a rescaling
of each density function by a factor. Looking at the effect of this little change on the perfor-
mance, an astonishing impact can be observed. Namely, the modified GMM based objective
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Figure 4: Quantitative evaluation on two benchmark datasets of motorbikes (left) and pedestrians

(right). (top): sample images of the datasets along with detections. (middle): performance compared

to published baseline; (bottom): detection time and recognition performance with our reduced model.

The detection time can be reduced significantly at the cost of only a small decrease in accuracy.

function clearly outperforms the density based objective function and yields comparable per-
formance to (motorbikes) or even improves (pedestrians) on the baseline. It has to be stressed
at this point that, compared to the baseline systems, our approach does not need to perform
a final MDL or SVM verification of the hypotheses.

Runtime. The last experiment measures the runtime of our system (measured on a 3GHz
Intel Core 2). For this experiment we use an external Hessian-Laplace feature extractor from
[20], which takes about 0.6s on a typical motorbike image (340×255) and 1.2s on a pedes-
trian image (480×360). This can be reduced dramatically by changing to similar SURF
features [2] that allows for GPU-implementations [5] which run at about 100Hz. Thus, fea-
ture extraction is negligible compared to the rest of our algorithm. Moreover, the structure of
our parametric model allows for a simple heuristic to improve detection time. Let us denote
the peak contribution of mixture component i by γi. Then, we drop all mixture components
whose peaks are smaller than β percent of the maximal peak, i.e., γi < β maxk γk. The av-
erage detection time, as well as the achieved performance at equal error rate is reported in
Fig. 4(bottom) for both datasets. We see that for values up to β = 0.1 and 0.15, respectively,
the computation time (ignoring feature extraction) can be reduced by about a third without
decrease in accuracy. This yields a detection time of about 0.35s for a motorbike image. If
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tional soft-matching during recognition. Dur-

ing learning, the soft-matching is fixed to 6-NN

matching while we vary between 1 to 5 NN dur-

ing recognition. The performance clearly drops

when deviating form the hard-NN matching rule.

runtime is of prime importance, we can also sacrifice some accuracy in favour of speed. On
the pedestrians, for example, we can increase the threshold to β = 0.35, which yields the
same equal error rate as the baseline. Doing so, the detection time decreases from initially
1.25s to only 0.25s. This simple, but very effective heuristic exploits the structure of our
parametric model and would not be easily realisable in a non-parametric framework [14].

4 Soft-Matching
Soft-matching is a heuristic where a feature activates multiple codewords from the visual
vocabulary, instead of just the best-matching one. As has been mentioned by other authors [8,
14, 22, 24], this increases robustness against noise and quantisation effects. Unfortunately,
the downside of soft-matching is an increased computational cost.

Soft-Matching during Recognition? Although runtime is of prime importance during
recognition, soft-matching is usually still applied. We claim that this is unnecessary which
can be seen as follows. Soft-matching can be understood as a blurry activation of codewords,
instead of a sharp peak at the best match. In our framework, this corresponds to blurring
the Dirac functions (Eq. (4)). Thus, using soft-matching corresponds to a blurred footprint
Bφ where B denotes the blurring operator. It can be expressed as a matrix because the
visual words are discrete. Consequently, soft-matching can be avoided during recognition
by incorporating it completely into the training, i.e., 〈Bφ ,W 〉 = 〈φ ,BTW 〉. Thus, instead
of blurring the footprint, we blur the model, which can be done off-line. In other words,
stronger blurring during learning and NN-matching during recognition. Hence, the system
benefits from soft-matching’s robustness without having the computational overhead during
recognition. In Fig. 5 we see the result of using {1,3,5}-NN during detection in addition to
6−NN during learning. Additional soft-matching clearly degrades the performance. In other
words, applying soft-matching twice leads to an over-smoothing which causes under-fitting.

A similar argument can be given for spatial pyramid histograms as used in [12]. There,
B is the mapping from the flat histogram to the multi-layer pyramid representation. BTW

is the back-transform which compresses the learned model back into a (lower-dimensional)
flat histogram. Thus, the pyramid is not needed during detection which, again, reduces
algorithmic complexity and runtime.

Benefits. Moving soft-matching entirely to the learning stage has clear advantages. On
the one hand, NN-matching during recognition is much simpler and faster. In the above ex-
ample, changing from k =5 to 1 incurs a speedup of approximately 4. On the other hand,
stronger soft-matching during learning causes more occurrences which makes density esti-
mation more stable. Contrary to non-parametric density estimators [14], our GMM com-
presses the increased number of occurrences. Hence, the overhead of soft-matching during
recognition is very low. In summary, soft-matching should only be applied during learning
where it causes model regularisation which is controlled by the degree of soft-matching.
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5 Conclusion

We introduced a hybrid framework for sliding-window and Hough-transform based object
detection which combines the advantage of both approaches. Our framework overcomes
various issues of ISM and gives a sound explanation for the voting paradigm. Although we
adopt ISM’s generative training procedure, the framework is generic and other training meth-
ods are possible, in particular discriminative ones. Moreover, our invariant space concept
nicely decouples the modelling of geometric transformation of objects, which will be helpful
in multi-view setups. Contrary to usual sliding-window detectors, we are not restricted to
histogram representations and demonstrate a Gaussian mixture model which allows for effi-
cient gradient-based search. Finally, we formalise the idea of soft-matching/spatial-pyramid-
histograms within our framework. We show that their increased complexity can be avoided
during detection without missing their positive effect.
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