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Abstract-PRISWDB is a full-fledged parallel, main memory 
relational database management system the design zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof  which 
is characterized by two main ideas. In the first place, high 
performance is obtained by the use of parallelism for query 
processing and main memory storage of the entire database. 
In the second place, a flexible architecture for experimenting 
with functionality and performance is obtained via a modular 
implementation of the system in an object-oriented programming 
language. This paper describes the design and implementation 
of P R I S W D B  in detail. Also, a performance evaluation of the 
system shows that the system is comparable to other state-of- 
the-art database machines. The prototype implementation of the 
system is ready, and runs on a 100-node parallel multiprocessor. 
The achieved flexibility of  the system makes it a valuable platform 
for research in various directions. 

Index Terms-Parallel, main memory, relational database man- 
agement system, design and implementation, architecture, query 
execution, experimentation, integrity constraints. 

I. INTRODUCTION 

RISMNDB is a parallel, main memory DBMS that was P designed and implemented during the last five years 

in The Netherlands by several scientific and commercial 

research institutions.' In the fall of 1986, the PRISMA project 

was started. The goal of the entire PRISMA project [4] 

(of which PRISMNDB is a subproject) is the design and 

realization of parallel hardware and software to implement 

the parallel object-oriented programming language POOL, and 

the implementation of a nontrivial application in POOL. A 

DBMS was chosen as application. Therefore, PRISMA/DB 

was designed to be implemented in POOL and to run on the 

100-node parallel machine on which POOL is implemented. 

In the DBMS group of the PRISMA project, we wanted 

to study how we could exploit the available resources: 1.6 

GBytes of main memory, 100 processing nodes, and a high 

level parallel programming language. Therefore, the goal of 

PRISMAiDB is: 
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the design of a parallel, main memory DBMS that has a 

flexible architecture and that is flexible in its query 
execution, so that experiments with the functionality and 

the performance of the system are possible. 

Both for the functionality, and for the performance, there were 

minimum requirements, such that the resulting prototype can 

be used for research. 

Functionality: The goal is implementing a relational data- 

base with the traditional SQL interface and a logical query 

language, called PRISMAlog, a language similar to Datalog. 

Furthermore, the database management system should pro- 

vide concurrency control and support recovery from system 

failures. The architecture of this system was designed in a 

modular way to provide opportunities to experiment with the 

functionality of the system. This facility is currently used for 

the research in the area of integrity constraint enforcement 

and query optimization. 

Performance: Here, the goal is understanding the influence 

of parallelism and main memory on performance. The ex- 

pectation is to obtain a performance comparable to currently 

available prototype database machines. This performance has 

to be obtained by both parallelism (100 nodes) and main 

memory (16 Mbytes per processor). To study the influence of 

parallelism and the impact of the main memory character of the 

system, a flexible query execution layer is implemented in the 

system. Also, special algorithms that exploit the main memory 

character for the relational algorithms have been implemented. 

This facility is currently used for the research in the area of 

parallel query execution. 

Obviously, experimentation is a central issue in the project. 

In many cases, proper design decisions could not be made 

because of insufficient insight and lack of experience. In that 

case, the system was set up in such a way that various solutions 

could be tried out in the final system. This is achieved by a 

modular architecture and a flexible allocation mechanism of 

modules to processors [49]. 

At the starting point of the project in 1986, only few papers 

on parallel, main memory based database systems on general 

purpose hardware were available. The low costs of a large 

main memory system for the end of the 1980's were predicted 

correctly in [33]. Main memory in 1992 costs about $lOOK per 

gigabyte. The potential benefits and problems of an MMDBMS 

were given in [17] and a single prototype implementation of 

a shared-store MMDBMS was developed [32]. During the 
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project’s life cycle, an increasing number of papers appeared 

that address technical issues for MMDBMS implementations. 

This special issue is its proof of evidence. The development 

of PRISMNDB and related studies were influenced by the 

work on recovery issues [18], [31], parallelism in large-scale 

comparable (disk-based) systems, such as GAMMA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 151, 

Bubba [lo], and HC16-186 [12]. The role of main memory to 

hold the entire database is getting more support, as illustrated 

by the shared-store systems XPRS [40], DB3S [8], and the 

distributed store system EDS [36], [42]. 

The goals of the PRISMA project were ambitious. Hard- 

ware, system software, and the database management system 

were all developed from scratch. For a period of 4 years 

roughly 25 people worked on the project; not all of them 

were directly involved with the database machine. Halfway 

through the project efficiency problems were discovered with 

the implementation of the language POOL. After about three 

and a half years, the first prototype was running on the 100- 

node multiprocessor system. Since then, pieces of the system 

are being rewritten to obtain a better performance. Currently 

a lO0K by 10K join of the Wisconsin benchmark runs in 2 s. 
Research is now focused on a few topics to investigate 

the performance and the flexibility of the architecture. We 

have chosen to extensively investigate the influence of main 

memory and parallelism on query execution and constraint 

enforcement. For other components of the system, like the 

concurrency controller, off-the-shelf solutions were chosen, or, 

in case of recovery, a more concise study of main memory 

alternatives led to the implementation of a parallel algorithm. 

The main research topics are: performance evaluation, parallel 

join evaluation in a main memory environment, and parallel 

constraint enforcement. This research has revealed that the 

main memory character of the system has significant impact on 

its parallel behavior, that specialized main memory algorithms 

are possible and profitable from performance viewpoint, and 

that the fast read-only access to a main memory system allows 

extensive integrity constraint checks with limited performance 

penalty. Each research topic is discussed in more detail in this 

paper. 

This paper is organized as follows. The next section briefly 

introduces the 100-node parallel multiprocessor that is used, 

and the implementation language POOL-X. Section 111 first 

gives an overview of the DBMS architecture and then high- 

lights the following aspects of this architecture: internal rep- 

resentation of queries, parallelism and data fragmentation, 

transaction management, query execution, and storage and 

recovery. After that, Section IV illustrates the dynamic as- 

pects of the architecture via the description of an example 

query execution. Section V describes the performance of 

PRISMAIDB, and it discusses the relationship between the 

influence of parallelism and the main memory aspects of the 

system. Section VI briefly describes the current research in 

the context of PRISMA/DB, and Section VI1 summarizes and 

concludes the paper. 

11. HARDWARE AND SOFTWARE SUPPORT 

PRISMA/DB is implemented on a parallel multiprocessor, 

Fig. 1. Hardware configuration of thc POOMA machine 

called the POOMA machine. On this machine, a parallel, 

object-oriented language, POOL-X, and an operating system 

that supports POOL-X are implemented. This section summa- 

rizes the hardware and the essential features of POOL-X. 

A. The POOMA Machine 

The POOMA machine is a shared-nothing, parallel mul- 

tiprocessor, which consists of 100 nodes. Reference [ 131 

describes its design and the rational behind it in detail. Fig. 

1 shows the hardware configuration. Each node consists of a 

68 020 data processor with 16 Mbytes of memory, a disk, 

and a communication processor that links it to 4 other nodes 

using bidirectional links. The processor memory consists of 

4 Mbytes of on-board memory, and a memory extension 

board containing 12 Mbytes. The use of slower memory 

extension boards results in the 4 MIPS processors to run at 

only 1.5 MIPS in  practice. Some nodes have an ethernet card 

that links the system to a Unix host. The nodes are linked 

together using communication processors that were developed 

by Philips. Various configurations can be realized. Fig. 1 shows 

a mesh connection; other configurations, such as a cordal 

ring connection and a double linked ring connection are also 

possible. The entire system contains 1.6 GBytes of memory. 

B. POOL: A Parallel Object-Oriented Language 

The programming language POOL-X [2], [3], [37] is im- 

plemented on the POOMA machine, and is used as an imple- 

mentation language for PRISMAIDB. 

As an object-oriented language, POOL-X allows the defini- 

tion of objects, which are functional units of data and methods 

that operate on the data. In POOL-X, process objects and 

data objects can be discriminated. Process objects have an 

individual thread of control, and data objects are used by 

process objects as data structures. The discrimination between 

process objects and data objects was made for efficiency 

reasons. 

Parallelism is supplied in a very natural way: concep- 

tually, all process objects that exist in the system execute 

concurrently. Allocation of two process objects to different 
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processors makes them really run in parallel. Also, objects 

can be created and deleted zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdynamically. These features turn a 

POOL-X program in execution into a very flexible structure 

which allows runtime experimentation with various forms of 

parallelism. 

Objects can communicate synchronously and asynchro- 

nously. A synchronous message to another object causes the 

sender to wait for the reply. An asynchronous message does 

not have a reply. Synchronous communication between objects 

synchronizes their execution and may, therefore, impede the 

effective parallelism. Asynchronous communication does not 

have this drawback. Communication between objects that are 

allocated to different processors is automatically translated into 

interprocessor message passing. 

POOL-X has some special facilities for the implementation 

of a DBMS: tuple types can be created dynamically. Also, 
conditions on tuples can be compiled into routines. This feature 

is used to speed up scan operations in which a condition has 

to be evaluated for a large number of tuples, like selections 

and joins. 

It should be noted that the language POOL-X was developed 

and implemented parallel to the design and implementation of 

PRISMA/DB. This had consequences for the development of 

PRISMA/DB. About halfway through the project, there were 

severe performance problems in the POOL-X implementation. 

As a consequence, we could not evaluate the performance of 

the first try-out prototype. Also, the POOL-X compiler that is 

currently used is not yet optimized in detail. This results in 

the performance of PRISMAiDB not being quite optimal. 

111. ARCHITECTURE 

This section presents the software architecture of the 

PRISMA database management system. First, an overview 

is given of the global architecture. Next, the most important 

aspects of this architecture are discussed in detail: the 

internal relational language, extended relational algebra 

(XRA), query optimization and parallelism in query execution, 

transaction management and integrity control, query execution 

mechanisms, and finally, storage and recovery aspects. Note 

that this section focuses on the static aspects of the 

architecture. The dynamic aspects are illustrated in Section IV, 

where examples of query execution are described in detail. 

A. Overview 

Fig. 2 presents an overview of the architecture of 

PRISMNDB. The architecture consists of a number of 

components that are implemented as POOL-X process objects. 

Some components are instantiated several times in the system, 

others are central: they have one instantiation that serves the 

entire DBMS. The architecture is dynamic: components can be 

created and deleted dynamically, according to the use of the 

system. Each component has a well-defined functionality, and 

much effort was put in the design of the interfaces between 

the components. This modularity through function separation 

and high level interfaces is an important characteristic of the 

design of the system [49]. As a result, the flexibility in the 

system architecture allows experiments with functionality. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig. 2. Global architecture PRISMNDB. 

The rectangles in Fig. 2 represent permanent components, 

i.e., components that live as long as the system. The ovals 

represent transient components belonging to one user session; 

the life cycle of these components is related to user actions. 

The dotted ovals show transient components belonging to a 

second, concurrent user session. The function of the compo- 

nents and the interfaces with other components are described 

in the following. 

Two central components of the system are the data dic- 
tionary (DD) and the concurrency controller (CC). These 

components are instantiated once in the system. The choice 

for a central CC and DD was made for simplicity reasons. The 

DD is the central storage of all metadata of the system, like 

relation and constraint definitions, fragmentation information, 

and statistics. The contents of the DD are entirely stored in the 

primary memory; a disk copy is kept to ensure recoverability. 

Data definition statements result in changes of the DD tables; 

these changes are immediately written to the disk. The con- 

currency controller controls concurrent access to the database. 

It  uses a standard two-phase locking protocol with shared and 

exclusive locks. Furthermore, it is equipped with a deadlock 

prevention algorithm. 

The query preprocessing layer of the system is formed by 

the query language compiler (QLC) and query optimizer (QO) 

components. As shown in the figure, these components are 

instantiated once for each user session. The QLC provides 

an interactive interface to the user and translates queries 

from the user language into the internal relational language 

of the system (XRA, see Section 111-B). This component 

offers full fragmentation and allocation transparency to the 

user [14]. Four different QLC’s are available: a standard SQL 

interface, a logical query interface called PRISMAlog, that 

allows recursive queries [5] ,  an XRA interface that allows 

queries in the internal language of the system, and a simple 

data definition interface via which relations can be created, 

integrity constraints can be defined, and the fragmentation of 

relations can be changed. Translated queries are sent to the 

QO, which optimizes them into parallel execution plans (see 

Section 111-C). The QLC’s and the QO’s contact the DD to 

obtain the schema information and statistics needed for the 

translation and optimization of queries. 

The transaction manager (TM) forms the execution control 

layer of the system. This component is instantiated once for 
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each transaction. The TM coordinates the execution of a 

transaction via an interface between the TM and the query 

execution layer of the system. Furthermore, the TM contacts 

the CC to ensure serializability of the transaction; the atomicity 

and recoverability of the transaction are enforced through a 

two-phase commit protocol between the TM and the execution 

layer; the correctness of a transaction is guaranteed through the 

enforcement of integrity constraints, which are retrieved from 

the DD. Transaction management is described in more detail 

in Section 111-D. 

The data storage and query execution layer consists of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
one fragment managers (OFM’s) and the local transactions 
managers (LTM’s). OFM’s are permanent; they store and 

manage the main memory copy of one fragment of a relation in 

the database, and the logging and checkpointing information 

that is kept on the disk for recovery. LTM’s are transient; 

they are the relational engines in the system. The LTM’s use 

especially designed main memory algorithms for the relational 

operations. The query execution layer is described in more 

detail in Section 111-E. 

The design of PRISMAiDB allows parallelism between 

components. If, for example, the QLC and the QO of one 

session are allocated to different processors, they can work 

concurrently, forming a pipeline. Also, allocation of the com- 

ponents of a second session to a new (set of) processors 

yields interquery parallelism on the query preprocessing level. 

Finally, allocation of OFM’s and LTM’s to different processors 

leads to parallel query execution in several forms. This issue 

is described in Section 111-C. 

The main interface language between the various com- 

ponents of PRISMNDB is formed by an extension to the 

relational algebra, called XRA [23]. This language provides 

flexible, high level communication between the various query 

processing layers of the system. The language is discussed in 

detail in the following. 

B. XRA 

An XRA is used as an internal representation of queries in 

the system. A full description of its syntax and semantics can 

be found in [23]; here the main features are described. 

XRA contains the standard relational operations (selection, 

projection, Cartesian product, join union, difference, and in- 

tersection), update facilities (insert, delete, and update), and 

some extensions like a grouping operation, sorting facilities, 

and a transitive closure to support recursive queries from the 

PRISMAlog interface. 

Also, XRA offers the flexibility to express a wide variety 

of parallel query execution plans: an operand can consist of 

multiple tuple streams that are automatically merged to form 

one operand, and the result of an operation can be distributed 

over multiple output streams. This distribution of result tuples 

can be done in two ways: the result can be replicated over 

output streams, or a hash- or range-based splitter is applied 

to split the tuples over the output streams. The use of these 

primitives to formulate parallel query plans is illustrated in  

Section IV. 
Finally, a simple projection that can only throw away some 

attributes from a tuple (as opposed to the facility to do, e.g., 

arithmetic operations on attributes) is added to the language. 

This operation is used as a cheap filter on tuples before they 

are sent to another processor to reduce the communication 

costs. Again, its use is illustrated in Section IV. 

C. Parallelism and Data Fragmentation 

PRISMA/DB supports parallel query execution. The use of 

parallelism is completely transparent to the user. The query 

preprocessing layer of PRISMNDB, which consists of the 

QLC’s and the QO, translates user queries on the relational 

level into parallel execution plans on the fragmented database, 

taking the fragmentation scheme of the stored database into 

account. This section describes the generation of parallel 

execution plans. To do so, first the terminology used with 

respect to parallelism and data fragmentation are introduced. 

1) Parallelism: In PRISMAIDB, various forms of paral- 

lelism can be used to speed up query execution. The standard 

terminology for parallelism [ll], [49] is used. To be complete, 

the used terminology is summarized here. Multiple users can 

use the system concurrently, yielding interquery parallelism 

between their queries. Within a query, intraquery parallelism 
can be subdivided into interoperator, and intraoperator par- 

allelism. Orthogonal to this distinction, pipelining can be 

contrasted to (pure) horizontal parallelism. The term paral- 

lelism is often used as a synonym of horizontal parallelism. 

This paper adopts this habit if no confusion is possible. 

Horizontal intraoperator parallelism is very commonly used. 

The term datu parallelism is often used for this form of 

parallelism; the number of processors used is called the degree 
of parallelism. 

2) Data Fragmentation: Relations in PRISMAiDB are hor- 

izontally fragmented across a number of processors. Horizontal 

fragmentation of data enables parallel execution of operations 

on the data. For example, to execute a selection on a frag- 

mented relation, i t  suffices to execute a selection on each of 

the data fragments. 

Because PRISMAiDB uses hash-based algorithms for many 

relational operations, hash-based fragmentation is used. An 

arbitrary attribute can be used as a fragmentation attribute. 

To distribute the tuples in a relation over its fragments, a hash 

function with a large range is applied to the specified attribute, 

and the resulting value modulo gives the number of fragments 

used for the relation, which indicates the fragment where 

the tuple belongs. So, specifying the fragmentation attribute 

and the number of fragments pins down the fragmentation. 

Each fragment can be assigned to an arbitrary processor. The 

number of fragments that is used for one relation is called the 

fragmentation degree of that relation. 

This fragmentation strategy offers the possibility to experi- 

ment with fragmentations schemes for one relation that differ 

in the their degree and fragmentation attribute. Range-based 

fragmentation is currently not supported. The extension can 

easily be added, however, as XRA has the facility of range- 

based splitting a relation. 

The fragmentation of a relation and the allocation of the 

fragments can be specified by the user at creation time. Also, 
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a relation can be refragmented runtime, and the fragments can 

be reallocated to other processors. This allows experimentation 

with different allocation and fragmentation schemes in one 

session. 

3) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGenerating Parallel Execution Plans: User queries are 

transformed into parallel execution plans by the query pre- 

processing layer. The QLC takes a query in one of the user 

languages, and after syntactic and semantic checking, i t  is 

translated into XRA on the relational level (XRA-R). 

The QO transforms this XRA-R query into a parallel ex- 

ecution plan in XRA-F (XRA on the fragment level). To 

do so, it  retrieves fragmentation information from the DD. 

Because we are still studying the problem of optimizing 

complex queries for parallel execution (see Section VI-A), 

only simple optimizations are used: selections and projections 

are pushed down as far as possible, and many relational 

operations can be distributed over unions. This means that 

the QO will transform a join over the union of the fragments 

that belong to one relation, into a union over the fragment 

joins, thus generating a parallel execution plan for a join. The 

fragmentation information is taken into account in this process: 

if the operands of a join are fragmented on the join attribute 

into the same number of fragments, the fragments can be 

joined to each other directly, otherwise, one or both fragments 

are redistributed before the join. In the same way, many other 

relational operations are parallelized. Finally, the QO allocates 

the operations in the parallel schedule to processors, taking the 

allocation of the base-fragments into account: e.g., a join of 

two fragments that reside on different processors is allocated 

to the processor where the larger operand resides, so that the 

data transmission costs are minimized. 

For the implementation of the QO, a rule-based approach 

was chosen [29], in which the optimization strategies are stored 

in a rule base that is attached to an optimization engine. This 

architecture of the QO facilitates changes in the optimization 

strategy that is used, so that research results in the area of 

parallel query processing can easily be implemented. The 

performance of the optimization process itself is currently not 

a research issue. 

D. Transaction Management and Integrity Control 

The PRISMA/DB TM is responsible for the management of 

one single transaction. The TM has two main tasks. First, it 

is responsible for creation and control of the transaction exe- 

cution infrastructure consisting of OFM’s and tuple transport 

channels, and it schedules the execution of the individual oper- 

ations in a transaction. Secondly, i t  takes care of the transaction 

properties: atomicity of transaction execution, correctness with 

respect to defined integrity constraints, serializability with 

respect to concurrent transactions, and recoverability. The TM 

has a modular internal architecture the design of which was 

inspired by the tasks mentioned above; an overview of the 

architecture is given in Fig. 3. 
Transaction commands coming from the query optimizer 

are first analyzed. One of the main goals of the analysis is 

to determine the necessary locks for the execution of the 

commands. This locking information is passed to the local zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig. 3. Architecture of the TM 

lock manager. This module decides whether locks are already 

owned by the transaction, or have to be requested from the 

CC. Analyzed commands are scheduled for parallel execution, 

such that all commands are executed as early as possible. 

The scheduling takes both the dependencies between various 

commands and the availability of locks into consideration 

[22].  Commands that are ready for execution are sent to the 

execution control module. This module is responsible for the 

control of the actual execution of commands at the OFM layer 

of the system. Where necessary, i t  creates transient LTM’s and 

tuple transport channels to form the execution infrastructure 

for the commands in the transaction. After having created this 

infrastructure, i t  sends the XRA commands to the appropriate 

LTM’s. At transaction commit time, the integrity constraints 

to be enforced are retrieved from the DD. Based on a syntactic 

analysis of the update commands in the transaction, only 

those constraints are retrieved that may be violated by the 

transaction. The constraints have been translated into XRA 

commands at definition time by the DD, and can thus simply 

be appended to the end of the transaction, according to the 

transaction modification principle’ [21]. The execution of the 

constraints can use exactly the same mechanism as normal 

query execution. In this way, constraint enforcement auto- 

matically satisfies the serializability and transaction atomicity 

requirements. At the very end of transaction execution, a 

two-phase commit protocol is executed to ensure transaction 

atomicity, in which the TM acts as coordinator and all OFM’s 

involved in the transaction act as participants. 

E. Query Processing 

This section describes the query execution layer of 

PRISMAIDB. This layer consists of the OFM’s, which store 

and manage base data, and the LTM’s which are the relational 

engines of the systems. Fig. 4 shows the organization an 

OFM-LTM combination in the query processing layer. 

An OFM manages one fragment of a relation; it is a 

permanent component, which is implemented as a POOL-X 

process object. As such, a fragment of a relation is the unit of 

data allocation in the DBMS, and the allocation facilities of 

POOL-X can be used to experiment with different allocation 

schemes for the fragments of the stored database. 

Note the differcncc with the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAquwv  rnodrficutiorl approach [3Y], where the 
\election predicates of updates are extended with the negation of constraint 
predicates. 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. Local transaction management and its environment. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
An LTM is a transient object; it can execute relational 

operations. Typically, an LTM is created for each fragment 

operation in a query. Some LTM’s are attached to an OFM, 

in which case they can directly access the fragment that is 

managed by that OFM; other LTM’s are independent and 

they operate on the results of previous operations in the 

same transaction. This can be a stream of tuples that is 

generated by one or more other LTM’s, or the stored result 

of a previous operation of the same LTM. LTM’s are also 

implemented as POOL-X process objects, and they form the 

unit of parallelism in the query execution layer of the DBMS. 

Again, the allocation facilities of POOL-X can be used to 

experiment with various parallel execution strategies for a 

query. 

The query execution layer of PRISMNDB is designed to 

allow flexible parallelism: one operand can consist of multiple 

input streams that are merged by the LTM to form one operand 

(in Fig. 4, three LTM’s produce one operand for the destination 

LTM). On the other hand, the result of an operation can 

be distributed over multiple output streams, each with its 

own destination. One OFM can concurrently be accessed by 

multiple transactions (only for reading, of course); in that case 

each TM attaches a private LTM to the OFM. 

The main memory character of the system is exploited in the 

algorithms for relational operations. In general, we can state 

that a main memory system allows relatively simple algorithms 

that are not bothered by buffer and cache management prob- 

lems. Obviously, such a system allows optimizations that only 

yield performance gain in a main memory environment. For 

example, [6], [7] describe a study of possible optimizations of 

operations that scan large numbers of tuples. It was shown 

that dynamic compilation of expressions that have to be 

evaluated for a large number of tuples yields considerable 

performance gain. Therefore, PRISMNDB heavily uses the 

dynamic compilation facility of POOL-X. 

The architecture of the LTM’s allows both pipelining 

and horizontal parallelism between different LTM’s. In 

P R I S M m B ,  we want to study both forms of interoperation 

parallelism in the context of a main memory system. In [43], 

[45] it is shown how special main memory algorithms can be 

used that enhance the effective parallelism from pipelining. 

table 

matdling 

Simple Hash-Join Pipelining Hash-Join 

Fig. 5. Simple hashjoin and pipelining hash join algorithm in a 
main memory system. 

These pipelining algorithms aim at producing output as early 

as possible so that a consumer of the result can start its 

operation. In particular, [43], [45] proposes a pipelining hash 

join algorithm. As opposed to the well-known simple hash 

join algorithm, this symmetric algorithm builds a hash table 

for both operands (see Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5).  The join process consists of 
only one phase. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs a tuple comes in, it is first hashed and 

used to probe that part of the hash table of the other operand 

that has already been constructed. If a match is found, a result 

tuple is formed and sent to the consumer process. Finally, the 

tuple is inserted in the hash table of its own operand. This 

algorithm can produce a result tuple as soon as two matching 

tuples have reached the join LTM. Pipelining algorithms are 

also possible for many relational operations other than the join 

operation. Where possible, pipelining algorithms are used for 

the implementation of relational operations. Reference [48] 

discusses the influence of using pipelining algorithms on the 

performance gain from interoperation pipelining. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
F. Storage and Recovery 

PRISMA/DB is a main memory DBMS; this means that the 

entire database is stored in the primary memory (RAM) of the 

system. To make this a realistic assumption, the system must 

provide a large amount of RAM memory. The POOMA pro- 

totype is equipped with a total of 1.6-GB RAM. Furthermore, 

the scalability of the hardware architecture allows the addition 

of nodes to increase this amount of memory. The POOMA 

hardware is not equipped with stable RAM memory, however. 

As a consequence, the contents of its memory are lost after 

a system crash. To ensure stability of the database, a stable 

storage medium is required as backup storage for the main 

memory database. PRISMNDB uses the POOMA stable file 

system for this purpose. 

I )  Storage: Since PRISMA is designed as a main mem- 

ory system, the traditional DBMS storage structures for the 

relations have to be re-evaluated. The OFM is equipped with 

data structures for handling tuples, These data structures are 

available to each LTM that is attached to an OFM (see Fig. 4). 

In particular, tuple layout, index creation, storage preservation, 

and temporary storage are important for their design. See, for 

instance, [6], [28], [30] for a comparison of data structures for 

main memory database systems. The tuple layout is critical 

for both storage and performance. Tuple lengths for business 

like applications can be assumed to be less than 4K bytes. 

Most tuples will be rather short (0.1-0.5 K). Moreover, the 

use of main memory relaxes the need for physical adjacency of 
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Fig. 6. Example database 

fields within a tuple. However, POOL was one of the boundary 

conditions of the project, which made it impossible to exploit 

clever memory allocation schemes and main memory data 

structures, and to experiment with the tuple representation. 

2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARecovery: The recovery mechanism of PRISMA is based 

on the two-phase commit protocol together with logging and 

checkpointing techniques per relation fragment (see Fig. 4). 

Each OFM that participates in an update transaction records 

on its local log file the transaction updates, the transaction 

precommit decision, and finally, the global abort or commit 

status. When a log grows too large, the OFM can decide locally 

to write a checkpoint file to disk, thereby clearing the log. 

After a system crash each OFM can recover independently by 

reloading the most recent checkpoint from disk and replaying 

the update statements of committed transactions from the log 

file. Note, that the PRISMA architecture is designed to make 

use of parallel logging [ 11 and recovery to reduce the overhead 

of disk I/O. 

In some cases, it is possible that the OFM was in a 

precommit state at the moment of the crash. Then the recovery 

mechanism of the OFM must find out the state of the global 

transaction at the time of the crash. This information is kept up 

to date in a global transaction log by the TM during transaction 

processing. The transaction state can be active, committed, or 

aborted. At recovery time, the OFM retrieves the transaction 

state from the transaction log. If the state is aborted or active, 
the OFM will not replay the update statements of the last 

transaction on the log. 

The database is protected against media failures by the 

stable file system of the POOMA system. This file system 

employs a file replication technique that keeps a copy of each 

file on a different disk. After a media failure, the POOMA 

system software is responsible for bringing the file system 

back into a consistent state. 

IV. QUERY EXECUTION: AN EXAMPLE 

To illustrate the dynamic aspects of the DBMS architec- 

ture, the execution of an example query is described. The 

database in Fig. 6 is used in this query (this example is 

borrowed from [19]). The relations are fragmented on their 

first attribute. Person and Drinks are fragmented into two 

fragments (Personl, Person2, Drinkl, Drink2), and Wine 
into three fragments (Winel, Wine2, Wine3); Vineyard 
has one fragment (Vineyardl). The horizontal lines in Fig. 

6 indicate the fragment boundaries. The first attributes of 

Wine, Person, and Vineyard are unique keys. The domain 

m 
m 

Fig. 7. PRISMAiDB filled with the example database. 

of the age field of the Person relation is restricted to in- 

tegers in the interval [0, 12011. Furthermore, there are the 

obvious referential integrity constraints in this schema: from 

Drinkspers to Person.id, from Drinkswine to Wine.id, 
and from Wine.name to Vineyard.name. The corresponding 

fragments of Person and Drinks reside on the same processor; 

all other fragments have a private processor. Fig. 7 shows 

PRISMNDB with this database stored in it, when idle. In this 

figure, the OFM-components are labeled with the name of the 

fragment they store, instead of the label "OFM" as in Fig. 2. 

The dotted boxes in Fig. 7 represent processors. 

The physical data organization of the example database 

illustrates the flexibility of the data storage system: an arbitrary 

number of fragments is possible for each relation, and each 

fragment can be allocated to any processor that has enough 

memory space to hold the data. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. A Retrieval Query 

We now assume that the database from Fig. 6 is stored in 

PRISMAIDB. As an example of a retrieval query, we will 

find the names of the persons that drink German wine. SQL 

is used as query language. 

SELECT Person.name FROM 
Person, Drinks, Wine, Vineyard 
WHERE Person.id = Drinksperson AND 

Wine.id = Drinks.wine AND 
Wine.name = Vineyard.name AND 
Vineyard.country = "Germany." 

To execute this query, an SQL compiler is created. This 

compiler checks the syntactic and semantic correctness of the 

query. To do the semantic checking, the SQL compiler contacts 

the DD, that supplies information about the schema of the 
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relations that are used in a query. If the query is found correct, 

it is translated into XRA-R: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
and 8=10, 
cp(Person, Drinks, Wine, Vineyard)). 

<*2*> select (1 1 =“Germany” and 1 =4 and 5=7 

In this XRA construct, numbers refer to attributes, the 

keyword CP is the Cartesian product (in the Cartesian product, 

the attributes of the operands are concatenated, so the result 

has 11 attributes), and < *2* > indicates that the result of 

the operation is to be projected on its second attribute. This 

XRA-R query is handed to the QO. The QO compiles the 

query into XRA-F and optimizes it. Just simple optimizations 

are used in the current version of PRISMAIDB: selections 

and projections are pushed down as far as they are possible 

and useful, and joins are distributed over unions. No proper 

algorithm to decide on the join order, and on the degree of 

parallelism for each join is implemented yet (see Section VI- 

A). The QO contacts the DD to get fragmentation information 

for the relations in the query. Also, the DD can supply statistics 

about relations and fragments to the QO. A possible resulting 

XRA-F query is: 

c l  = Person1 
c2 = Person2 

{c3,c4,c5} zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=(5) <*2,5*> join (Drinksl, 1 =4, c l )  
{c6,c7,c8} =(5) <*2,5*> join (Drinks2, 1 =4, c2) 

(c9,clO) =(4) <*1,4*> join ({c3,c6}, 2=3, Winel) 
{c l  1 ,c12} =(4) <*1,4*2 join ({c4,c7}, 2=3, Wine2) 
{c l  3,cl4} =(4) <*1,4*> join ({c5,c8}, 2=3, Wine3) 

{c15,c16)” =(1) e l * >  select (2 = “Germany,” 
Vineyardl) 

c l  7 = < * l o  join ((c9,cll ,cl 3}, 1 =3, c l  5) 
c l  8 = < * l * >  join ({cl O,cl2,cl4}, 1 =3, c16) 

?union (c17, c18). 
This program looks pretty complex, however, the cor- 

responding execution infrastructure in Fig. 8 illustrates its 

meaning. The facilities of XRA that are explained in Section 

111-B are used in this program: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
{ C O .  (6) as operand refers to an operand that consists of 

multiple streams of input data. 

{ca. cb} = ( r )  indicates that the result of an operation 

has to be split on attribute zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT over multiple output 

streams. 

< zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA*a. /I* > indicates that the result of an operation has 

to be projected on attributes n and b. 

Person can be joined to Drinks without refragmentation, 

because these relations are fragmented on the join attribute. 

The Person fragments have to be sent to the Drink fragments, 

however, because they are managed by other OFM’s. The 

results of these joins have to be redistributed to join them 

to Wine. Finally, the result of the selection from Vineyard, 
and the result of the join to Wine are redistributed to calculate 

their join on two processors. The results are united and sent to 

Fig. 8. PRISMAiDB executing the example query. 

the user. Before the tuples are sent of-node, they are projected 

on the relevant attributes to reduce the communication costs. 

The XRA-F program is handed to the TM, which creates 

the execution infrastructure and coordinates the execution. The 

necessary execution infrastructure is shown in Fig. 8. For each 

fragment that is used, the TM asks an S-lock from the CC. 
When the lock is acquired the fragment can be accessed. As 

explained in Section 111-E, an LTM has to be attached to an 

OFM to execute relational operations on base fragments (in 

the figure these LTM’s are represented by half ovals on top of 

each OFM). Operations that do not have any base fragment as 

an operand are executed by independent LTM’s (ovals in the 

figure). The TM creates all LTM’s and initializes them with 

the XRA statement they have to execute. The (half) ovals in 

the figure are labeled with the XRA-statement they execute. 

After its setup, the infrastructure is completely self- 

scheduling. Each LTM connects to its destination(s) (ref- 

erences to them are incorporated in the XRA statement 

that is executed); as each LTM works independently, this 

coordination phase is intrinsically parallel. As soon as an LTM 

has connected to all its destinations, it can start processing 

the available data. Base data are directly available, but data 

that is coming in via channels may have to be waited for. 

The infrastructure in execution works like an assembly line, 

with the LTM’s as workers, and the data flowing along them. 

The LTM’s are activated by the data that are available. Each 

operation terminates as soon as all operands have terminated. 

An operand terminates when as many EOF tuples have been 

encountered as there are channels in the operand. The entire 

query is ready when two EOF tuples have reached the final 

union. When ready, an LTM sends a ready message to the 

coordinating TM, which can shut down the execution when 

all participants are ready. After the commit of a transaction, 

the locks are released, and all LTM’s with their data and the 

TM are discarded. It appears that Peter, Paul, and Care1 have 

drunk German wine. The example query execution shows all 

forms of intraquery parallelism. 

Each join (on the relation level) is executed in parallel 
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(with degrees of 2, 3, and 2, respectively (intraoperation 

parallelism)). 

The join on Drinks and the join on Wines are executed 

parallel with the selection on Vineyard (interoperation 

parallelism). 

The fact that PRISMNDB is a main memory DBMS al- 

lows us to use the pipelining join algorithm (see Sections 

III-E and VI-A). By using this algorithm, the three parallel 

join operations form a pipeline, in which all levels can 

execute at the same time (provided enough data are used 

of course). So, there we have interoperation pipelining. 

Another short pipeline starts from Vineyard. 

The example query execution illustrates the flexibility of 

PRISMA/DB. As the fragmentation degree of the base rela- 

tions, the degree of parallelism of each relational operation, 

and the allocation of OFM's and LTM's can be chosen freely, 

the systems allows experimentation with a very broad class of 

execution strategies. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. Inserting a Tuple 

As an example of an update query, we will show how a tuple 

is inserted into the database. A "Saumur" 1990, with id 111 is 

added to the database. The first phase of this transaction (the 

actual insertion) is equivalent to the first phase of the retrieval 

query: the SQL compiler generates an XRA-R insert statement: 

insert(Wine, { [ l  1 1, "Saumur", 19901)) 

which is optimized into XRA-F by the QO: 

insert(Wine2, { [ l  1 1, "Saumur", 19901)). 

Note, that the QO has replaced the insert into a relation by 

an insert into one fragment of the relation, instead of into all 

fragments that belong to the relation. This optimization can be 

done for single-tuple inserts. 

The TM again generates the execution infrastructure for 

this query, which in this case consists of one LTM, which 

is attached to Wine2. 
The difference between retrieval and update queries is 

apparent at commit time: now the correctness of the transaction 

with respect to the integrity constraints is checked, and the 

update must be made permanent in the OFM. 

Two referential integrity constraints are defined on relation 

Wine; one from Drinks to Wine, and one from Wine to 

Vineyard. The first constraint cannot be violated by an insert 

into Wine, but the second one can: it has to be checked 

whether a "Saumur" tuple exists in Vineyard. To check 

integrity constraints, compiled versions of these constraints are 

stored in the DD with the fragments. At commit time, the TM 

asks the DD for the constraints that have to be checked, when 

an insert into Wine2 has been executed. The DD returns an 

XRA program to the TM, and the TM executes this program 

before it actually commits the transaction. In this case, the 

returned XRA program looks as follows: 

c l  = unique (<*2*>Wine2) 
c2 = <*l*>Vineyardl 
c3 = c l  - c2 
alarm (c3). 

Fig. 9 PRISMAiDB executing an insert. 

The alarm statement generates an abort, when the cardinality 

of its operand is greater than zero. The complete execution 

infrastructure that is built for the insert transaction is shown in 

Fig. 9. Note that the setup of the infrastructure for constraint 

enforcement is done parallel to the execution of the insert 

query. 

When the execution of the insert and the constraint en- 

forcement program is ready, the TM knows whether the 

transaction can commit or not. In case of an abort, an abort 

message is sent to all participating base LTM's. When the 

transaction can commit, the TM sends a precommit message 

to all participating base LTM's, which start making the insert 

permanent in the way described in Section III-F. A commit 

message ends the execution of the insert statement. 

V. PERFORMANCE 

As explained in the introduction, meaningful performance 

evaluation was only possible after the completion of the second 

version of PRISMAIDB. The results of the first performance 

tests in the spring of 1991 were bad due to synchronization 

problems in the system [47]. Some parts of the system were 

redesigned to eliminate these problems. The resulting version 

of the system was completed in the late fall of 1991. The 

performance evaluation of this system is described here. 

Some queries from the Wisconsin Benchmark are used to 

evaluate the performance [9]. This paper describes the most 

important aspects of the performance of PRISMNDB as a 

main memory system. A full description of the performance 

can be found in [47]. 

A.  Selection Queries 

A query that selects 1% of its input is used to evaluate 

the performance of selection queries. The source relation 

is fragmented over a number processors and the selection 

criterion is not on the partitioning attribute, so all fragments 

have to be searched for qualifying tuples. The result is stored 

fragmented without redistribution on the processors generating 
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Fig. 10. Performance of selection queries. 

result tuples (as PRISMA/DB is a main memory system, 

results are not written on disk). Different sizes for the source 

relation are used, ranging from 5000 (5K) tuples to 400 000 

(400K) tuples. For each source relation size, a speedup exper- 

iment is done. The numbers of processors used are adjusted 

to the size of the source relation, using larger numbers of 

processors for larger source relations. 

Fig. 10 shows the response times resulting from the selection 

queries, and the speedup diagrams that can be calculated from 

them. All response times are given in milliseconds. The best 
response time for each source relation size is printed in bold 

type. 
The response times are a measure for the absolute perfor- 

mance of the system. The absolute performance figures are 

reasonable compared to other systems. Comparison of the 

absolute performance of systems is hard, because there are too 

many differences between systems in hardware, functionality, 

etc. However, to give an indication, Fig. 11 lists the response 

times of some other systems, with the number of processors 

used for a 1% selection from lOOK tuples. The absolute 

performance of PRISMNDB seems reasonable from these 

data. However, as PRISMAiDB is a main memory system, 

it should outperform all disk-based systems mentioned in Fig. 

11. This issue is discussed after the presentation of the other 

performance results. 

The speedup characteristics illustrate the relative perfor- 

mance of the system. Linear speedup is the ultimate goal for 

parallel processing. However, a system that uses sequential 

initialization of the subtasks in the parallel execution of an 
operation can only get linear speedup for small numbers of 

processors. Our performance measurements show this phe- 

nomenon; we will now explain why. The response time to 

a query consists of two components. 

The TM sequentially creates and initiates the participating 

LTM's. This yields a component in the response time that 

is growing linearly with the number of processors. 

Each LTM has to do a certain amount of local processing. 

This yields a component in the response time that is 

inversely proportional to the number of processors. 

This simple reasoning leads to the observation that adding 

more processors to a parallel task ultimately degrades the 

performance in any system that uses sequential initialization 

Fig. 11. Response times of some parallel DBMS's to a 1% selection from 
100 tuples in ms. 

of these tasks. However, i t  is possible that the degrading 

performance is not measured, because it occurs only for larger 

numbers of processors than available. PRISMNDB does yield 

degrading performance for a number of processors that is 

lower than the number of available processors and the reason 

for this is twofold: firstly, relatively small source relations 

are taken into account, which leads to a small amount of 

local processing. The speedup diagrams show that the optimal 

number of processors indeed is lower for smaller source 

relations. The second reason is the main memory nature 

of the system. The sequential component in the response 

time consists of a lot of coordination and thus message 

passing. Therefore, this component does not benefit from the 

main memory nature of the system. The costs of the local 

processing, however, are lowered by the system being main 

memory. Therefore, the optimal number of processors to be 

used for a parallel task is lower on a main memory system 

than on an equivalent disk-based system. In other words, we 

can say, that in a main memory system, the local processing 

is so fast that i t  is hard to start all parallel components before 

the first one is ready. A more extensive and formal coverage 

of this issue can be found in [47]. 

The observation about the behavior of a parallel main mem- 

ory system has implications for the hardware configuration 

that should be chosen for such a system. Obviously, a main 

memory system needs a large amount of primary memory. 

However, as the maximal size of a subtask in a parallel task 

is directly related to the size of the memory of one processor, 

the amount of memory per processor should be fairly large 

to yield subtasks that are large enough to allow performance 

gain from parallelism. 

In the next section, the parallel execution of join queries is 

discussed. Because join queries are more expensive than selec- 

tions, their speedup characteristics are expected to be better. 
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Fig. 12. Performance of join queries. 

B. Join Queries 

The join query used in the performance experiments is a 

query joining a 10K tuple relation to a l00K tuple relation in 

which every tuple of the 10K relation matches to one tuple 

in the lOOK relation, so the result consists of 10K tuples. 

This query is called the joinABprime query in [9]; A is the 

lOOK relation and Bprime is the 10K relation. Four different 

execution strategies were tested, which are called joinl through 

join4 in the sequel: 

jo in l :  The relations are initially fragmented on the join at- 

tribute into equal numbers of fragments, and the corresponding 

fragments reside on the same processor. 

join2: The relations are fragmented in the same way as for 

joinl, but all fragments reside on different processors. The 

Bprime fragments are sent to the A fragments for joining. 

join3: Relation A is fragmented on the join attribute and 

relation Bprime is fragmented on another attribute into equal 

numbers of fragments. All fragments reside on different pro- 

cessors. Relation Bprime is redistributed and sent to relation 

A for joining. 

join4: Both relations are fragmented on another attribute 

than the join attribute into equal numbers of processors. All 

fragments reside on different processors. Both relations are 

redistributed and sent to the join processors for joining. 

These four strategies were tested using 10, 20, and 30 

processors for the joins combined with a fragmentation degree 

of 10, 20, or 30 for the initial fragmentation of the relations. 

Fig. 12 shows the response times measured in this experi- 

ment, and the speedup with respect to the response time of the 

10-processor queries. Note, that in this case, linear speedup 

yields a speedup factor 3 for the 30-processor queries. 

The achieved absolute performance for “joinl” and “join2” 

is good compared to other systems. Fig. 13 lists the response 

times for the same query reported by other projects. Again, it is 

hard to compare systems, as they differ in many ways. Yet, we 

like to report that the response time measured on PRISMA/DB 

outperforms all other reported performance figures on this 

query. 

Join1 and join2 show, apart from a good absolute perfor- 

mance, good speedup characteristics. The speedup is even 

slightly superlinear. This is caused by some synchronization 

problems for the queries using 10 processors. 

The speedup characteristics of join3 are disappointing, and 

join4 is even worse. The reason for this is as follows. Join3 and 

join4 need redistribution of the operands. This redistribution 

is expressed in XRA, and the expression for it is large, and 

grows for larger degrees of parallelism, as the number of 

destinations grows with the degree of parallelism. The TM 

sequentially sends the same large expression to each LTM, and 

because POOL-X does not support broadcasting, the overhead 

for sending an XRA-expression off-node is made for each 

fragment. Join3 needs to go through the redistribution of 

only one operand, but join4 has to redistribute both operands 

making things even worse. 

Here we are at a point where we have to pay for both forms 

of flexibility offered by the system. Firstly, using POOL-X 

facilitated the development of a flexible architecture, but the 

high level interface offered by POOL-X makes it impossible 

to solve the problem of sending large XRA-expressions to 

many LTM’s. Secondly, XRA was developed to express a wide 

variety of parallel execution plans, but the expressions that are 

generated in plans that have a high degree of parallelism grow 

larger than we want. 

Although there are some problems, we feel that PRISMNDB 

with the performance reported in  this section, offers a very 

good platform to experiment with parallel query execution, 

especially to study the execution of complex queries, in which 

the degree of intraoperator parallelism does not need to be 

very large. 

C. Concluding Remark 

This section discussed the performance of PRISMNDB. 

Both the relative and the absolute performance were discussed. 

The discussion of the relative performance yielded useful re- 
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sults for the implementation of parallel main memory systems. 

The absolute performance, however, is not as good as might 

be expected from a main memory system. Specifically. a main 

memory system should outperform a disk-based system by at 

least an order of magnitude. PRISMNDB does not achieve 

this and the reason is two-fold. Firstly, the hardware used 

is (although state-of-art when the PRISMA project started) 

outdated now. Also, due to the use of memory extension 

boards, the hardware does not run full-speed (see Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11). 
Secondly, the use of an experimental high level programming 

language has performance penalties: the high level of the 

language makes low level optimizations hard or impossible, 

and also, the new compiler was not optimized in detail. 

However, the use of the high level programming platform was 

profitable too, in the sense that we did not have to bother about 

all sorts of nasty low level details, so that a fully functional 

DBMS could be finished within a reasonable time frame. 

VI. CURRENT RESEARCH 

This section describes how the flexibility of PRISMAiDB 

is used in our research on parallel query execution and on 

integrity constraint enforcement. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A .  Multijoin Queries 

The flexibility of the query execution layer of PRISMA/DB 

is used to study the parallel execution of complex queries. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 
complex query is a query that consists of multiple relational 

operations. Multijoin queries are used as an example of 

complex queries in this paper. Important questions consist of 

the following. 

What is the best join order in a parallel environment? 

What degree of parallelism should be used for each join 

operation? 

How to allocate processors to each join operation? 
How does the initial data distribution influence the query 

execution? 

References [43]-[46], [48] are reports on this research. In those 

papers, the pipelining hash join algorithm (see Section 111-E) 

is introduced as an algorithm that has fewer constraints on 

the order in which operand tuples can be processed than the 

known hash join algorithms, and as such, it is expected to 

yield significant performance gain from interjoin pipelining. 

Its behavior in linear and bushy query plans for a restricted 

class of multijoin queries was studied, using simulation and 

analytic mathematical analysis (the distinction between left- 

deep and right-deep linear plans [34] does not exist here, 

because the pipelining hash join is a symmetric algorithm). 

Simulation was used, as at the time this research was started, 

the final version of PRISMAiDB was not ready yet. The results 

of the study show that effective parallelism can be achieved 

in a join pipeline. Also, it was shown that join queries with 

small operands are better off with a bushy query plan, and join 

queries with large operands prefer a linear schedule. 

Currently, this research is continued as follows. Firstly, 

the operational PRISMAiDB prototype is used to confirm the 

results from [43], secondly, we want to extend the study to 

a broader class of multijoin queries, and finally, intraoper- 

ation parallelism for the individual join operations will be 

considered. 

B. Integrity Control 

One of the current research directions in the PRISMA 

context is integrity control in parallel main memory database 

systems. The main topics in this research are software architec- 

tures for integrity control, the effects of data distribution and 

parallel enforcement, and ways to improve the performance 

of integrity constraint enforcement in parallel environments. 

The emphasis on parallelism and performance in constraint 

enforcement contrasts this research to that performed in the 

context of other DBMS projects like SABRINA [35] ,  POSTR- 

GRES [41], and STARBURST [24]. 

In this research, the basic software architecture for integrity 

control is based on the transaction modification principle as 

explained in the section on transaction management. This 

principle enables the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuse of the standard query execution 

machinery for constraint enforcement and deals correctly 

with transaction serializability and atomicity requirements. As 

discussed in [21], the basic architecture can be extended in 

a number of ways to obtain a better performance of integrity 

control. 

The effects of data distribution and parallel enforcement 

are described in detail in [20]. Here, attention is paid to 
the translation of constraints in a functional specification 

(first-order logic) to an operational specification in XRA, the 

removal of fragmentation transparency and the optimization 

of constraints in a parallel context, and to the mapping 

of constraints to the parallel query execution machinery of 

PRISMAIDB. The concepts can be used easily within the 

transaction modification context. 

A performance evaluation of coiistraint enforcement on the 

PRISMAiDB prototype has lead to two important observa- 

tions. In the first place, parallelism has proven to be a good 

way to deal with the high processing costs associated with 

constraint enforcement; transaction execution times including 

integrity control can be strongly improved by parallel exe- 

cution. Secondly, the relative costs of constraint enforcement 

have shown to be quite acceptable in comparison to transaction 

execution without any integrity control; typical figures are 

a few percent for very simple constraints and about 100 % 
for referential integrity constraints in the worst case. The 

fact that PRISMA/DB uses main memory storage has a pos- 

itive influence on these figures, since constraint enforcement 

is (mainly) a retrieval process, whereas update transactions 

require secondary storage operations. 

Research is being performed on special-purpose commu- 

nication protocols for constraint enforcement at the lower 

levels of PRISMAIDB. The main goal of these protocols is 

to decrease the control overhead imposed by the transaction 

management process in constraint enforcement. Further gains 

in performance can be expected from an optimal scheduling 

of constraint enforcement [22]. 

VII. CONCLUSIONS AND FUTURE RESEARCH 

In this paper, we have discussed the design and implemen- 
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tation of PRISMNDB, a parallel, main memory RDBMS. The 

design of the system can be characterized by two main ideas: 

use of parallelism and main memory data storage to provide 

high performance in query processing, and use of a high 

level object-oriented language to obtain a modular and flexible 

system architecture that can be used easily for experimentation 

with functionality and performance. 

Currently, the second prototype of the DBMS, called 

PRISMNDBl, is running on hardware configurations up 

to 100 nodes. The prototype provides complete DBMS 

functionality among which concurrency control, integrity 

control, and crash recover facilities. Extensions of the 

functionality can be added easily, like automatic loading and 

unloading mechanisms to be able to handle databases that do 

not fit into the main memory of the system. The absolute 

performance of the prototype has shown to be comparable 

to other state-of-the-art parallel database machines. The 

relative performance with respect to software and hardware 

configuration has led to new insight into the behavior of 

parallel main memory systems. 

The choice of an experimental object-oriented implementa- 

tion language for PRISMNDB has had an important impact on 

the project. The language has proven to be a great advantage in 

obtaining a well-structured and flexible software architecture. 

The mapping of DBMS components onto active objects in 

this language enables a natural modularization of the system 

with clear interfaces. On the other hand, the choice of a high 

level implementation language has shown to be a drawback in 

obtaining optimal performance, since no explicit control over 

the hardware and low level processes is possible. 

PRISMNDBl is used as an experimental platform for a 

number of research activities. In the first place, experiments 

with multioperation queries and parallel integrity control, 

as described in the previous section, will be conducted on 

the prototype. Furthermore, PRISMNDBl is used for the 
implementation of parallel algorithms for transitive closure 

operations [25]-[27]; this enables the parallel computation of 

recursive queries on PRISMA/DBl. Also, the system will be 

used as an experimental implementation platform for a NF2 

layer that supports complex objects [38]; because flattening 

a complex database schema onto a relational schema yields a 

schema with many referential integrity constraints, and queries 

that need many join operations, this layer will rely heavily on 

the referential integrity control and parallel multijoin facilities 

of the system. 
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