
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 4, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 . DECEMBER 1992 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA541

PRISMA/DB: A Parallel, Main
Memory Relationh DBMS

Peter M. G. Apers, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMember, IEEE, Care1 A. van den Berg, Jan Flokstra,

Paul zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW. P. J. Grefen, Martin L. Kersten, and Annita zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN. Wilschut

Abstract-PRISWDB is a full-fledged parallel, main memory
relational database management system the design zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof which
is characterized by two main ideas. In the first place, high
performance is obtained by the use of parallelism for query
processing and main memory storage of the entire database.
In the second place, a flexible architecture for experimenting
with functionality and performance is obtained via a modular
implementation of the system in an object-oriented programming
language. This paper describes the design and implementation
of P R I S W D B in detail. Also, a performance evaluation of the
system shows that the system is comparable to other state-of-
the-art database machines. The prototype implementation of the
system is ready, and runs on a 100-node parallel multiprocessor.
The achieved flexibility of the system makes it a valuable platform
for research in various directions.

Index Terms-Parallel, main memory, relational database man-
agement system, design and implementation, architecture, query
execution, experimentation, integrity constraints.

I. INTRODUCTION

RISMNDB is a parallel, main memory DBMS that was P designed and implemented during the last five years

in The Netherlands by several scientific and commercial

research institutions.' In the fall of 1986, the PRISMA project

was started. The goal of the entire PRISMA project [4]

(of which PRISMNDB is a subproject) is the design and

realization of parallel hardware and software to implement

the parallel object-oriented programming language POOL, and

the implementation of a nontrivial application in POOL. A

DBMS was chosen as application. Therefore, PRISMA/DB

was designed to be implemented in POOL and to run on the

100-node parallel machine on which POOL is implemented.

In the DBMS group of the PRISMA project, we wanted

to study how we could exploit the available resources: 1.6

GBytes of main memory, 100 processing nodes, and a high

level parallel programming language. Therefore, the goal of

PRISMAiDB is:

Manuscript received March 5 , 1992; revised August 38, 1092.

P. M. G. Apers, J. Flokstra, P. W. P. J . Grefen, and A. N. Wilschut are

C. A van den Berg and M. L. Kersten are with the Center for Mathematics

IEEE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALog Number 9204085.

' The main partners of the project were: Philips Research Laboratories in
Eindhoven, The Netherlands, University of Twente, Center for Mathematics
and Computer Science, and the University of Amsterdam.

with the University of Twente, 7500 AE Enschede, The Netherlands.

and Computer Science. 1009 AB Amsterdam, The Netherlands.

the design of a parallel, main memory DBMS that has a

flexible architecture and that is flexible in its query
execution, so that experiments with the functionality and

the performance of the system are possible.

Both for the functionality, and for the performance, there were

minimum requirements, such that the resulting prototype can

be used for research.

Functionality: The goal is implementing a relational data-

base with the traditional SQL interface and a logical query

language, called PRISMAlog, a language similar to Datalog.

Furthermore, the database management system should pro-

vide concurrency control and support recovery from system

failures. The architecture of this system was designed in a

modular way to provide opportunities to experiment with the

functionality of the system. This facility is currently used for

the research in the area of integrity constraint enforcement

and query optimization.

Performance: Here, the goal is understanding the influence

of parallelism and main memory on performance. The ex-

pectation is to obtain a performance comparable to currently

available prototype database machines. This performance has

to be obtained by both parallelism (100 nodes) and main

memory (16 Mbytes per processor). To study the influence of

parallelism and the impact of the main memory character of the

system, a flexible query execution layer is implemented in the

system. Also, special algorithms that exploit the main memory

character for the relational algorithms have been implemented.

This facility is currently used for the research in the area of

parallel query execution.

Obviously, experimentation is a central issue in the project.

In many cases, proper design decisions could not be made

because of insufficient insight and lack of experience. In that

case, the system was set up in such a way that various solutions

could be tried out in the final system. This is achieved by a

modular architecture and a flexible allocation mechanism of

modules to processors [49].

At the starting point of the project in 1986, only few papers

on parallel, main memory based database systems on general

purpose hardware were available. The low costs of a large

main memory system for the end of the 1980's were predicted

correctly in [33]. Main memory in 1992 costs about $lOOK per

gigabyte. The potential benefits and problems of an MMDBMS

were given in [17] and a single prototype implementation of

a shared-store MMDBMS was developed [32]. During the

1041-4347/92$03.00 Q 1992 IEEE

542 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON KNOWLEDGE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND DATA ENGINEERING. VOL. 4. NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, DECEMBER 1992

project’s life cycle, an increasing number of papers appeared

that address technical issues for MMDBMS implementations.

This special issue is its proof of evidence. The development

of PRISMNDB and related studies were influenced by the

work on recovery issues [18], [31], parallelism in large-scale

comparable (disk-based) systems, such as GAMMA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[151,

Bubba [lo], and HC16-186 [12]. The role of main memory to

hold the entire database is getting more support, as illustrated

by the shared-store systems XPRS [40], DB3S [8], and the

distributed store system EDS [36], [42].

The goals of the PRISMA project were ambitious. Hard-

ware, system software, and the database management system

were all developed from scratch. For a period of 4 years

roughly 25 people worked on the project; not all of them

were directly involved with the database machine. Halfway

through the project efficiency problems were discovered with

the implementation of the language POOL. After about three

and a half years, the first prototype was running on the 100-

node multiprocessor system. Since then, pieces of the system

are being rewritten to obtain a better performance. Currently

a lO0K by 10K join of the Wisconsin benchmark runs in 2 s.
Research is now focused on a few topics to investigate

the performance and the flexibility of the architecture. We

have chosen to extensively investigate the influence of main

memory and parallelism on query execution and constraint

enforcement. For other components of the system, like the

concurrency controller, off-the-shelf solutions were chosen, or,

in case of recovery, a more concise study of main memory

alternatives led to the implementation of a parallel algorithm.

The main research topics are: performance evaluation, parallel

join evaluation in a main memory environment, and parallel

constraint enforcement. This research has revealed that the

main memory character of the system has significant impact on

its parallel behavior, that specialized main memory algorithms

are possible and profitable from performance viewpoint, and

that the fast read-only access to a main memory system allows

extensive integrity constraint checks with limited performance

penalty. Each research topic is discussed in more detail in this

paper.

This paper is organized as follows. The next section briefly

introduces the 100-node parallel multiprocessor that is used,

and the implementation language POOL-X. Section 111 first

gives an overview of the DBMS architecture and then high-

lights the following aspects of this architecture: internal rep-

resentation of queries, parallelism and data fragmentation,

transaction management, query execution, and storage and

recovery. After that, Section IV illustrates the dynamic as-

pects of the architecture via the description of an example

query execution. Section V describes the performance of

PRISMAIDB, and it discusses the relationship between the

influence of parallelism and the main memory aspects of the

system. Section VI briefly describes the current research in

the context of PRISMA/DB, and Section VI1 summarizes and

concludes the paper.

11. HARDWARE AND SOFTWARE SUPPORT

PRISMA/DB is implemented on a parallel multiprocessor,

Fig. 1. Hardware configuration of thc POOMA machine

called the POOMA machine. On this machine, a parallel,

object-oriented language, POOL-X, and an operating system

that supports POOL-X are implemented. This section summa-

rizes the hardware and the essential features of POOL-X.

A. The POOMA Machine

The POOMA machine is a shared-nothing, parallel mul-

tiprocessor, which consists of 100 nodes. Reference [131

describes its design and the rational behind it in detail. Fig.

1 shows the hardware configuration. Each node consists of a

68 020 data processor with 16 Mbytes of memory, a disk,

and a communication processor that links it to 4 other nodes

using bidirectional links. The processor memory consists of

4 Mbytes of on-board memory, and a memory extension

board containing 12 Mbytes. The use of slower memory

extension boards results in the 4 MIPS processors to run at

only 1.5 MIPS in practice. Some nodes have an ethernet card

that links the system to a Unix host. The nodes are linked

together using communication processors that were developed

by Philips. Various configurations can be realized. Fig. 1 shows

a mesh connection; other configurations, such as a cordal

ring connection and a double linked ring connection are also

possible. The entire system contains 1.6 GBytes of memory.

B. POOL: A Parallel Object-Oriented Language

The programming language POOL-X [2], [3], [37] is im-

plemented on the POOMA machine, and is used as an imple-

mentation language for PRISMAIDB.

As an object-oriented language, POOL-X allows the defini-

tion of objects, which are functional units of data and methods

that operate on the data. In POOL-X, process objects and

data objects can be discriminated. Process objects have an

individual thread of control, and data objects are used by

process objects as data structures. The discrimination between

process objects and data objects was made for efficiency

reasons.

Parallelism is supplied in a very natural way: concep-

tually, all process objects that exist in the system execute

concurrently. Allocation of two process objects to different

APERS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU / . : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPKISMA/DB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA541

processors makes them really run in parallel. Also, objects

can be created and deleted zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdynamically. These features turn a

POOL-X program in execution into a very flexible structure

which allows runtime experimentation with various forms of

parallelism.

Objects can communicate synchronously and asynchro-

nously. A synchronous message to another object causes the

sender to wait for the reply. An asynchronous message does

not have a reply. Synchronous communication between objects

synchronizes their execution and may, therefore, impede the

effective parallelism. Asynchronous communication does not

have this drawback. Communication between objects that are

allocated to different processors is automatically translated into

interprocessor message passing.

POOL-X has some special facilities for the implementation

of a DBMS: tuple types can be created dynamically. Also,
conditions on tuples can be compiled into routines. This feature

is used to speed up scan operations in which a condition has

to be evaluated for a large number of tuples, like selections

and joins.

It should be noted that the language POOL-X was developed

and implemented parallel to the design and implementation of

PRISMA/DB. This had consequences for the development of

PRISMA/DB. About halfway through the project, there were

severe performance problems in the POOL-X implementation.

As a consequence, we could not evaluate the performance of

the first try-out prototype. Also, the POOL-X compiler that is

currently used is not yet optimized in detail. This results in

the performance of PRISMAiDB not being quite optimal.

111. ARCHITECTURE

This section presents the software architecture of the

PRISMA database management system. First, an overview

is given of the global architecture. Next, the most important

aspects of this architecture are discussed in detail: the

internal relational language, extended relational algebra

(XRA), query optimization and parallelism in query execution,

transaction management and integrity control, query execution

mechanisms, and finally, storage and recovery aspects. Note

that this section focuses on the static aspects of the

architecture. The dynamic aspects are illustrated in Section IV,

where examples of query execution are described in detail.

A. Overview

Fig. 2 presents an overview of the architecture of

PRISMNDB. The architecture consists of a number of

components that are implemented as POOL-X process objects.

Some components are instantiated several times in the system,

others are central: they have one instantiation that serves the

entire DBMS. The architecture is dynamic: components can be

created and deleted dynamically, according to the use of the

system. Each component has a well-defined functionality, and

much effort was put in the design of the interfaces between

the components. This modularity through function separation

and high level interfaces is an important characteristic of the

design of the system [49]. As a result, the flexibility in the

system architecture allows experiments with functionality. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

QLC +A
QO - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD D I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00

r

~

t
LTM LTM

t T ~

I

OFM OFM OFM

1

LTM L T M ,LTM LTM ~

~ ~~

Fig. 2. Global architecture PRISMNDB.

The rectangles in Fig. 2 represent permanent components,

i.e., components that live as long as the system. The ovals

represent transient components belonging to one user session;

the life cycle of these components is related to user actions.

The dotted ovals show transient components belonging to a

second, concurrent user session. The function of the compo-

nents and the interfaces with other components are described

in the following.

Two central components of the system are the data dic-
tionary (DD) and the concurrency controller (CC). These

components are instantiated once in the system. The choice

for a central CC and DD was made for simplicity reasons. The

DD is the central storage of all metadata of the system, like

relation and constraint definitions, fragmentation information,

and statistics. The contents of the DD are entirely stored in the

primary memory; a disk copy is kept to ensure recoverability.

Data definition statements result in changes of the DD tables;

these changes are immediately written to the disk. The con-

currency controller controls concurrent access to the database.

It uses a standard two-phase locking protocol with shared and

exclusive locks. Furthermore, it is equipped with a deadlock

prevention algorithm.

The query preprocessing layer of the system is formed by

the query language compiler (QLC) and query optimizer (QO)

components. As shown in the figure, these components are

instantiated once for each user session. The QLC provides

an interactive interface to the user and translates queries

from the user language into the internal relational language

of the system (XRA, see Section 111-B). This component

offers full fragmentation and allocation transparency to the

user [14]. Four different QLC’s are available: a standard SQL

interface, a logical query interface called PRISMAlog, that

allows recursive queries [5] , an XRA interface that allows

queries in the internal language of the system, and a simple

data definition interface via which relations can be created,

integrity constraints can be defined, and the fragmentation of

relations can be changed. Translated queries are sent to the

QO, which optimizes them into parallel execution plans (see

Section 111-C). The QLC’s and the QO’s contact the DD to

obtain the schema information and statistics needed for the

translation and optimization of queries.

The transaction manager (TM) forms the execution control

layer of the system. This component is instantiated once for

544 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON KNOWLEDGE AND zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADATA ENGINEERING. VOL. 4, NO. 6, DECEMBER 19Y2

each transaction. The TM coordinates the execution of a

transaction via an interface between the TM and the query

execution layer of the system. Furthermore, the TM contacts

the CC to ensure serializability of the transaction; the atomicity

and recoverability of the transaction are enforced through a

two-phase commit protocol between the TM and the execution

layer; the correctness of a transaction is guaranteed through the

enforcement of integrity constraints, which are retrieved from

the DD. Transaction management is described in more detail

in Section 111-D.

The data storage and query execution layer consists of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
one fragment managers (OFM’s) and the local transactions
managers (LTM’s). OFM’s are permanent; they store and

manage the main memory copy of one fragment of a relation in

the database, and the logging and checkpointing information

that is kept on the disk for recovery. LTM’s are transient;

they are the relational engines in the system. The LTM’s use

especially designed main memory algorithms for the relational

operations. The query execution layer is described in more

detail in Section 111-E.

The design of PRISMAiDB allows parallelism between

components. If, for example, the QLC and the QO of one

session are allocated to different processors, they can work

concurrently, forming a pipeline. Also, allocation of the com-

ponents of a second session to a new (set of) processors

yields interquery parallelism on the query preprocessing level.

Finally, allocation of OFM’s and LTM’s to different processors

leads to parallel query execution in several forms. This issue

is described in Section 111-C.

The main interface language between the various com-

ponents of PRISMNDB is formed by an extension to the

relational algebra, called XRA [23]. This language provides

flexible, high level communication between the various query

processing layers of the system. The language is discussed in

detail in the following.

B. XRA

An XRA is used as an internal representation of queries in

the system. A full description of its syntax and semantics can

be found in [23]; here the main features are described.

XRA contains the standard relational operations (selection,

projection, Cartesian product, join union, difference, and in-

tersection), update facilities (insert, delete, and update), and

some extensions like a grouping operation, sorting facilities,

and a transitive closure to support recursive queries from the

PRISMAlog interface.

Also, XRA offers the flexibility to express a wide variety

of parallel query execution plans: an operand can consist of

multiple tuple streams that are automatically merged to form

one operand, and the result of an operation can be distributed

over multiple output streams. This distribution of result tuples

can be done in two ways: the result can be replicated over

output streams, or a hash- or range-based splitter is applied

to split the tuples over the output streams. The use of these

primitives to formulate parallel query plans is illustrated in

Section IV.
Finally, a simple projection that can only throw away some

attributes from a tuple (as opposed to the facility to do, e.g.,

arithmetic operations on attributes) is added to the language.

This operation is used as a cheap filter on tuples before they

are sent to another processor to reduce the communication

costs. Again, its use is illustrated in Section IV.

C. Parallelism and Data Fragmentation

PRISMA/DB supports parallel query execution. The use of

parallelism is completely transparent to the user. The query

preprocessing layer of PRISMNDB, which consists of the

QLC’s and the QO, translates user queries on the relational

level into parallel execution plans on the fragmented database,

taking the fragmentation scheme of the stored database into

account. This section describes the generation of parallel

execution plans. To do so, first the terminology used with

respect to parallelism and data fragmentation are introduced.

1) Parallelism: In PRISMAIDB, various forms of paral-

lelism can be used to speed up query execution. The standard

terminology for parallelism [ll], [49] is used. To be complete,

the used terminology is summarized here. Multiple users can

use the system concurrently, yielding interquery parallelism

between their queries. Within a query, intraquery parallelism
can be subdivided into interoperator, and intraoperator par-

allelism. Orthogonal to this distinction, pipelining can be

contrasted to (pure) horizontal parallelism. The term paral-

lelism is often used as a synonym of horizontal parallelism.

This paper adopts this habit if no confusion is possible.

Horizontal intraoperator parallelism is very commonly used.

The term datu parallelism is often used for this form of

parallelism; the number of processors used is called the degree
of parallelism.

2) Data Fragmentation: Relations in PRISMAiDB are hor-

izontally fragmented across a number of processors. Horizontal

fragmentation of data enables parallel execution of operations

on the data. For example, to execute a selection on a frag-

mented relation, i t suffices to execute a selection on each of

the data fragments.

Because PRISMAiDB uses hash-based algorithms for many

relational operations, hash-based fragmentation is used. An

arbitrary attribute can be used as a fragmentation attribute.

To distribute the tuples in a relation over its fragments, a hash

function with a large range is applied to the specified attribute,

and the resulting value modulo gives the number of fragments

used for the relation, which indicates the fragment where

the tuple belongs. So, specifying the fragmentation attribute

and the number of fragments pins down the fragmentation.

Each fragment can be assigned to an arbitrary processor. The

number of fragments that is used for one relation is called the

fragmentation degree of that relation.

This fragmentation strategy offers the possibility to experi-

ment with fragmentations schemes for one relation that differ

in the their degree and fragmentation attribute. Range-based

fragmentation is currently not supported. The extension can

easily be added, however, as XRA has the facility of range-

based splitting a relation.

The fragmentation of a relation and the allocation of the

fragments can be specified by the user at creation time. Also,

APERS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAul.: PRISMA/DB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA545

a relation can be refragmented runtime, and the fragments can

be reallocated to other processors. This allows experimentation

with different allocation and fragmentation schemes in one

session.

3) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGenerating Parallel Execution Plans: User queries are

transformed into parallel execution plans by the query pre-

processing layer. The QLC takes a query in one of the user

languages, and after syntactic and semantic checking, i t is

translated into XRA on the relational level (XRA-R).

The QO transforms this XRA-R query into a parallel ex-

ecution plan in XRA-F (XRA on the fragment level). To

do so, it retrieves fragmentation information from the DD.

Because we are still studying the problem of optimizing

complex queries for parallel execution (see Section VI-A),

only simple optimizations are used: selections and projections

are pushed down as far as possible, and many relational

operations can be distributed over unions. This means that

the QO will transform a join over the union of the fragments

that belong to one relation, into a union over the fragment

joins, thus generating a parallel execution plan for a join. The

fragmentation information is taken into account in this process:

if the operands of a join are fragmented on the join attribute

into the same number of fragments, the fragments can be

joined to each other directly, otherwise, one or both fragments

are redistributed before the join. In the same way, many other

relational operations are parallelized. Finally, the QO allocates

the operations in the parallel schedule to processors, taking the

allocation of the base-fragments into account: e.g., a join of

two fragments that reside on different processors is allocated

to the processor where the larger operand resides, so that the

data transmission costs are minimized.

For the implementation of the QO, a rule-based approach

was chosen [29], in which the optimization strategies are stored

in a rule base that is attached to an optimization engine. This

architecture of the QO facilitates changes in the optimization

strategy that is used, so that research results in the area of

parallel query processing can easily be implemented. The

performance of the optimization process itself is currently not

a research issue.

D. Transaction Management and Integrity Control

The PRISMA/DB TM is responsible for the management of

one single transaction. The TM has two main tasks. First, it

is responsible for creation and control of the transaction exe-

cution infrastructure consisting of OFM’s and tuple transport

channels, and it schedules the execution of the individual oper-

ations in a transaction. Secondly, i t takes care of the transaction

properties: atomicity of transaction execution, correctness with

respect to defined integrity constraints, serializability with

respect to concurrent transactions, and recoverability. The TM

has a modular internal architecture the design of which was

inspired by the tasks mentioned above; an overview of the

architecture is given in Fig. 3.
Transaction commands coming from the query optimizer

are first analyzed. One of the main goals of the analysis is

to determine the necessary locks for the execution of the

commands. This locking information is passed to the local zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I +apiiq* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
scheduler manager 1

I TM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7
V I

OFM

Fig. 3. Architecture of the TM

lock manager. This module decides whether locks are already

owned by the transaction, or have to be requested from the

CC. Analyzed commands are scheduled for parallel execution,

such that all commands are executed as early as possible.

The scheduling takes both the dependencies between various

commands and the availability of locks into consideration

[22]. Commands that are ready for execution are sent to the

execution control module. This module is responsible for the

control of the actual execution of commands at the OFM layer

of the system. Where necessary, i t creates transient LTM’s and

tuple transport channels to form the execution infrastructure

for the commands in the transaction. After having created this

infrastructure, i t sends the XRA commands to the appropriate

LTM’s. At transaction commit time, the integrity constraints

to be enforced are retrieved from the DD. Based on a syntactic

analysis of the update commands in the transaction, only

those constraints are retrieved that may be violated by the

transaction. The constraints have been translated into XRA

commands at definition time by the DD, and can thus simply

be appended to the end of the transaction, according to the

transaction modification principle’ [21]. The execution of the

constraints can use exactly the same mechanism as normal

query execution. In this way, constraint enforcement auto-

matically satisfies the serializability and transaction atomicity

requirements. At the very end of transaction execution, a

two-phase commit protocol is executed to ensure transaction

atomicity, in which the TM acts as coordinator and all OFM’s

involved in the transaction act as participants.

E. Query Processing

This section describes the query execution layer of

PRISMAIDB. This layer consists of the OFM’s, which store

and manage base data, and the LTM’s which are the relational

engines of the systems. Fig. 4 shows the organization an

OFM-LTM combination in the query processing layer.

An OFM manages one fragment of a relation; it is a

permanent component, which is implemented as a POOL-X

process object. As such, a fragment of a relation is the unit of

data allocation in the DBMS, and the allocation facilities of

POOL-X can be used to experiment with different allocation

schemes for the fragments of the stored database.

Note the differcncc with the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAquwv rnodrficutiorl approach [3Y], where the
\election predicates of updates are extended with the negation of constraint
predicates.

546 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, NO. 6, DECEMBER 1992

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. Local transaction management and its environment. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
An LTM is a transient object; it can execute relational

operations. Typically, an LTM is created for each fragment

operation in a query. Some LTM’s are attached to an OFM,

in which case they can directly access the fragment that is

managed by that OFM; other LTM’s are independent and

they operate on the results of previous operations in the

same transaction. This can be a stream of tuples that is

generated by one or more other LTM’s, or the stored result

of a previous operation of the same LTM. LTM’s are also

implemented as POOL-X process objects, and they form the

unit of parallelism in the query execution layer of the DBMS.

Again, the allocation facilities of POOL-X can be used to

experiment with various parallel execution strategies for a

query.

The query execution layer of PRISMNDB is designed to

allow flexible parallelism: one operand can consist of multiple

input streams that are merged by the LTM to form one operand

(in Fig. 4, three LTM’s produce one operand for the destination

LTM). On the other hand, the result of an operation can

be distributed over multiple output streams, each with its

own destination. One OFM can concurrently be accessed by

multiple transactions (only for reading, of course); in that case

each TM attaches a private LTM to the OFM.

The main memory character of the system is exploited in the

algorithms for relational operations. In general, we can state

that a main memory system allows relatively simple algorithms

that are not bothered by buffer and cache management prob-

lems. Obviously, such a system allows optimizations that only

yield performance gain in a main memory environment. For

example, [6], [7] describe a study of possible optimizations of

operations that scan large numbers of tuples. It was shown

that dynamic compilation of expressions that have to be

evaluated for a large number of tuples yields considerable

performance gain. Therefore, PRISMNDB heavily uses the

dynamic compilation facility of POOL-X.

The architecture of the LTM’s allows both pipelining

and horizontal parallelism between different LTM’s. In

P R I S M m B , we want to study both forms of interoperation

parallelism in the context of a main memory system. In [43],

[45] it is shown how special main memory algorithms can be

used that enhance the effective parallelism from pipelining.

table

matdling

Simple Hash-Join Pipelining Hash-Join

Fig. 5. Simple hashjoin and pipelining hash join algorithm in a
main memory system.

These pipelining algorithms aim at producing output as early

as possible so that a consumer of the result can start its

operation. In particular, [43], [45] proposes a pipelining hash

join algorithm. As opposed to the well-known simple hash

join algorithm, this symmetric algorithm builds a hash table

for both operands (see Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5). The join process consists of
only one phase. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs a tuple comes in, it is first hashed and

used to probe that part of the hash table of the other operand

that has already been constructed. If a match is found, a result

tuple is formed and sent to the consumer process. Finally, the

tuple is inserted in the hash table of its own operand. This

algorithm can produce a result tuple as soon as two matching

tuples have reached the join LTM. Pipelining algorithms are

also possible for many relational operations other than the join

operation. Where possible, pipelining algorithms are used for

the implementation of relational operations. Reference [48]

discusses the influence of using pipelining algorithms on the

performance gain from interoperation pipelining. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
F. Storage and Recovery

PRISMA/DB is a main memory DBMS; this means that the

entire database is stored in the primary memory (RAM) of the

system. To make this a realistic assumption, the system must

provide a large amount of RAM memory. The POOMA pro-

totype is equipped with a total of 1.6-GB RAM. Furthermore,

the scalability of the hardware architecture allows the addition

of nodes to increase this amount of memory. The POOMA

hardware is not equipped with stable RAM memory, however.

As a consequence, the contents of its memory are lost after

a system crash. To ensure stability of the database, a stable

storage medium is required as backup storage for the main

memory database. PRISMNDB uses the POOMA stable file

system for this purpose.

I) Storage: Since PRISMA is designed as a main mem-

ory system, the traditional DBMS storage structures for the

relations have to be re-evaluated. The OFM is equipped with

data structures for handling tuples, These data structures are

available to each LTM that is attached to an OFM (see Fig. 4).

In particular, tuple layout, index creation, storage preservation,

and temporary storage are important for their design. See, for

instance, [6], [28], [30] for a comparison of data structures for

main memory database systems. The tuple layout is critical

for both storage and performance. Tuple lengths for business

like applications can be assumed to be less than 4K bytes.

Most tuples will be rather short (0.1-0.5 K). Moreover, the

use of main memory relaxes the need for physical adjacency of

APERS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al.: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPRlSMAiDB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA547

Pcrson

"Carcl"

I lr inks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
102
I 0 5

I06 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
104

LVinc Vineyard

Fig. 6. Example database

fields within a tuple. However, POOL was one of the boundary

conditions of the project, which made it impossible to exploit

clever memory allocation schemes and main memory data

structures, and to experiment with the tuple representation.

2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARecovery: The recovery mechanism of PRISMA is based

on the two-phase commit protocol together with logging and

checkpointing techniques per relation fragment (see Fig. 4).

Each OFM that participates in an update transaction records

on its local log file the transaction updates, the transaction

precommit decision, and finally, the global abort or commit

status. When a log grows too large, the OFM can decide locally

to write a checkpoint file to disk, thereby clearing the log.

After a system crash each OFM can recover independently by

reloading the most recent checkpoint from disk and replaying

the update statements of committed transactions from the log

file. Note, that the PRISMA architecture is designed to make

use of parallel logging [11 and recovery to reduce the overhead

of disk I/O.

In some cases, it is possible that the OFM was in a

precommit state at the moment of the crash. Then the recovery

mechanism of the OFM must find out the state of the global

transaction at the time of the crash. This information is kept up

to date in a global transaction log by the TM during transaction

processing. The transaction state can be active, committed, or

aborted. At recovery time, the OFM retrieves the transaction

state from the transaction log. If the state is aborted or active,
the OFM will not replay the update statements of the last

transaction on the log.

The database is protected against media failures by the

stable file system of the POOMA system. This file system

employs a file replication technique that keeps a copy of each

file on a different disk. After a media failure, the POOMA

system software is responsible for bringing the file system

back into a consistent state.

IV. QUERY EXECUTION: AN EXAMPLE

To illustrate the dynamic aspects of the DBMS architec-

ture, the execution of an example query is described. The

database in Fig. 6 is used in this query (this example is

borrowed from [19]). The relations are fragmented on their

first attribute. Person and Drinks are fragmented into two

fragments (Personl, Person2, Drinkl, Drink2), and Wine
into three fragments (Winel, Wine2, Wine3); Vineyard
has one fragment (Vineyardl). The horizontal lines in Fig.

6 indicate the fragment boundaries. The first attributes of

Wine, Person, and Vineyard are unique keys. The domain

m
m

Fig. 7. PRISMAiDB filled with the example database.

of the age field of the Person relation is restricted to in-

tegers in the interval [0, 12011. Furthermore, there are the

obvious referential integrity constraints in this schema: from

Drinkspers to Person.id, from Drinkswine to Wine.id,
and from Wine.name to Vineyard.name. The corresponding

fragments of Person and Drinks reside on the same processor;

all other fragments have a private processor. Fig. 7 shows

PRISMNDB with this database stored in it, when idle. In this

figure, the OFM-components are labeled with the name of the

fragment they store, instead of the label "OFM" as in Fig. 2.

The dotted boxes in Fig. 7 represent processors.

The physical data organization of the example database

illustrates the flexibility of the data storage system: an arbitrary

number of fragments is possible for each relation, and each

fragment can be allocated to any processor that has enough

memory space to hold the data. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. A Retrieval Query

We now assume that the database from Fig. 6 is stored in

PRISMAIDB. As an example of a retrieval query, we will

find the names of the persons that drink German wine. SQL

is used as query language.

SELECT Person.name FROM
Person, Drinks, Wine, Vineyard
WHERE Person.id = Drinksperson AND

Wine.id = Drinks.wine AND
Wine.name = Vineyard.name AND
Vineyard.country = "Germany."

To execute this query, an SQL compiler is created. This

compiler checks the syntactic and semantic correctness of the

query. To do the semantic checking, the SQL compiler contacts

the DD, that supplies information about the schema of the

548 IEEE TRANSACTIONS ON KNOWLEDGE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAANI1 DATA ENGINEERING. VOL 4. NO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, DECEMBER 1992

relations that are used in a query. If the query is found correct,

it is translated into XRA-R: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
and 8=10,
cp(Person, Drinks, Wine, Vineyard)).

<*2*> select (1 1 =“Germany” and 1 =4 and 5=7

In this XRA construct, numbers refer to attributes, the

keyword CP is the Cartesian product (in the Cartesian product,

the attributes of the operands are concatenated, so the result

has 11 attributes), and < *2* > indicates that the result of

the operation is to be projected on its second attribute. This

XRA-R query is handed to the QO. The QO compiles the

query into XRA-F and optimizes it. Just simple optimizations

are used in the current version of PRISMAIDB: selections

and projections are pushed down as far as they are possible

and useful, and joins are distributed over unions. No proper

algorithm to decide on the join order, and on the degree of

parallelism for each join is implemented yet (see Section VI-

A). The QO contacts the DD to get fragmentation information

for the relations in the query. Also, the DD can supply statistics

about relations and fragments to the QO. A possible resulting

XRA-F query is:

c l = Person1
c2 = Person2

{c3,c4,c5} zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=(5) <*2,5*> join (Drinksl, 1 =4, c l)
{c6,c7,c8} =(5) <*2,5*> join (Drinks2, 1 =4, c2)

(c9,clO) =(4) <*1,4*> join ({c3,c6}, 2=3, Winel)
{c l 1 ,c12} =(4) <*1,4*2 join ({c4,c7}, 2=3, Wine2)
{c l 3,cl4} =(4) <*1,4*> join ({c5,c8}, 2=3, Wine3)

{c15,c16)” =(1) e l * > select (2 = “Germany,”
Vineyardl)

c l 7 = < * l o join ((c9,cll ,cl 3}, 1 =3, c l 5)
c l 8 = < * l * > join ({cl O,cl2,cl4}, 1 =3, c16)

?union (c17, c18).
This program looks pretty complex, however, the cor-

responding execution infrastructure in Fig. 8 illustrates its

meaning. The facilities of XRA that are explained in Section

111-B are used in this program: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
{ C O . (6) as operand refers to an operand that consists of

multiple streams of input data.

{ca. cb} = (r) indicates that the result of an operation

has to be split on attribute zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT over multiple output

streams.

< zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA*a. /I* > indicates that the result of an operation has

to be projected on attributes n and b.

Person can be joined to Drinks without refragmentation,

because these relations are fragmented on the join attribute.

The Person fragments have to be sent to the Drink fragments,

however, because they are managed by other OFM’s. The

results of these joins have to be redistributed to join them

to Wine. Finally, the result of the selection from Vineyard,
and the result of the join to Wine are redistributed to calculate

their join on two processors. The results are united and sent to

Fig. 8. PRISMAiDB executing the example query.

the user. Before the tuples are sent of-node, they are projected

on the relevant attributes to reduce the communication costs.

The XRA-F program is handed to the TM, which creates

the execution infrastructure and coordinates the execution. The

necessary execution infrastructure is shown in Fig. 8. For each

fragment that is used, the TM asks an S-lock from the CC.
When the lock is acquired the fragment can be accessed. As

explained in Section 111-E, an LTM has to be attached to an

OFM to execute relational operations on base fragments (in

the figure these LTM’s are represented by half ovals on top of

each OFM). Operations that do not have any base fragment as

an operand are executed by independent LTM’s (ovals in the

figure). The TM creates all LTM’s and initializes them with

the XRA statement they have to execute. The (half) ovals in

the figure are labeled with the XRA-statement they execute.

After its setup, the infrastructure is completely self-

scheduling. Each LTM connects to its destination(s) (ref-

erences to them are incorporated in the XRA statement

that is executed); as each LTM works independently, this

coordination phase is intrinsically parallel. As soon as an LTM

has connected to all its destinations, it can start processing

the available data. Base data are directly available, but data

that is coming in via channels may have to be waited for.

The infrastructure in execution works like an assembly line,

with the LTM’s as workers, and the data flowing along them.

The LTM’s are activated by the data that are available. Each

operation terminates as soon as all operands have terminated.

An operand terminates when as many EOF tuples have been

encountered as there are channels in the operand. The entire

query is ready when two EOF tuples have reached the final

union. When ready, an LTM sends a ready message to the

coordinating TM, which can shut down the execution when

all participants are ready. After the commit of a transaction,

the locks are released, and all LTM’s with their data and the

TM are discarded. It appears that Peter, Paul, and Care1 have

drunk German wine. The example query execution shows all

forms of intraquery parallelism.

Each join (on the relation level) is executed in parallel

APERS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPRISMNDB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA549 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
.

(with degrees of 2, 3, and 2, respectively (intraoperation

parallelism)).

The join on Drinks and the join on Wines are executed

parallel with the selection on Vineyard (interoperation

parallelism).

The fact that PRISMNDB is a main memory DBMS al-

lows us to use the pipelining join algorithm (see Sections

III-E and VI-A). By using this algorithm, the three parallel

join operations form a pipeline, in which all levels can

execute at the same time (provided enough data are used

of course). So, there we have interoperation pipelining.

Another short pipeline starts from Vineyard.

The example query execution illustrates the flexibility of

PRISMA/DB. As the fragmentation degree of the base rela-

tions, the degree of parallelism of each relational operation,

and the allocation of OFM's and LTM's can be chosen freely,

the systems allows experimentation with a very broad class of

execution strategies. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. Inserting a Tuple

As an example of an update query, we will show how a tuple

is inserted into the database. A "Saumur" 1990, with id 111 is

added to the database. The first phase of this transaction (the

actual insertion) is equivalent to the first phase of the retrieval

query: the SQL compiler generates an XRA-R insert statement:

insert(Wine, { [l 1 1, "Saumur", 19901))

which is optimized into XRA-F by the QO:

insert(Wine2, { [l 1 1, "Saumur", 19901)).

Note, that the QO has replaced the insert into a relation by

an insert into one fragment of the relation, instead of into all

fragments that belong to the relation. This optimization can be

done for single-tuple inserts.

The TM again generates the execution infrastructure for

this query, which in this case consists of one LTM, which

is attached to Wine2.
The difference between retrieval and update queries is

apparent at commit time: now the correctness of the transaction

with respect to the integrity constraints is checked, and the

update must be made permanent in the OFM.

Two referential integrity constraints are defined on relation

Wine; one from Drinks to Wine, and one from Wine to

Vineyard. The first constraint cannot be violated by an insert

into Wine, but the second one can: it has to be checked

whether a "Saumur" tuple exists in Vineyard. To check

integrity constraints, compiled versions of these constraints are

stored in the DD with the fragments. At commit time, the TM

asks the DD for the constraints that have to be checked, when

an insert into Wine2 has been executed. The DD returns an

XRA program to the TM, and the TM executes this program

before it actually commits the transaction. In this case, the

returned XRA program looks as follows:

c l = unique (<*2*>Wine2)
c2 = <*l*>Vineyardl
c3 = c l - c2
alarm (c3).

Fig. 9 PRISMAiDB executing an insert.

The alarm statement generates an abort, when the cardinality

of its operand is greater than zero. The complete execution

infrastructure that is built for the insert transaction is shown in

Fig. 9. Note that the setup of the infrastructure for constraint

enforcement is done parallel to the execution of the insert

query.

When the execution of the insert and the constraint en-

forcement program is ready, the TM knows whether the

transaction can commit or not. In case of an abort, an abort

message is sent to all participating base LTM's. When the

transaction can commit, the TM sends a precommit message

to all participating base LTM's, which start making the insert

permanent in the way described in Section III-F. A commit

message ends the execution of the insert statement.

V. PERFORMANCE

As explained in the introduction, meaningful performance

evaluation was only possible after the completion of the second

version of PRISMAIDB. The results of the first performance

tests in the spring of 1991 were bad due to synchronization

problems in the system [47]. Some parts of the system were

redesigned to eliminate these problems. The resulting version

of the system was completed in the late fall of 1991. The

performance evaluation of this system is described here.

Some queries from the Wisconsin Benchmark are used to

evaluate the performance [9]. This paper describes the most

important aspects of the performance of PRISMNDB as a

main memory system. A full description of the performance

can be found in [47].

A. Selection Queries

A query that selects 1% of its input is used to evaluate

the performance of selection queries. The source relation

is fragmented over a number processors and the selection

criterion is not on the partitioning attribute, so all fragments

have to be searched for qualifying tuples. The result is stored

fragmented without redistribution on the processors generating

550 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 4, NO. 6, DECEMBER 1992

protessors 5h 1 0 h

w

188 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA248 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
?OR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 5 2

I O 262 292

15 384
20 ,
30 I

40 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 l o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0 3 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA40 5 0 nodes

response timcs i n tiis speedup diagram

Fig. 10. Performance of selection queries.

result tuples (as PRISMA/DB is a main memory system,

results are not written on disk). Different sizes for the source

relation are used, ranging from 5000 (5K) tuples to 400 000

(400K) tuples. For each source relation size, a speedup exper-

iment is done. The numbers of processors used are adjusted

to the size of the source relation, using larger numbers of

processors for larger source relations.

Fig. 10 shows the response times resulting from the selection

queries, and the speedup diagrams that can be calculated from

them. All response times are given in milliseconds. The best
response time for each source relation size is printed in bold

type.
The response times are a measure for the absolute perfor-

mance of the system. The absolute performance figures are

reasonable compared to other systems. Comparison of the

absolute performance of systems is hard, because there are too

many differences between systems in hardware, functionality,

etc. However, to give an indication, Fig. 11 lists the response

times of some other systems, with the number of processors

used for a 1% selection from lOOK tuples. The absolute

performance of PRISMNDB seems reasonable from these

data. However, as PRISMAiDB is a main memory system,

it should outperform all disk-based systems mentioned in Fig.

11. This issue is discussed after the presentation of the other

performance results.

The speedup characteristics illustrate the relative perfor-

mance of the system. Linear speedup is the ultimate goal for

parallel processing. However, a system that uses sequential

initialization of the subtasks in the parallel execution of an
operation can only get linear speedup for small numbers of

processors. Our performance measurements show this phe-

nomenon; we will now explain why. The response time to

a query consists of two components.

The TM sequentially creates and initiates the participating

LTM's. This yields a component in the response time that

is growing linearly with the number of processors.

Each LTM has to do a certain amount of local processing.

This yields a component in the response time that is

inversely proportional to the number of processors.

This simple reasoning leads to the observation that adding

more processors to a parallel task ultimately degrades the

performance in any system that uses sequential initialization

Fig. 11. Response times of some parallel DBMS's to a 1% selection from
100 tuples in ms.

of these tasks. However, i t is possible that the degrading

performance is not measured, because it occurs only for larger

numbers of processors than available. PRISMNDB does yield

degrading performance for a number of processors that is

lower than the number of available processors and the reason

for this is twofold: firstly, relatively small source relations

are taken into account, which leads to a small amount of

local processing. The speedup diagrams show that the optimal

number of processors indeed is lower for smaller source

relations. The second reason is the main memory nature

of the system. The sequential component in the response

time consists of a lot of coordination and thus message

passing. Therefore, this component does not benefit from the

main memory nature of the system. The costs of the local

processing, however, are lowered by the system being main

memory. Therefore, the optimal number of processors to be

used for a parallel task is lower on a main memory system

than on an equivalent disk-based system. In other words, we

can say, that in a main memory system, the local processing

is so fast that i t is hard to start all parallel components before

the first one is ready. A more extensive and formal coverage

of this issue can be found in [47].

The observation about the behavior of a parallel main mem-

ory system has implications for the hardware configuration

that should be chosen for such a system. Obviously, a main

memory system needs a large amount of primary memory.

However, as the maximal size of a subtask in a parallel task

is directly related to the size of the memory of one processor,

the amount of memory per processor should be fairly large

to yield subtasks that are large enough to allow performance

gain from parallelism.

In the next section, the parallel execution of join queries is

discussed. Because join queries are more expensive than selec-

tions, their speedup characteristics are expected to be better.

APERS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAer ul.: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPRISMNDB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA55 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1

0 . 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.

response times in ms speedup characteristics

Fig. 12. Performance of join queries.

B. Join Queries

The join query used in the performance experiments is a

query joining a 10K tuple relation to a l00K tuple relation in

which every tuple of the 10K relation matches to one tuple

in the lOOK relation, so the result consists of 10K tuples.

This query is called the joinABprime query in [9]; A is the

lOOK relation and Bprime is the 10K relation. Four different

execution strategies were tested, which are called joinl through

join4 in the sequel:

jo in l : The relations are initially fragmented on the join at-

tribute into equal numbers of fragments, and the corresponding

fragments reside on the same processor.

join2: The relations are fragmented in the same way as for

joinl, but all fragments reside on different processors. The

Bprime fragments are sent to the A fragments for joining.

join3: Relation A is fragmented on the join attribute and

relation Bprime is fragmented on another attribute into equal

numbers of fragments. All fragments reside on different pro-

cessors. Relation Bprime is redistributed and sent to relation

A for joining.

join4: Both relations are fragmented on another attribute

than the join attribute into equal numbers of processors. All

fragments reside on different processors. Both relations are

redistributed and sent to the join processors for joining.

These four strategies were tested using 10, 20, and 30

processors for the joins combined with a fragmentation degree

of 10, 20, or 30 for the initial fragmentation of the relations.

Fig. 12 shows the response times measured in this experi-

ment, and the speedup with respect to the response time of the

10-processor queries. Note, that in this case, linear speedup

yields a speedup factor 3 for the 30-processor queries.

The achieved absolute performance for “joinl” and “join2”

is good compared to other systems. Fig. 13 lists the response

times for the same query reported by other projects. Again, it is

hard to compare systems, as they differ in many ways. Yet, we

like to report that the response time measured on PRISMA/DB

outperforms all other reported performance figures on this

query.

Join1 and join2 show, apart from a good absolute perfor-

mance, good speedup characteristics. The speedup is even

slightly superlinear. This is caused by some synchronization

problems for the queries using 10 processors.

The speedup characteristics of join3 are disappointing, and

join4 is even worse. The reason for this is as follows. Join3 and

join4 need redistribution of the operands. This redistribution

is expressed in XRA, and the expression for it is large, and

grows for larger degrees of parallelism, as the number of

destinations grows with the degree of parallelism. The TM

sequentially sends the same large expression to each LTM, and

because POOL-X does not support broadcasting, the overhead

for sending an XRA-expression off-node is made for each

fragment. Join3 needs to go through the redistribution of

only one operand, but join4 has to redistribute both operands

making things even worse.

Here we are at a point where we have to pay for both forms

of flexibility offered by the system. Firstly, using POOL-X

facilitated the development of a flexible architecture, but the

high level interface offered by POOL-X makes it impossible

to solve the problem of sending large XRA-expressions to

many LTM’s. Secondly, XRA was developed to express a wide

variety of parallel execution plans, but the expressions that are

generated in plans that have a high degree of parallelism grow

larger than we want.

Although there are some problems, we feel that PRISMNDB

with the performance reported in this section, offers a very

good platform to experiment with parallel query execution,

especially to study the execution of complex queries, in which

the degree of intraoperator parallelism does not need to be

very large.

C. Concluding Remark

This section discussed the performance of PRISMNDB.

Both the relative and the absolute performance were discussed.

The discussion of the relative performance yielded useful re-

552 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIkEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL 4. NO. 6. DECEMBER 1992

sults for the implementation of parallel main memory systems.

The absolute performance, however, is not as good as might

be expected from a main memory system. Specifically. a main

memory system should outperform a disk-based system by at

least an order of magnitude. PRISMNDB does not achieve

this and the reason is two-fold. Firstly, the hardware used

is (although state-of-art when the PRISMA project started)

outdated now. Also, due to the use of memory extension

boards, the hardware does not run full-speed (see Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11).
Secondly, the use of an experimental high level programming

language has performance penalties: the high level of the

language makes low level optimizations hard or impossible,

and also, the new compiler was not optimized in detail.

However, the use of the high level programming platform was

profitable too, in the sense that we did not have to bother about

all sorts of nasty low level details, so that a fully functional

DBMS could be finished within a reasonable time frame.

VI. CURRENT RESEARCH

This section describes how the flexibility of PRISMAiDB

is used in our research on parallel query execution and on

integrity constraint enforcement. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A . Multijoin Queries

The flexibility of the query execution layer of PRISMA/DB

is used to study the parallel execution of complex queries. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA
complex query is a query that consists of multiple relational

operations. Multijoin queries are used as an example of

complex queries in this paper. Important questions consist of

the following.

What is the best join order in a parallel environment?

What degree of parallelism should be used for each join

operation?

How to allocate processors to each join operation?
How does the initial data distribution influence the query

execution?

References [43]-[46], [48] are reports on this research. In those

papers, the pipelining hash join algorithm (see Section 111-E)

is introduced as an algorithm that has fewer constraints on

the order in which operand tuples can be processed than the

known hash join algorithms, and as such, it is expected to

yield significant performance gain from interjoin pipelining.

Its behavior in linear and bushy query plans for a restricted

class of multijoin queries was studied, using simulation and

analytic mathematical analysis (the distinction between left-

deep and right-deep linear plans [34] does not exist here,

because the pipelining hash join is a symmetric algorithm).

Simulation was used, as at the time this research was started,

the final version of PRISMAiDB was not ready yet. The results

of the study show that effective parallelism can be achieved

in a join pipeline. Also, it was shown that join queries with

small operands are better off with a bushy query plan, and join

queries with large operands prefer a linear schedule.

Currently, this research is continued as follows. Firstly,

the operational PRISMAiDB prototype is used to confirm the

results from [43], secondly, we want to extend the study to

a broader class of multijoin queries, and finally, intraoper-

ation parallelism for the individual join operations will be

considered.

B. Integrity Control

One of the current research directions in the PRISMA

context is integrity control in parallel main memory database

systems. The main topics in this research are software architec-

tures for integrity control, the effects of data distribution and

parallel enforcement, and ways to improve the performance

of integrity constraint enforcement in parallel environments.

The emphasis on parallelism and performance in constraint

enforcement contrasts this research to that performed in the

context of other DBMS projects like SABRINA [35] , POSTR-

GRES [41], and STARBURST [24].

In this research, the basic software architecture for integrity

control is based on the transaction modification principle as

explained in the section on transaction management. This

principle enables the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuse of the standard query execution

machinery for constraint enforcement and deals correctly

with transaction serializability and atomicity requirements. As

discussed in [21], the basic architecture can be extended in

a number of ways to obtain a better performance of integrity

control.

The effects of data distribution and parallel enforcement

are described in detail in [20]. Here, attention is paid to
the translation of constraints in a functional specification

(first-order logic) to an operational specification in XRA, the

removal of fragmentation transparency and the optimization

of constraints in a parallel context, and to the mapping

of constraints to the parallel query execution machinery of

PRISMAIDB. The concepts can be used easily within the

transaction modification context.

A performance evaluation of coiistraint enforcement on the

PRISMAiDB prototype has lead to two important observa-

tions. In the first place, parallelism has proven to be a good

way to deal with the high processing costs associated with

constraint enforcement; transaction execution times including

integrity control can be strongly improved by parallel exe-

cution. Secondly, the relative costs of constraint enforcement

have shown to be quite acceptable in comparison to transaction

execution without any integrity control; typical figures are

a few percent for very simple constraints and about 100 %
for referential integrity constraints in the worst case. The

fact that PRISMA/DB uses main memory storage has a pos-

itive influence on these figures, since constraint enforcement

is (mainly) a retrieval process, whereas update transactions

require secondary storage operations.

Research is being performed on special-purpose commu-

nication protocols for constraint enforcement at the lower

levels of PRISMAIDB. The main goal of these protocols is

to decrease the control overhead imposed by the transaction

management process in constraint enforcement. Further gains

in performance can be expected from an optimal scheduling

of constraint enforcement [22].

VII. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we have discussed the design and implemen-

APERS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAul.: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPRISMNDH 553

tation of PRISMNDB, a parallel, main memory RDBMS. The

design of the system can be characterized by two main ideas:

use of parallelism and main memory data storage to provide

high performance in query processing, and use of a high

level object-oriented language to obtain a modular and flexible

system architecture that can be used easily for experimentation

with functionality and performance.

Currently, the second prototype of the DBMS, called

PRISMNDBl, is running on hardware configurations up

to 100 nodes. The prototype provides complete DBMS

functionality among which concurrency control, integrity

control, and crash recover facilities. Extensions of the

functionality can be added easily, like automatic loading and

unloading mechanisms to be able to handle databases that do

not fit into the main memory of the system. The absolute

performance of the prototype has shown to be comparable

to other state-of-the-art parallel database machines. The

relative performance with respect to software and hardware

configuration has led to new insight into the behavior of

parallel main memory systems.

The choice of an experimental object-oriented implementa-

tion language for PRISMNDB has had an important impact on

the project. The language has proven to be a great advantage in

obtaining a well-structured and flexible software architecture.

The mapping of DBMS components onto active objects in

this language enables a natural modularization of the system

with clear interfaces. On the other hand, the choice of a high

level implementation language has shown to be a drawback in

obtaining optimal performance, since no explicit control over

the hardware and low level processes is possible.

PRISMNDBl is used as an experimental platform for a

number of research activities. In the first place, experiments

with multioperation queries and parallel integrity control,

as described in the previous section, will be conducted on

the prototype. Furthermore, PRISMNDBl is used for the
implementation of parallel algorithms for transitive closure

operations [25]-[27]; this enables the parallel computation of

recursive queries on PRISMA/DBl. Also, the system will be

used as an experimental implementation platform for a NF2

layer that supports complex objects [38]; because flattening

a complex database schema onto a relational schema yields a

schema with many referential integrity constraints, and queries

that need many join operations, this layer will rely heavily on

the referential integrity control and parallel multijoin facilities

of the system.

REFERENCES

[I] R. Agrawal and D. J. DeWitt, “Recovery architectures for multipro-
cessor database machines,” in Proc. ACM-SIGMOD 1985 Int. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAConf on
Management of Data, Austin, TX, May 28-31, 1985.

[2] P. America, “POOL-T, A parallel object-oriented language,” in Oject
Oriented Concurrent Programming, A. Yonezawa and M. Tokoro, eds.
Cambridge, MA: MIT, 1987, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApp. 199-220.

[3] P. America, “Issues in the design of a parallel object-oriented language,”
FormalAspects Comput., vol. 1, pp. 366-411, 1989.

[4] -, ed., Proc. PRISMA Workshop on Parallel Database Systems.
New York: Springer-Verlag, 1991.

[SI P. M. G. Apers, M. A. W. Houtsma, and F. Brandse, “Processing
recursive queries in relational algebra,” in Proc. Second IFlP 2.6
Working Conf: on Database Semantics, Albufeira, Portugal, Nov. 3-7,
1986, pp. 17-39

[6] C. A. van den Berg and M. L. Kersten., ”Engineering a main memory
DBMS,” CWI Quart. Centre for Mathematics and Computer Science,
Amsterdam, The Netherlands, 1991.

[7] C. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. van den Berg, M. L. Kersten, and K. Blom, “A comparison
of scanning algorithms,” in Proc. Int. Conj on Databases, Parallel
Architectures and Their Applications, Miami, Mar. 1990.

[8] B. Bergsten, M. Couprie, and P. Valduriez, “Prototyping DB3S, A
shared-memory parallel database system,” in Proc. First Int. Con& on
Parallel and Distributed Information Systems, Miami Beach, FL, Dec.
1991. pp. 2 2 6 2 3 5 .

[9] D. Bitton, D. J. DeWitt. and C. Turbyfill, “Benchmarking database
systems - A systematic approach,” in Proc. Ninth Int. Con$ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor1 Very
Large Data Bases, Florence. Italy, Oct. 31-Nov. 2, 1983.

[IO] H . Boral, W. Alexander, L. Clay, G. Copeland, S. Danforth, M. Franklin,
B. Hart, M. Smith, and P. Valduriez, “Prototyping Bubba, A highly
parallel database system,” IEEE Tram. Know/. Datu Eng. vol. 2, pp.
4-24, 1990.

I I] H. Boral and S . Redfield, “Database machine morphology,” in Proc
Eleventh Int. Con5 on Very Large Data Rases, Stockholm, Sweden, Aug.
21-23, 1985.

121 K. Bratbergsengen and T. Gjelsvik, “The Development of the CROSS8
and H C l C I 86 (database) computers,” in Proc. Sixth Int. Workshop on
Database Machines, Deauville, France, June 1989, pp. 359-372.

131 W. J. H. J. Bronnenberg, L. Nijman, E. A. M. Odijk and R. A. H.
V. Twist, “DOOM: A decentralized object-oriented machine,” in IEEE
Micro, Oct. 1987.

141 S . Ceri and G. Pelagatti, Distributed Datubases, Principles and Systems.
New York: McCraw-Hill, 1984.

[I51 D. J. DeWitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker, H.
Hsiao, and R. Rasmussen, “The GAMMA database machine project.”
IEEE Tram. Knowl. Data Eng, vol. 2 pp. 44-62, Mar. 1990.

[16] D. J. DeWitt, S . Ghandeharizadeh. D. Schneider, R. Jauhari, M. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMu-
ralikrishna. and A. Sharma, “A single user evaluation of the GAMMA
database machine,” in Proc. Fi fh Int. Workshop on Database Machines,
Karuizawa, Japan, Oct. 1987.

[I71 D. J . DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stonebreaker, and
D.Wood, “Implementation techniques for main memory database sys-
tems,” in Proc. ACM-SIGMOD 1984 Int. Con& on Munagement ofData,
Boston, MA, June 18-21, 1984, pp. 1-8.

[18] M. Eich, “A classification and comparison of main memory database
recovery techniques,” in Proc. 1987 Database Engineering Conf, 1987,
pp. 332-339.

[I91 G . Gardarin and P. Valduriez, Relational Databuses arid Kriowledge
Bases. Reading, MA: Addison-Wesley, 1989.

[20] P. W. P. J. Grefen and P. M. G. Apers, “Parallel handling of integrity
constraints on fragmented relations,” in Proc. Second Itit. Symp. on
Databases in Parallel and Distributed Systems, Dublin, Ireland, July
2 4 1990, pp. 138-145.

[21] -, “Integrity constraint enforcement through transaction modi-
fication,” in Proc. 2nd Int. Conj on Database and Expert Systems
Applications, Berlin, Germany, July 1991.

[22] ~, “Dynamic action scheduling in a parallel database system,” in
Proc. Conf on Parallel Architectures arid LunKuu,qe.s in Europe, Paris.

Francc. 1992.
1231 P. W. P. J. Grefen, A. N. Wilschut, and J. Flokstra, “PRISMNDBI
L 1

user manual,” Memo. INF9106, Universiteit Twente, Enschede, The
Netherlands, 1991.

[24] L. Haas, J . C. Freytag, G. Lohman, and H. Pirahesh, “Extensible query
processing in Starburst,” in Proc. ACM-SIGMOD 1989 Int. Conf on
Marragement of Data, Portland, OR, May 31-June 2, 1989.

[25] M. A. W. Houtsma, P. M. G . Apers. and S . Ceri, “Distributed transi-
tive closure computations: The disconnection set‘ approach,” in Proc.
Sixteenth Int. Con. on Very Large Datu BaseJ, Brisbane, Australia, Aug.
13-16, 1990, pp. 335-346.

1261 M. A. W Houtsma. F. Cacace, and S . Ceri, “Parallel hierarchical
L 1

evaluation of transitive closure queries,” in Proc. First Int. Conf: or1
Parallel and Distributed Informution Systems, Miami Beach, FL, Dec.
1991.

[27] M. A. W. Houtsma, A. N. Wilschut, and J. Flokstra, “Implementation
and performance evaluation of a parallel transitive closure algorithm on
PRISMAIDB,” Memo. INF92-45, Universiteit Twente, Enschede, The
Ncthcrlands, July 1992.

[28] M. L. Kersten, “Using logarithmic code-expansion to speedup index
access,” in Foundations of Datu Organization and Algorithms New
York: Springer-Verlag, June 1989, pp. 228-232.

[29] E. van Kuijk, “Semantic query optimization in distributed database
systems,” Ph.D. dissertation, U n i w of Twcntc, 1991.

[30] T. J. Lehman and M. J . Carey. “Query processing in main memory

554 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 4, NO. 6, DECEMBER 1992

[321

(331

[341

[411

[421

1431

database management systems,” in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAProc. ACM-SIGMOD 1986 Itrt. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Con{ on Management of Data, Washington, DC, May 28-30, 1986,pp.
239-250.
-, “A recovery algorithm for a high-performance memory-resident
database system,” in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAProc. ACM-SIGMOD 1987 Int. Conf on Managr-
men/ of Data, San Francisco, CA, May 27-29, 1987.
M. D. P. Leland and W. D. Roome, “The silicon database machine:
rational, design, and results,” in Proc. Fifth I f i t . Workshop on Database
Machines, Karuizawa, Japan, Oct. 1987.
H. Garcia Molina, R. J . Lipton, and J. Valdes, “A massive memory
machine,” IEEE Tram. Comput., vol. C-33, pp. 391-399, May 1984.
D. A. Schneider and D. J . DeWitt, “Tradeoffs in processing complex
join queries via hashing in multiprocessor database machines,” in Proc.
Sixteenth Int. Conf on Very Large Data Bases, Brisbane, Australia. Aug.

E. Simon and P. Valduriez, “Design and implementation of an ex-
tendible integrity subsystem,” in Proc. ACM-SIGMOD 1984 Dit. Cotif:
on Management of Data, Boston, MA, June 18-21, 1984.
C. J. Skelton, C. Hammer, M. Lopez, M. J. Reeve, P. Townsend, and K.
F. Wong, “EDS: A parallel computer system for advanced information
processing,” in Proc. Parallel Architectures and Languages in Europe,
Paris, France, June 1992, pp. 877-892. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
J. van der Spek, “POOL-X and its implementation,” in Proc. PRISMA
Workshop on Parallel Database Systems, Noordwijk. The Netherlands,

H. J. Steenhagen and P. M. G. Apers, “ADL - An algebraic database
language,” in Proc. Computing Science it1 the Netherlads, Utrecht, The
Netherlands, Nov. 1990, pp. 427-442.
M. Stonebraker, “Implementation of integrity constraints and views
by query modification,” in Proc. ACM-SIGMOD 1975 I n f . ConJ on
Munagemetit of Data, San Jose, 1975.
M. Stonebraker, R. Katz, D. Patterson, and J . Ousterhout, ‘.The design
of XPRS,” in Proc. Fourteetitit I n / , Conf oti Very Lurge Datu Buses. Los
Angeles. CA, Aug. 29-Sept. 1, 1988.
M. Stonebraker, L. A. Rowe, and M. Hirohdma, “The implementation
of POSTGRES,” IEEE Trans. Know/. Datu Eng. vol. 2, Mar. 1990.
P. Watson and P. Tomnsend, “The EDS parallel relational database
system,” in Proc. PRISMA Workshop zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon Parallel Dutabuse Systems,
Noordwijk, The Netherlands, 1990. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. N. Wilschut and P. M. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG. Aoers. “Dataflow uuerv execution in a

13-16, 1990, pp. 469-480.

1990, pp. 309-344.

L 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 -

parallel main memory environment,” in Proc. FirAI Int. Conf on Parallel

1481

and Distributed Info&atiotz Sytt., Miami Beach. FL, Dec: 1091.
__, “Dataflow query execution in a parallel main memory environ-
ment,” to be published.
-, “Pipelining in query execution,” in Proc. Int. Cotif ori Datubases,
Parallel Architectures and their Applications, Miami, Mar. 1990.
A. N. Wilschut, P. M. G. Apers, and J. Flokstra, “Parallel query
execution in PRISMAIDB,” in Pmc PRISMA Workdiop o i i Poralld
Dutabuse Systems, Noordwijk, The Netherlands, Sept. 1990.
A. N. Wilschut, J. Flokstra, and P. M. G. Apers, “Parallclism in a main
memory system: The performance of PRISMAIDB,” in Proc. 18tlt lilt.
Conf: on Very Large Datu Bases, Vancouver, Canada, Aug. 23-27. 1092.
A. N. Wilschut and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. A. van Gils. “A model for uioelined uuerv exe-

Care1 van den Berg received the M.S. degree in
computer science from the University of Amster-
dam, The Netherlands, in 1986. He is currently

working toward the Ph.D. degree.
Since 1987. he has been working for CWI and

until 1990, he participated on the database machine
design and implementation for the PRISMA project.
His research interests include object-oriented data-
base systems. performance analysis, and parallel and
adaptive systems.

Jan Flokstra received the B.S. degree in computer
science from the HIO, Enschede, The Netherlands,
in 1986.

Since 1986. he has been a Research Programmer

with the University of Twente, The Netherlands,
where he has worked on the design and imple-
mentation of PRISMA. Currently, he is involved in
the implementation of the object-oriented database
specification language TM.

Paul W. P. J. Grefen received the M.S. degree
in computer science and the Ph.D. degree from the
University of Twente, The Netherlands, in 1986 and
1992, respectively.

In 1987, he joined the PRISMA project, where
he mainly worked in the field of transaction man-
agement and integrity control. He is currently an
Assistant Professor with the University of Twente.

Martin L. Kersten received the Ph.D. degree
in computer science from the Vrije University,
Amsterdam, The Netherlands, in 1985.

In 1985, he joined CWI, The Netherlands, where
he set up the Database Research Group. From 1986
to 1990, he was the Co-Designer of the PRISMA
database machine. In t the follow-up ESPRIT-I1
project TROPICS, he was responsible for the
development of an enhanced version of SQL to
cater with documents and geographical data. Since
1989. he has been leading a national project on

. > 1 . 1 ,

cution,” Memo. INF91-34, Univ. Twente, Enschede, The Netherlands.
1991.

[49] A. N. Wilschut, P. W. P. J. Grefen, P. M. C. Apers, and M. L. Kersten,
“Implementing PRISMAiDB in an OOPL,” in Proc. Si,xrh Int. Wot-kshop
on Database Machines. Deauville, France, June 1989, pp, 359-372.

the exploitation of the Amoeba distributed system- for advanced database
management. He is currently Head of the Computer Science Department, CWI.
He is also an Associate Professor with Vrije University, where he teaches
advanced courses on database technology. His current research interests
are database programming languages, distributed and parallel object-oriented
database systems, dynamic query optimization, and performance assessment of
database systems. He is the author or co-author of over 60 technical papers.

Dr. Kersten is a member of ACM.

Dr. Apers is a membei
of Data and Knowledge

Peter M. G. Apers (M’84) received the Ph.D. de-
gree from Vrije University, Amsterdam, The Nether-

lands, in 1982.
He has worked as a Researcher with the Uni-

versity of California at Santa Cruz and Stanford
University. He is currently a Full Professor with
the University of Twente, The Netherlands, where

he leads a group working on object-oriented data
models, complex object databases, optimization of
logical query languages, parallelism in database
management systems, and database machines.

r of ACM. He currently serves on the editorial boards
EngineerinE and Distributed and Parallel Database

Annita N. Wilschut received the B.S. and M.S. de-
grees in biology from Vrije University, The Nether-
lands, in 1976 and 1980. She is currently working
toward the Ph.D. degree.

In 1985, she joined the Case Center for Computer-
Aided Design, Michigan State University as a Re-
search Assistant. In 1986, she worked as a Re-
search Fellow with the Andy Tanenbaum’s Group,
Vrije University, on distributed operating systems.
In 1987, she joined the PRISMA group, University
of Twente, where she mainly worked on parallel ~-

Systems. query execution

