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Abstract—On-line surveillance to improve safety and security
is a major requirement for the management of public transport
networks and other public places. The surveillance task is a
complex one involving people, management procedures, and
technology. This paper describes an architecture that takes into
account the distributed nature of the detection processes and
the need to allow for different types of devices and actuators.
This was part of a major European initiative on intelligent trans-
port systems. Because of the dominant nature of closed circuit
television in surveillance, this paper describes in detail a com-
puter-vision module used in the system and its particular ability
to detect situations of interest in busy conditions. The system
components have been implemented, integrated, and tested in real
metropolitan railway environments and are considered to be the
first step toward providing ambient intelligence in such complex
scenarios. Results are presented that not only deal with detection
performance, but also on the perception of people who used the
system on its effectiveness and potential impact.

Index Terms—Computer vision, distributed systems, public
transport, surveillance.

I. INTRODUCTION

A
STATED aim in transport policies is to produce signif-

icant shifts in traveling patterns from private to public

modes. This can contribute to: reducing energy consumption,

pollution, and traffic-related deaths/injuries; improve quality

of life/health; and reduce levels of social exclusion. The

EU-funded project PRo-active Integrated systems for Security

Management by Technological, Institutional, and Communi-

cation Assistance (PRISMATICA) [1] was part of the effort to
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make public transport systems more attractive to passengers,

safer for passengers and staff and operationally cost effective.

An innovative part of this project was the integration of opera-

tional, legal, social, and technical aspects.

In the context of personal/asset security and safety, one of the

main tools used by public transport networks is extensive closed

circuit television (CCTV) systems. Signals from cameras are

sent to control rooms where they are monitored by human op-

erators. The rationale is that the ubiquitous presence of cameras

can deter potential offenders, reassure passengers, and events

that threaten safety or security will be dealt with in a timely

fashion. The surveillance of public places is associated with a

number of key factors such as:

1) the widespread geographical extent of what needs to be

managed;

2) a wide range of behaviors that merit the attention of

human operators (that need control or at least recording);

3) the variety of the type of information that needs to be

processed to assess a situation, e.g., vision (direct and/or

CCTV), sound, traffic data, weather information and

knowledge of special events (e.g., football matches in the

neighborhood);

4) the need to transmit (processed) information within a hi-

erarchical system of control.

The main limitation in the effectiveness of CCTV surveil-

lance systems is the cost of providing adequate human mon-

itoring cover for what is, on the whole, a fairly tedious job.

Consequently, CCTV tends to be used as a reactive tool and

the perception that a public transport operator is in charge of

its space is lost if no response is obtained when trouble occurs.

What is desirable is a proactive approach whereby the likeli-

hood of events can be recognized more or less automatically to

guide the attention and action of the human operators in charge

of managing a transport network. It is crucial to do so in a way

that conceives surveillance systems as decision-support tools for

human operators to deal with complex and large environments

[1]–[3], in ways by which the technology itself is as transparent

as possible. The focus is on ubiquitous processing to provide

useable, accurate, and timely security-related information. In

other words, the primary purpose is to provide ambient intel-

ligence for the CCTV surveillance task. The technical part of

PRISMATICA resulted in a distributed surveillance system that

broadly belongs to the class of third generation surveillance sys-

tems (3GSS), introduced by Marcenaro et al. [3].

In this paper, we report on the work done first as part of the

PRISMATICA research project and then on the results of a trial

system evaluated in a major public transport facility in London.

1083-4427/$20.00 © 2005 IEEE
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Fig. 1. Illustration of block matching (white arrow shows computed motion vector).

Because of the dominant role that vision plays in systems of this

kind, Section II describes in detail one of the main vision mod-

ules used in the PRISMATICA system. Section III then provides

an overview on how event detection (visual and otherwise) is

dealt with as part of a complete distributed system. Section IV

describes experimental results dealing with detection capability

and also the reactions of personnel who used one of the systems.

Section V gives overall conclusions and suggestions for further

work.

II. VIDEO-PROCESSING MODULE

A. Introduction

In this section, we describe in detail a video-processing

device that is part of the PRISMATICA system. Various al-

gorithms and systems have been proposed to automate the

video-monitoring task, such as the abandoned object-detection

system proposed by Boghossian [4], [5], and Sacchi [6], the

people-tracking algorithms proposed by Fuentes [7]–[9] and

Siebel [10], the congestion-detection algorithm proposed by

Lo [11], the analysis of events associated to very large crowds

by Boghossian [12], the behavior-analysis system proposed by

Rota [13], and the distributed digital camera system proposed

by Georis [14]. Public transport environments present major

challenges, as identified by the earlier CROMATICA project

[15], such as the need to deal with cluttered environments. The

basic clues used by human operators [16] are those derived

from movement and being able to distinguish between envi-

ronment fixtures (background) and transient features (moving

and stationary foreground: people, objects). An important

requirement is that these systems should operate continuously

for any typical surveillance camera. Therefore, it is important

that the video processing self-adapts to background changes

and to provide simple mechanisms for scene description. It

is possible to use detailed geometric/semantic scene models

e.g., applying three-dimensional (3-D) scene descriptions to

exploit spatial constraints and also to combine detection results

from different sensors and indicate the location of the incident

[17]. However, this is not necessarily practical (especially for

large CCTV systems) because, to obtain an accurate 3-D scene

model, extensive measurements have to be carried out and any

subsequent changes in camera position or angle will lead to

labor intensive recalculation of the scene model.

Methods based on statistical background estimation and

subtraction [18]–[20], use temporal changes in pixel inten-

sity/color to identify a statistical trend that points to pixel

characteristics that occur more frequently. A popular technique

is to use mixtures of Gaussian probability distributions to

identify background pixels. The underlying assumption is that

the main source of variability is that of the background itself

(i.e., sparse human activity). However, the type of environments

considered here are generally subject to sustained high levels

of foreground activity and, therefore, such methods, used on

their own, are not necessarily applicable.

This problem can be overcome through the incorporation

of image motion into the background/foreground-estimation

process [21]. The term motion is used here to refer to an image

velocity field (i.e., magnitude and direction), as opposed to

what is usually called change (i.e., foreground). Gradient-based

methods (from which the term optical flow originated) are

popular [22], [23], but are known to have shortcomings in pre-

serving motion discontinuities and deteriorate with decreasing

frame rates. In the context of cluttered scenes, Davies and

Velastin [24], [25] proposed the use of a block-matching tech-

nique [26] to estimate the general trends of motion of crowds

by analyzing frequency distributions of velocity directions.

Fig. 1 illustrates what is meant by block matching. Given two

images in a sequence, a block (neighborhood) is defined in the

first image. Then, a search area (centered at the same center

pixel position of the same block and larger than the size of the

block) is defined in the second image. Within this search area,

a block is then found that minimizes a given function of the

pixels in the block, i.e., to locate a block that is similar to the

one in the first image. The relative displacement between the

original block and the matching block defines an image-motion

vector. This process is typically used, as part of the motion

estimation component, in video-encoding techniques such as

MPEG-2 [27]. Bouchafa et al. [28] also considered the use of

a block-matching technique to detect the direction of motion

of crowds. Yin [29] conducted a detailed study and showed

that accurate estimation of crowd movements can be obtained

through appropriate settings of the operating parameters (size

of block, size of search window). More recently, Coimbra et al.

have demonstrated [30] that it is possible to extract pedestrian

presence and motion directly from MPEG-2 motion vectors,

assuming that MPEG-2 video streams are available.
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A block-matching algorithm can be formulated as follows.

Let be the size of the block (i.e., each block has

pixels), represents the block in the first image, represents

a candidate block in the second image, and is the search area

in the second image. A matching block satisfies

(1)

where is a function that decreases monotonically

with the similarity between blocks and (typically to zero,

when both blocks are identical). For example, this function

could compute the sum of the absolute pixel-to-pixel differ-

ences between the blocks

(2)

where is a pixel within the block and indicates a prop-

erty of that pixel (e.g., intensity). This measure (2) is normally

called mean absolute error (MAE). Equation (1) implies that the

matching block has to be found from the set of all possible can-

didate blocks. When an exhaustive search is done, we refer to a

full search block matching (FSBM) algorithm. Many variants of

block-matching algorithms have been proposed (e.g., see [31]

and [32]), where the main emphasis has been on reducing the

computational expense of finding a best match. However, this is

at the expense of finding only a local minimum or making as-

sumptions on the nature of the movement to be detected. The

work described here uses the FSBM approach, because of its

greater determinism (crucial for real-time applications where,

for example, data-dependent delays could have significant nega-

tive effects on time-dependent parts of the algorithms) and better

results. Parameters are set to those found suitable for typical

CCTV installations in metropolitan railways [29] (a block size

of 8 8 pixels and a search window of 24 24 pixels, using

PAL images digitized at 512 512 pixels). Motion estimation

is carried out using nonoverlapping blocks, so that the resulting

motion field is of size 64 64 blocks.

As mentioned earlier, a drawback of the FSBM is its computa-

tional expense. From the calculations presented by Boghossian

[4], it can be estimated that for this size of data a 3-GHz Pen-

tium-class processor could achieve only about 2.4 frames/s, as-

suming that no other processes runs on the processor. To over-

come this problem, the video detection has been implemented

on a Philips Nexperia PNX1300 dedicated digital signal pro-

cessor. The processor can compute a sum of differences (1) of

four pixels in a single instruction cycle. Thus, the FSBM for

a 64 64 motion field is performed at 5.6 frames/s (the con-

secutive images for block matching are still captured at the full

frame rate of 25 frames/s). The use of DSP boards that digitize

and process images allows a single PC-type computer to handle

up to 14 separate cameras, making it an attractive proposition as

a building block in a large surveillance system.

B. Motion Estimation

The first step in the process is to digitize incoming images

and compute motion vectors using the FSBM algorithm. When

more than one candidate match is found with the same MAE,

the one that it is nearest to the center of the block is chosen.

This process results in a raw set of vectors illustrated in Fig. 2.

Fig. 2. Typical raw motion vectors (shown in white superimposed on the input
image).

Fig. 3. Typical result after applying mean and median filters.

As can be seen, the output of this stage, although it contains

information pertaining to pedestrian motion, also shows noise

typically arising from the camera and mains frequency inter-

ference, digitization and recording media noise. A full analysis

of the nature of this noise can be found in [4]. A sequence of

spatial filters, similar to that reported in [30], is then applied

to the motion vectors to reduce this noise: a mean 3 3 filter,

a median 3 3 filter, and a mean 3 3 filter. A typical result

is shown in Fig. 3. Additional motion information is available

in the form of pixel-to-pixel interframe differences. Using long

sequences of known nonpedestrian images (e.g., taken over a

period of many hours when the transport network is not in ser-

vice), interframe noise is modeled by a single Gaussian to find

a suitable threshold to identify areas of significant

movement. This results in images like the one shown in Fig. 4.

This can be combined with information available from an adap-

tive background-estimation process (explained later). Given an

estimated background, a pixel of intensity is considered
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Fig. 4. Typical interframe image (inverted for clarity).

Fig. 5. Extracted motion-vector field after combining it with foreground and
interframe conditions.

to be foreground if its luminance contrast (a normalized feature

that is less prone to classification error than absolute intensity

[7]) with respect to the corresponding background pixel

exceeds a predetermined value LCth (also obtained through a

Gaussian model of a priori observed data)

(3)

where and are integers in the 0–255 range, for

8-bit images, and is set to 1 when , to avoid

division by zero.

When this occurs, the motion vector estimated by FSBM is

considered to be correct (and correspond to foreground). Oth-

erwise, the motion vector at that block position is set to zero if

there is no sufficient evidence of interframe motion (as defined

above). A typical result from this process is shown in Fig. 5 to

illustrate the effectiveness of the approach.

C. Background Estimation

Within the space limitations of this paper, it is not possible

to discuss in detail the wide literature that deals with adap-

tive background estimation in video sequences. Pixel-statistic

approaches such as Gaussian mixtures models [33], [34] are

one of the most popular techniques in the visual surveillance

community, but as pointed out earlier, there are problems when

dealing with scenes with sustained activity. The approach con-

sists on combining pixel statistics and motion. Motion informa-

tion is used to identify the moving parts of the image and, hence,

label them as foreground regions (and, thus, not to allow them

to distort the computation of statistics of background pixels).

The remaining regions of the image are classified as background

regions and are involved in estimating and updating the refer-

ence-background image within a statistical framework. More-

over, information from higher level processes, i.e., the detection

of stationary people/objects, is also used to prevent stationary

pedestrians or objects from merging into the estimated-back-

ground image. The complete process is shown diagrammati-

cally in Fig. 6 (note how feedback is an important part of the

approach).

The statistical part of the background-estimation algorithm

is carried out through an -layer array of blocks

( , where and

). We refer to this as the history array. Each element in this

3-D array has two components (both initially set to zero): an es-

timated-background intensity and a counter

that holds the number of occurrences (frames) of intensities

around that estimated value, as can be seen from (5). At any

point in time, the intensity stored on the top layer cor-

responds to the most likely background. When each video frame

is digitized and subsampled (from pixels to blocks), a set of

candidate-background pixels is identified as those that do not

exhibit motion according to the FSBM algorithm and the inter-

frame results, as follows.

is a background-candidate block intensity if and only

if

and

and

block is not stationary

(4)

where and are the subsampled image-pixel

intensities at frames and , IFth is the interframe

threshold (estimated through a prior training phase as described

in Section II-B), are the block matching hori-

zontal and vertical motion components (in the range ,

where is the size of the search window) at block on

consecutive video frames and the condition block is

not stationary originates from the higher level analysis module

(Section II-E4). An intensity-based similarity measure

is used to compare a candidate background block with all those

in the history array

(5)
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Fig. 6. Overview of process data flow.

Fig. 7. Before background estimation (Paris Metro).

The depth of the history array is used to divide the range of

possible intensities (256 for 8-bit luminance), i.e., into bins.

Thus, if , then the corresponding counter is

incremented, and the corresponding intensity updated by aver-

aging the new value with the existing value (this adds an addi-

tional degree of adaptation to illumination and is equivalent to a

Kalman background adaptation process with a gain of 0.5 [35])

(6)

If the updated occurrence value is found to exceed that of the

top layer, , then the corresponding entries

and are swapped (i.e., a significant change

in the background has been detected). Conversely, if

for all current layers with nonzero counters, then a new

record is created in an empty layer and the corresponding array

element is initialized

(7)

Fig. 8. After background estimation.

The approach can be classified as one based on a mixture

model, but without the numerical complexity of a Gaussian ap-

proach that typically limits researchers to modeling around five

background populations. This method only uses simple integer

operations (division by two can be done by a simple bit shift).

Fig. 7 shows a typical image at the start of this process, and

Fig. 8 shows the background that has been estimated after 100

frames.

D. Scene Calibration From Motion

Most cameras are located such that all activity takes place

on a single-ground plane. The main scene calibration required

is that of dealing with the perspective distortion present in typ-

ical CCTV cameras normally mounted a couple of meters above

the ground level looking down onto the scene at an angle , as

shown in Fig. 9. Renno et al. [36] have shown a method to esti-

mate the position of the ground plane in car-park scenarios, but

it requires the tracking of objects. Here, the scene structure is

estimated by analyzing the distortion in pedestrian-image mo-

tion caused by perspective projection, exploiting the fact that in
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Fig. 9. Pinhole camera model with an elevated camera position.

most cases people circulate at similar real-world motion at all

depths. The imaging coordinate system ( , , ) has its origin

at the center of the camera imaging plane. Since all moving ob-

jects in the scene are expected to move along the ground plane

, the y component can be written as a function of the

component

(8)

where is the camera height. Thus, if is the camera’s focal

length, the projection of the component on the image plane

is given by

(9)

The measured (image) motion represents scene

motion components projected onto the imaging

coordinates system prior to being imaged onto the

image plane, as shown at point P2 in Fig. 9. It can be shown

that and . Equation

(9) becomes

(10)

Typically, the world-motion vertical component is

zero (or nearly zero), because pedestrians are expected to move

(mostly) parallel to the ground plane (apart from small vertical

oscillations that result from walking). Therefore, (10) can be

reduced to:

(11)

Fig. 10. Scene model (parameters H;H1, and H2).

Assuming a constant scene velocity , constant

imaging parameters ( and ), and that , the image-object

velocity will be inversely proportional to object depth

. Fig. 10 shows how scene geometry is represented by three

image parameters: the position of the scene back plane , the

average height of a pedestrian at the front edge of the visible

ground plane , and the average height of a pedestrian at the

back plane . From the above discussion, it is expected that

the measured image-motion components will follow a

profile that depends on image coordinate. So, for ,

motion is expected to be constant (independent of depth, this

section represents the motion vectors generated by pedestrians

moving at the front edge of the ground plane and extends along

their body height), motion is expected to

decrease linearly with (i.e., inversely proportional to depth)

and motion is expected to be zero (where no
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Fig. 11. Velocity profile obtained from live video.

objects are expected to be present). For a given camera position,

the measured profile can give an indication of scene geometry.

A velocity profile is calculated by applying a temporal

median filter (to remove outliers) to the average motion magni-

tudes at each image row (using only nonzero measured motion

vectors)

median

(12)

where is the number of image rows, a row index, and

is the motion vector at column and row of the cur-

rent digitized frame. An example velocity profile measured from

live video (using 64 vertical blocks) is shown in Fig. 11 and

can be seen to exhibit the three expected different sections. The

parameters that define the scene geometry (perspective) can be

estimated from the break points between the three sections of

the velocity profile and the measured velocity values. First, the

average height of a pedestrian at the front edge of the visible

ground plane is the width of the constant velocity sec-

tion. Then, the perspective distortion ratio is measured as

the ratio between the average velocity magnitude of the constant

velocity section and the velocity value measured at point

(at the start of the zero-velocity section). Hence, can be

calculated as follows:

(13)

Finally,

(14)

The value of is derived on the basis that the back plane

starts where the furthest pedestrian meets the ground plane. The

front edge of the ground plane is a virtual limit for pedestrian

motion that was set by the scene model to allow the calculation

of and the perspective distortion ratio . Therefore, it is

possible for pedestrians to be closer to the camera and hence the

visible parts of their bodies will exhibit higher motion magni-

tudes. This could result in a velocity profile that has no and even

extend the linear section to the bottom of the image. In order to

correct this problem, the image motion is segmented based on

position and direction connectivity, and the regions that overlap

with the image bottom row are ignored. This ignores pedestrian

motion if their movement is on or below the front edge of the

visible ground plane.

To illustrate the performance of this algorithm, a set of tests

is shown here (Table I) with eight different scenes (direction

of movement, obstacles such as columns and camera position).

Estimated scene parameters are compared with those

measured manually. Scene-structure geometries for scenes with

dominant horizontal paths are estimated within an error of 5%

as in test (1). However, poorer estimates of the structure param-

eters are obtained in scenes where the dominant projected direc-

tion of motion is vertical, as in tests (7) and (8). This is because

the vertical component of the image object velocity vanishes

rapidly with depth causing poorer accuracy in the estimation.

Also, queues and other obstacles have measurable effects on

object (pedestrian) velocities. Therefore, the algorithm might

not converge so that the velocity profile would not exhibit the

three characteristic sections necessary for this self-calibration

procedure, as occurs in test (2) and (3), the latter being a case

where the camera has a side view of ticket validation barriers.

The time required to estimate these scene parameters depends

on the scene-motion properties (e.g., a constantly empty scene

can never be calibrated in this way). In practice, whenever pos-

sible, the parameters are estimated through an op-

erator on system installation (by clicking on the image). Then,

the algorithm described here runs in the background to contin-

uously update calibration parameters. This is also useful to deal

with (and detect) camera movements inevitable over extended

periods of time.
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TABLE I
SCENE GEOMETRY PARAMETERS ESTIMATION FOR EIGHT DIFFERENT SCENES (RELATIVE ERRORS ARE SHOWN IN BRACKETS)

Fig. 12. Some examples of environments where different detection takes place (London, UK, and Barcelona, Spain).

E. Event Detection

When a camera is set-up, an operator can define areas of in-

terest (AOI), or an arbitrary set of polygons, where each detec-

tion process will take place. The possible detection processes

are: 1) overcrowding/congestion; 2) unusual or forbidden direc-

tions of motion; 3) intrusion; and 4) stationarity.

The definition of these AOI is typically carried out when a

camera is connected to the processing device. Typical examples

are shown in Fig. 12 where, for example, intrusion is focused

(on the left camera) on an entrance that is out-of-bounds to pas-

sengers after a certain time in the evening and counterflow is

concentrated on a set of entry gates.

1) Overcrowding and Congestion: Overcrowding refers to

the presence of too many people in an area. Congestion refers

to the inability of people to move easily within an area. Con-

gestion is regarded as a major problem, especially in busy old

metropolitan railway systems as the potential blocking effects

of a small crowd that remains stationary (possibly as a result of

unseen congestion up/downstream) could be more significant to

the presence of a larger, but moving, crowd. Fig. 13 shows an

example of congestion near ticket offices. This also illustrates a

situation where conventional localization and tracking of pedes-

trians is unlikely to work. The estimation of crowding levels

in public places gained significant interest in the earlier litera-

Fig. 13. Example of a congested situation.

ture [37]–[43], as it plays an important role in ensuring public

safety and on measuring levels of service. Here, we follow the

earlier work of Velastin et al. [43] that proposed the use of a

monotonic relationship between the number of observed fore-

ground image features (e.g., edge pixels, vertical edges, fore-

ground pixels, circles, blobs, etc.) and crowding levels (or the
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Fig. 14. Abnormal direction of motion, shown by white vectors (Paris Metro).

number of people in the scene). In the module described here,

the approach has been extended so that each foreground block

(moving or otherwise) is first given a weight depending on its

position on the ground plane (as per the calibration procedure

described in Section II-D). If the low-pass filter-weighted sum

exceeds an operator-defined threshold, then an alarm is raised

(the time constant of the filter is set by prior observation of high

frequency oscillations generally associated with moving crowds

[24]). The alarm is maintained until the crowding level goes

below one half of the triggering threshold (a Schmitt trigger).

The detection of congestion operates in a similar manner, ex-

cept that only moving foreground blocks are selected.

2) Unusual or Forbidden Directions of Motion: The set of

motion vectors measured by the process described earlier is used

so that in a given AOI, a histogram of motion directions is used

to detect a significant peak in a given range of known forbidden

directions. Such a range can be either predetermined by an op-

erator or obtained through an off-line learning process based on

hidden Markov models. Fig. 14 shows a typical result of detec-

tion of counterflow motion on what is designated as a one-way

corridor in the Paris Metro.

3) Intrusion: Intrusion (or trespassing) refers to the pres-

ence of people or objects in a forbidden area. Typical exam-

ples include the avoidance of people crossing a safety line at

the edge of a platform or when people are detected in an area

that has been set as out-of-limits (e.g., after hours). Through

the background estimation process described in Section II-C,

image blocks are labeled as being either background or fore-

ground (and if foreground, additionally labeled as moving or

stationary). Foreground blocks are then formed into blobs using

a region segmentation and histogram projection procedure de-

scribed in [7]. The scene-geometry parameters obtained through

the process explained in Section II-D are applied to refer these

blobs to the ground plane. A foreground blob found in an intru-

sion AOI and that satisfies an operator-defined minimum size

constraint (to eliminate small objects such as newspapers) and

that has been detected in the area for an operator-defined amount

of time (typically 2 s), generates an intrusion alarm. A typical

Fig. 15. Intrusion near the edge of a platform (Rome Metro).

example of a person found to be too near a platform edge (Rome

Metro) is shown in Fig. 15. In traditional surveillance, intrusion

is mainly associated to keeping areas sterile (free of people or

objects). This might be done with simple presence/motion de-

tectors (e.g., infrared), but these are of little use in public trans-

port environments (where presence is common) and are gen-

erally poor at localizing the event within an image. Moreover,

there is an additional cost in installing and maintaining sensors

additional to the existing CCTV infrastructure and, thus, the ex-

ploitation of existing cameras to detect this type of event is eco-

nomically attractive to CCTV operators.

4) Stationary Areas: The presence of stationary people or

objects in a public transport environment is a matter of concern

to those that manage such spaces. Typical examples include beg-

ging, loitering, abandoned packages (a cause for regular station

evacuation), and graffiti (its appearance as new foreground can

be regarded as a new stationary object). The results from a de-

tailed survey of transport-network operators [16] suggests that

the normal maximum period for individuals to remain stationary

in underground stations is around 2 min. Detection of stationary

objects or people in complex environments has been addressed

in the past through three approaches: temporal filtering [44], fre-

quency-domain methods [24], and motion estimation [28]. The

typical problems associated with the detection of stationarity in

complex scenes are: 1) frequent occlusion of the stationary ob-

ject by moving pedestrians; 2) occlusion of the stationary object

by moving pedestrians wearing shades of color similar to the

background; and 3) continuous change in the pose and position

of human subjects suspiciously waiting in public places.

We define an array ST that holds the number of

frames during which each image block of 8 8 pixels

is stationary. Each image block is processed by taking it as a

candidate for a nonmoving area. If it satisfies two conditions,

then it is not background (3) and it experiences no motion

BM . Then, cells in the ST array cor-

responding to candidate blocks are incremented on each new

frame, unless they are found to be background and there is no

motion. These conditions provide immunity against occlusion
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Fig. 16. Dealing with changes in position and pose (images magnified for clarity): (a) Stationary person detected, (b) Person moves to the right, (c) Person
redetected after 3 sec.

Fig. 17. Maintaining detection of stationary people/objects during occlusion (Rome Metro): (a) Stationary person detected, (b) Detection is maintained during
occlusion, (c) Detection is maintained after occlusion.

including cases of moving people with grey levels similar to

the background. A region-growing algorithm is used to update

the array cells to account for changes in position or pose.

Image blocks removed from the array due to sudden changes

in position are reintroduced to the array at the new positions

by this algorithm, allowing slow or overlapping changes to be

recovered within a few seconds (typically 3 sec). A final process

clusters neighboring blocks that have remained stationary for

a period longer than a user-defined value (typically 2 min),

into blobs referred to the ground plane. The presence of one

or more of blobs exceeding a user-defined size then triggers

the detection of this type of abnormal situation. Figs. 16 and

17 show typical examples. The example given in Fig. 17 is

particularly interesting as it illustrates how stationary detection

is maintained even in the presence of occlusion (by moving

passengers). Also, the lower detected blob corresponds to the

person’s shadow. In contrast with other reported surveillance

work, there is an intentional decision not to remove shadows

because in some cases these could be the only visible part

indicating presence (e.g., if someone is hiding behind a pillar).

The detection of stationary blocks closes the loop between

this higher level of analysis and the lower level of background

estimation, as shown in Fig. 6 and explained in Section II-C.

This section has described in detail how this type of surveil-

lance image can be processed to extract information useful for

the CCTV monitoring task. This type of analysis is a necessary

part of a surveillance system. However, there are important is-

sues of usability, scalability, and variability of sources that need

to be addressed in a practical large surveillance system. This is

discussed in the next section.

III. PRIMATICA SYSTEM

This section describes the main architectural features of

the PRISMATICA system. Apart from pure technical aspects,

an important aspect of the design of this type of surveillance

system is the incorporation of features that take into account

how surveillance tasks are carried out by human operators.

The purpose of providing unobtrusive, augmented surveillance

capability is then to make the best use of the human abilities to

make high-level decisions rather than to engage them in tedious

random monitoring [45].

A. System Components

An important part of the PRISMATICA project was the in-

vestigation of an appropriate instrumented detection/action en-

vironment that enables control room operators to obtain timely

information to improve personal security, e.g., in metropolitan

railway systems. Key requirements include:

1) distribution of processing, given the geographical spread

of sensor and the computational power required to extract

meaningful information from them (e.g., using computer

vision);

2) the integration of different types of devices into a flexible

system architecture to mirror the variety of information

sources that are needed to support decision-making and



174 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 1, JANUARY 2005

Fig. 18. PRISMATICA system components.

to support future improvements in the development of de-

tection devices;

3) convergence of information into an integrated form of

presentation (human computer interface) and retrieval

(database);

4) exploit the use of existing site infrastructure (people and

hardware) to facilitate early deployment and take-up by

public transport operators.

A PRISMATICA system was conceived as a distributed

surveillance architecture consisting of a set of diverse devices,

each of which can contribute added value to the monitoring

task, in a localized manner. That is to say, each device deals

with a relatively small physical area (e.g., a camera, a mi-

crophone, a mobile camera, a mobile panic button) without

necessarily being required to handle global information. An

analogy is a human guard checking that people do not jump

over the gates in a particular area of the station. This is their

limited task, dealing with it locally and sending information to

a more central supervisor only when needed. The supervisor,

on the other hand, could also instruct the guards from time to

time to change their task or their location. In PRISMATICA,

these devices are capable of processing/analysis, so they are

also referred to as intelligent devices.

Using the same analogy, a supervisory point is needed to co-

ordinate the action of and to gather information generated from

devices so as to assist with the decision-making processes for

taking preventive or corrective actions. This analogy, gave rise

to the concept of a supervisory computer modular integrated

passenger surveillance architecture (MIPSA). This part of the

system provides a single point of contact with an operator and

a means of controlling and communicating with intelligent de-

vices. This communication takes place over a local area network

(to provide scalability), using a CORBA-based architecture that

both support control messages (using a protocol encapsulated

in XML) and bulk data transfers using sockets. Fig. 18 shows

a simplified schematic diagram of a PRISMATICA system and

its components. Signals from the existing CCTV system are fed

into a video matrix, controlled by the MIPSA. This serves two

purposes. First, images are locally digitized by this matrix and

captured by the MIPSA for immediate display for an operator

(Fig. 19). Second, under operator control specific camera sig-

nals can be routed to video devices for processing. To demon-

strate that the architecture is suitable to handle diverse sensors,

the PRISMATICA system also includes a device to capture sig-

nals from smart cards (developed by the Paris Metro). When a

passenger carrying one these cards double clicks on its button,

the signal is picked up by one or more station beacons that then

forward the data to a device that sends the information to the

MIPSA. From information on the position of the beacons, the

MIPSA can localize the call, generate an alarm message and dis-

play images from the cameras that cover the area where the call

originated from. An audio-analysis device (developed by Thales

Underwater Systems, France) has also been developed to detect

unusual sound signatures, typically arising from distress calls,

fights, etc. Similarly, upon detection of such events data is sent

to the MIPSA which then localizes the event, generates an alarm

message, and displays images from relevant cameras.

As shown in Fig. 18, communications to and from the various

devices and the MIPSA take place on a local area network, here

called the device network. For deployment in multiple stations, a

separate network, MIPSA network, is used to coordinate two or

more MIPSA systems (a discussion of this facility is outside the
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Fig. 19. Video display on the MIPSA monitor.

scope of this paper). The database holds system-configuration

data, event annotations and video sections (pre- and postevent)

used for query-based retrieval of events/video.

B. Device Model

This section outlines how characteristics of surveillance sys-

tems with multiple and diverse sensors have been generalized

to make the proposed solution flexible for future deployment.

In PRISMATICA, a device represents a computing subsystem

that complies with a given data protocol and that can handle

one or more sensors (or actuators). At one level, a device de-

scribes (to the MIPSA) how many sensors it deals with, what

events its sensors can detect (and what data it sends upon detec-

tion), what type of data can be retrieved from its sensors, what

data its actuators accept and how it can be configured. In this

context, the device defines a class (e.g., a four-camera system

Version 3.1) of identical devices. Each device of the same class

that has successfully negotiated a connection to the MIPSA is an

instance of that device class (e.g., Video Device 1 in Fig. 18). In

the demonstration PRISMATICA system, the audio device han-

dles four microphones (sensors) independently (the same type

of process is applied to each microphone), the smart card device

typically deals with six beacons, and each video device handles

one camera signal (one sensor). A sensor refers to the processing

directly associated with a physical transducer (camera, micro-

phone, fire detector, etc.) or actuator and, therefore, is directly

meaningful to an operator and used in a geographical represen-

tation of the site. A sensor can measure or detect one or more

events. Depending on the processing capability of the sensor,

such events can be either simple (the door has been opened)

or fairly complex (person at position , has been there for 22

min and has been walking up and down in a suspicious manner).

Simple sensors will normally be associated with only one event

(e.g., fire detected), but it is also possible for a sensor to be ca-

pable of detecting a number of events. For example, the sensor

for the video device described in Section II detects the following

events: overcrowding, congestion, unusual direction of move-

ment, intrusion and stationary person/object. Events can be of

different types such as alarm (an incident has occurred), mea-

surement (a continuous quantity such as the number of people

in an area), or status (system information such as power failure).

Events are further characterized by subtypes such as binary (a
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Fig. 20. Overview of MIPSA/device communications architecture (LIB denotes a wrapper that hides CORBA communications from device applications).

message is sent when the event is first detected and then another

message is sent when the alarm condition no longer exists) or

pulse (a regular set of messages associated with one alarm and

associated data, e.g., an indication of a stationary object, its posi-

tion, and the amount of time it has remained stationary). Finally,

the concept of event groups encapsulates the idea that what a

user might regard as an event can be a combination or aggrega-

tion of evidence captured by one or more sensors. For example,

this applies to the smart card device, where the event is the de-

tection by one radio beacon that a smartcard button has been

pressed, the sensor is the radio beacon, the device is the beacon

data concentrator, and the event group is the set of simultane-

ously activated beacons (by the same card).

C. Communications

One of the main drivers in the design of the PRISMATICA ar-

chitecture was the ability to add devices dynamically and with

little or no reprogramming or reconfiguration of the main server

(the MIPSA). This section summarizes how this was achieved.

The primary network communications-control layer is provided

by ACE/TAO, an implementation of CORBA services, chosen

because it is open software and has been optimized for real-time

operation [46]–[49]. Schematically, a PRISMATICA unit can

be represented as shown in Fig. 20 (shown for two devices A

and B). ACE/TAO services are wrapped in a dynamic library

(LIB) that provides a simple C-language interface so as to allow

developers with no CORBA experience to implement devices

(PRISMATICA involved eight different technical teams from

different European countries). When the MIPSA starts, it cre-

ates a CORBA object referred to as a MIPSA communication

object (MCO). This object is also given a name (MIPSA) and

registered with what is called a naming service (NS), a stan-

dard CORBA facility. This allows any software running on the

same network to access the MCO through that name. The MCO

is a simple object that can get/send text messages from/to de-

vices and that also provides a network-wide time reference (for

the time-stamping of events). When a new device is connected

to the network, it creates its own communication object device

communication object (DCO). It then locates the MIPSA object

and sends it a class registration message. This provides all nec-

essary information to the MIPSA on the capabilities of the de-

vice (number of sensors, how it is configured, etc.). The MIPSA

instantiates the device by giving it a unique identifier and asso-

ciating it with the DCO created by the device. At this point, the

MIPSA and the device can communicate with one another. For

example, the MIPSA sends the device-configuration informa-

tion stored in the database (this could include connection to a

particular camera) from the last time the device was connected

to the system. Conversely, if for any reason the device is taken

out of the system (e.g., for maintenance), it signs itself out. In

short, these mechanisms provide a flexible way of scaling the

system up to any number of devices (subject to overall phys-

ical limitations, such as network bandwidth). All the interac-

tion between devices and the MIPSA is done through text mes-

sages, encapsulated in an XML protocol. This simplifies design,

testing and expansion at the price of higher bandwidth require-

ments. The protocol is sufficiently rich to allow a wide range of

devices. Full details on the protocol can be found in [50].

A device connected to the MIPSA can also establish a link to

any other device in the system. This caters for situations that

might benefit from such direct communications links (e.g., a

camera sending data directly to one of its neighbors or an audio

device prompting a camera). This link between devices is shown

as the thicker dashed line in Fig. 20. Furthermore, devices or the

MIPSA may need to send/receive large amounts of data between

one another. In this architecture, it is possible to set up socket

communication links between devices and the MIPSA (or any

other device). There are three types of connection: Multicast

(broadcasting), TCP (point-to-multipoint), and UDP (point-to-

point, asynchronous). Any device, or the MIPSA, can act as the

server or client in a socket connection. Data can be distributed

or sent to another device, once the socket connection is estab-

lished. In Fig. 20, an example of a multicast connection is shown

by the thinner dashed lines, where the MIPSA acts as the multi-

cast server, and the devices are the clients. The overall aim has
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Fig. 21. Schematic representation of sensor position and coverage.

been to emulate as far as possible the different types of commu-

nications that can take place in a monitoring environment.

D. Event Visualization

The site under surveillance is represented by a set of maps

(isometric and/or plan views) to present familiar views to oper-

ators. Each map typically covers a surveillance zone, such as a

platform, a ticket hall, a corridor, etc. A schematic example is

shown in Fig. 21. When the system is configured, sensors (cam-

eras, microphones, etc.) are placed on these maps and assigned

grid coordinates. Their approximate ground coverage is also de-

fined in terms of these coordinates. This gives useful topograph-

ical information about the sensors in the site and their overlap (if

any). For example, if in Fig. 21 the circle labeled B1 represents

the coverage of a smart card beacon and an event is detected by

that beacon, the system is able to associate that event with the

camera whose view overlaps the beacon’s coverage (the trape-

zoid labeled C1). In the same way, when an event is detected by

camera C2, the system can also show the images from camera

C3 because they share some coverage. Under routine operation,

control room operators can navigate the site by selecting one

of the maps and then clicking on an area covered by sensors

to obtain further information, such as the real-time images from

the corresponding camera(s). An important and often underesti-

mated aspect of surveillance [51] is the use that operators make

of logical relationships between sensors (mostly cameras). For

example, when an operator sees that a train platform starts to

become overcrowded, s/he then normally looks at the number

of people getting into the station at entrances, which can be

far away from platforms. S/he might also consider information

on expected time of arrival of the next train service. This ge-

ographically dispersed set of data is important for operators to

take pre-emptive actions. The PRISMATICA system deals with

this by allowing sets of (disperse) cameras to be grouped. This

is called a topological mode (in contrast to the topographical

mode described earlier). In this mode, when an event is viewed

by an operator, all the cameras in the same group are shown to-

gether (this also works in routine monitoring when an operator

is navigating the map and clicking on any given camera cov-

erage areas). When an event is detected by a device, it can send

graphic primitives to highlight the event on the operator screen.

This is another example of the decision, linked to system scal-

ability and maintainability, to allow devices to determine what

they do and what information they send.

The detection of an event triggers an audible and visible

warning for the operator on the multiple-view screen shown in

Fig. 19. The camera where the event originates (either directly

from a video device or indirectly from camera coverage overlap

as it would occur, e.g., from audio detection) is highlighted on

that screen. When the operator clicks/touches on that camera

display, the event is shown in more detail, together with the

associated cameras. Fig. 22 shows an example (the larger image

corresponds to that where the event is detected and the smaller

ones are those of topographically related cameras).

E. Topographical Alarm Management

The PRISMATICA system is potentially a large system that

consists of many devices. Although only high-level event mes-

sages are sent to the MIPSA and shown to the operators, po-

tentially there could be too much information for the operator

to process and s/he could not react to a situation immediately.

As devices are monitoring different aspects in the environment,

an incident in one area could trigger multiple alarms from dif-

ferent devices. For example, in an assault situation, the audio

surveillance device may detect people shouting, passengers may

push the panic button on their smart cards, and the video de-

vice may detect unusual movements. Consequently, the audio

surveillance device, the smart card and the video camera will

send (separate) alarm messages simultaneously to the MIPSA.
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Fig. 22. Event highlighting (London Underground).

Even though the messages denote the same incident, the oper-

ator might need to go through all the messages, look at the asso-

ciated video images, interpret the situation, and take appropriate

action. Instead of assisting the operator, these could complicate

the surveillance process. What is needed is a means of grouping

event evidence from multiple sensors (that independently do not

need to know that they have overlapped coverage) to reduce the

number of (separate) alarms and to increase the priority given

to such event groups. This section describes how this is done

using topographical information. This is an extension of what

the authors described in [52]. The system also uses a Bayesian

framework to fuse multiple device information, but this is not

dealt with here, due to space limitations (please refer to [52] for

details).

Each map in the system (see Fig. 21) is divided up into

cells with coordinates , where represents the map

number. Each event is associated with a priority (an integer

value between 1 and ), allocated initially by the device,

but modifiable by the operator. For each sensor registered in

the system, a cell in a map is said to be covered by the sensor if

1 (otherwise, ). At any given

time , an alarm-type event associated with that sensor is

represented by which can take a value from zero (no

event has been detected) to . Once an event is detected,

it is required that the priority level is kept nonzero

by devices for at least twenty sample periods (a sample period

is typically 100 ms) so as to account for variations of detection

times between sensors. Then, the event status associated with

a particular map cell is as follows, where is the number of

sensors in the system

(15)

TABLE II
MOTION DIRECTION ESTIMATION PERFORMANCE

Thus, this calculation accumulates and fuses information

from various sensors to reduce the number of multiple alarms

associated with a particular area. The value of

is mapped to a set of user-defined colors associated with in-

creasing levels of alarm priority.

IV. EXPERIMENTAL RESULTS

An important aspect of the work described here was the

emphasis on a realistic assessment of performance of the de-

veloped systems and algorithms. This assessment consisted of

two stages. First, the architecture was tested by integrating an

audio device, a smart card beacon concentrator device, four of

the video devices described earlier, and a separate four-camera

video device. This work was conducted in the Paris Metro (Gare

de Lyon) and successfully demonstrated the communications

mechanisms and protocol. Second, a major deployment of

the system took place in the Liverpool St. station. This is the

fourth busiest station in the London Underground network, in

terms of the number of passengers. It deals with commuter

traffic to/from one of the biggest financial centers in Europe

and connects with the main railways and buses. There are more

than seventy cameras in this station covering approximately

80% of its total area. Stringent regulations meant that it was

only possible to set up the system for video detection.
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TABLE III
PERFORMANCE FIGURES FOR STATIONARY OBJECT DETECTION

TABLE IV
OVERCROWDING AND CONGESTION PERFORMANCE

A. Verification

This refers to a preliminary evaluation of the detection

capability of the system with video recordings made on site

(London, Paris, Milan). The performance of the algorithms

evaluated against manually obtained ground truths for the data

made available at the time by transport operators and indicative

of their highest concerns. Unless otherwise specified, verifi-

cation was carried out with a minimum number of samples

to satisfy an uncertainty of true performance of 7% and a

confidence level of 95%

samples (16)

For motion direction, an event is defined as a pedestrian en-

tering and leaving the camera’s field of view. Table II shows the

performance-assessment figures. On the detection of stationary

areas, tests were conducted in the following conditions.

1) Normal occlusion. Complete occlusion of the stationary

region by moving or standing pedestrians for at least 2

min (the specified stationary period to be detected).

2) Occlusion with the same color as the background. Occlu-

sion with moving pedestrians of grey levels similar to the

background shades (only eight cases were considered due

to lack of recorded data).

3) Pose and position variations. Movement of limbs and

torso or shift in standing location with at least 1% over-

lapping with original position, with an updating period

of 3 s.

An event is defined as a pedestrian standing within the AOI

for more than the allowed period (within 2 min s). Table III

shows the performance figures. Tests to assess performance on

detection of overcrowding and congestion were conducted using

3 h of video recorded in a ticket hall (Fig. 5) and a corridor

(Fig. 14) and the results are shown in Table IV. Overcrowding

is detected instantaneously but, being a global measure, false

alarms are generated mainly due to short bursts of loosely dis-

tributed crowds. Congestion, based on motion, overcomes some

of these problems at the expense of some delay in detection (typ-

ically less then 5 s).

B. Operational Performance

The results summarized above give an indication of the detec-

tion ability of the vision processes. However, they necessarily

correspond to limited conditions and do not address the impor-

tant issues of usability and reliability over longer periods of time

and under operational conditions. To assess such performance

in detail, Ipsotek developed and tested a system known as the

intelligent pedestrian surveillance (IPS) system with similar de-

tection functionality plus the following additional processes:

1) train presence;

2) significant change;

3) loitering.

1) Train Presence: The detection of presence of a train in

the area under surveillance is used to inhibit detection of other

events (e.g., overcrowding, intrusion near the edge of the plat-

form) as these situations are normal on arrival/departure of a

train. This operates in a similar way to overcrowding detection

(Section II-E1) except that prior operator knowledge is used to

position its AOI on the tracks.

2) Significant Change: This refers to the detection of move-

ment/presence in an area where it is known that such condi-

tions are extremely unlikely (e.g., above pedestrian heads or

train roofs). This event generally arises in underground stations

due to sudden changes in lighting conditions (e.g., lamp failure)

or camera movement. Detection operates in a similar way to

that of overcrowding detection, a low-priority alarm is gener-

ated and, more importantly, the background-estimation process

is restarted. This feature is particularly useful to provide contin-

uous unattended operation.

3) Loitering: This refers to the sustained presence of one or

more people (over a given time limit) in an area. For example,

in a corridor, this could indicate unauthorized activity such as

selling/begging; near ticket machines, it might indicate the pres-

ence of ticket touts (people that illegally resell used tickets), and

at the end of the platforms it might be indicative of people con-

sidering committing suicide. In relatively uncluttered environ-

ments, it is possible to detect loitering by localizing and tracking

individuals (e.g., see [10]). In busy public environments, such

approaches are still not sufficiently reliable. A full discussion of

the method to detect loitering is beyond the space constraints of

this paper and will be reported elsewhere. The approach is based

on maintaining positional appearance models (luminance and

motion) for subregions in the loitering AOI. Weights inversely

proportional to motion magnitudes are used, as loitering is char-

acterized by small speeds mixed with periods of stationarity.

The consistent presence, over a user-defined period of time, of

an appearance pattern (measured through a correlation value)
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triggers the detection of loitering. As the method is based on ap-

pearance correlation, it is able to maintain detection of people

that temporarily leave and then come back into the AOI.

A system for 14 cameras was installed in the Liverpool St.

station (London) and evaluated under operational conditions (in

a control room) by control-room operators. These tests did not

involve staging events or continuous reconfiguration of settings.

The following summarizes their main findings.

Detection performance was measured by comparing the in-

cidents detected and logged by the system against the digital

recording associated with such incidents. Each logged event was

classified by operators as either true or false. Thus, what was

measured was the percentage of true and false positives. The

system was found to detect true overcrowding/congestion inci-

dents 98% of the time. Another AOI to the operators was the

detection of intrusion into closed areas of the station at night.

This was found to be detected correctly 81% of the time (but it

is estimated that most of the false alarms were associated with

a problem of lack of synchronization between the system’s and

the station CCTV’s clocks, where the system would still be set

to detect intrusion once the area had been opened to passengers).

Detection of abandoned packages was measured to be done suc-

cessfully 87% of the time. This is regarded by operators as a

high success rate, as it has to be compared with a conventional

situation where at best only around 10% of the cameras are mon-

itored by staff at any given time. The system performed well in

detecting instances of loitering at a level of 82%.

A survey on the usability and likely operational impact of

the system was then conducted by the transport operator among

managers (35 out of 37, 95%, of which believed that the system

can be useful in the Underground) and among the station staff.

Staff expressed satisfaction with image quality and with the ease

of use of the touch-based operator interface once they have been

trained to use it (typically a couple of hours). Most of the staff

felt that the system makes the station (85%) and staff (100%)

safer, detection of intrusion into closed areas (87%), dealing

with overcrowding (58%), that the system is an improvement

for the station (100%) and that systems of this type should be

installed at most stations (100%). Interestingly, the potential ef-

fect on reducing station closures due to abandoned packages

was rated lower (43%), in contrast to the objectively measured

true/false positives (87%/13%). This discrepancy between per-

ception and detection ability needs investigating further. The

ability to detect people near the edge of the platforms was rated

lower (28%), but this was traced to the problem of having cam-

eras that are not well-positioned for this task (i.e., aligned with

the platform edge) so that occlusion resulting from perspective

effects generates an unacceptable number of false alarms. This

illustrates that the introduction of CCTV monitoring support is

likely to be incremental. With added confidence in automatic

detection, it becomes possible to consider installation of cam-

eras for specific purposes, which conventionally is limited by

the lack of human resources to monitor such cameras.

V. CONCLUSION

This paper has described part of the work of a major Euro-

pean effort to improve personal security and safety in public

transport systems through enhanced surveillance systems. Al-

though the description focused on technical aspects, the work in-

volved a multidisciplinary approach essential to understanding

the context in which surveillance takes place. First, to define

the expectations and limitations of those who are surveyed and,

second, to integrate solutions within the working practices of

human operators and managers of monitoring control rooms.

Such types of informed integration is vital within a framework

of ambient intelligence, where the main purpose is to provide

transparent support in environments where human activity takes

place and, hence, where humans are the primary subject for the

provision of an enhanced environment. Because of the impor-

tant role that vision plays in these surveillance systems, this

paper first described in detail one of the vision modules used

in a PRISMATICA system. The new algorithms presented have

been shown to be capable of dealing with the type of image com-

plexity present in metropolitan railway environments, over long

periods of time with detection rates exceeding 80%. The par-

ticular strengths of these algorithms are the ability to integrate

motion as an integral part of background/foreground detection,

a method for perspective self-calibration derived from motion

and robustness to occlusion, camera shake, and illumination

changes. As far as the authors know, this type of long-term eval-

uation under full operational conditions has not been reported

elsewhere. Then, the paper described a generalized surveillance

architecture that reflects the distributed nature of the monitoring

task and that allows for distributed detection processes, not only

dealing with visual processing but also with devices such as

acoustic signature detection and mobile smart cards, actuators

and a range of possible sensors. The framework was developed

reflecting existing management procedures (such as the deploy-

ment of ground staff that have specific tasks and report to a cen-

tral control room when necessary). The PRISMATICA system

was tested in London and in Paris. A system with comparable

functionality (IPS), was then extensively and successfully tested

in one of the busiest underground stations in London (Liver-

pool St. station). Current work is aimed at improving even fur-

ther the performance of the vision module, e.g., by exploiting

color information (when available), considering how to measure

finer behavioral measurements that depend for example on pos-

ture and gesture, applying learning processes (such as hidden

Markov models) to the learning of what constitutes normal and

abnormal behavior, frameworks for fusing diverse types of date

and also to coordinate surveillance from one camera to another.

There is also still much to be done on incorporating expert-do-

main knowledge into the automatic monitoring task (e.g., how

situations change at the time of day when school children return

home). On system aspects, the main efforts are concentrated on

finding predictable scalable real-time system architectures [53]

that can be applied to widely distributed surveillance systems

(geographically and from the point of view of the number of

people in charge of monitoring).
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