
 Open access  Proceedings Article  DOI:10.1109/ICDE.2005.111

Privacy and ownership preserving of outsourced medical data — Source link 

Elisa Bertino, Beng Chin Ooi, Yanjiang Yang, Robert H. Deng

Institutions: Purdue University, National University of Singapore, Singapore Management University

Published on: 05 Apr 2005 - International Conference on Data Engineering

Topics: Information privacy, Digital watermarking and Data sharing

Related papers:

 k -anonymity: a model for protecting privacy

 Privacy-preserving data mining

 Transforming data to satisfy privacy constraints

 Watermarking relational databases

 L-diversity: privacy beyond k-anonymity

Share this paper:    

View more about this paper here: https://typeset.io/papers/privacy-and-ownership-preserving-of-outsourced-medical-data-
fyf4xqgddc

https://typeset.io/
https://www.doi.org/10.1109/ICDE.2005.111
https://typeset.io/papers/privacy-and-ownership-preserving-of-outsourced-medical-data-fyf4xqgddc
https://typeset.io/authors/elisa-bertino-ed09uwugb6
https://typeset.io/authors/beng-chin-ooi-4qosp9hc0d
https://typeset.io/authors/yanjiang-yang-3tk9hyhm5z
https://typeset.io/authors/robert-h-deng-h1cnlpoja6
https://typeset.io/institutions/purdue-university-2ddhwsmq
https://typeset.io/institutions/national-university-of-singapore-24b050gz
https://typeset.io/institutions/singapore-management-university-2c8pgbb0
https://typeset.io/conferences/international-conference-on-data-engineering-12yajil8
https://typeset.io/topics/information-privacy-m970507r
https://typeset.io/topics/digital-watermarking-3c1l00p4
https://typeset.io/topics/data-sharing-deksp88o
https://typeset.io/papers/k-anonymity-a-model-for-protecting-privacy-1crq674ku8
https://typeset.io/papers/privacy-preserving-data-mining-3xvq0plzpn
https://typeset.io/papers/transforming-data-to-satisfy-privacy-constraints-18soknq47o
https://typeset.io/papers/watermarking-relational-databases-2w9l4y70i3
https://typeset.io/papers/l-diversity-privacy-beyond-k-anonymity-43op5i6gzs
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/privacy-and-ownership-preserving-of-outsourced-medical-data-fyf4xqgddc
https://twitter.com/intent/tweet?text=Privacy%20and%20ownership%20preserving%20of%20outsourced%20medical%20data&url=https://typeset.io/papers/privacy-and-ownership-preserving-of-outsourced-medical-data-fyf4xqgddc
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/privacy-and-ownership-preserving-of-outsourced-medical-data-fyf4xqgddc
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/privacy-and-ownership-preserving-of-outsourced-medical-data-fyf4xqgddc
https://typeset.io/papers/privacy-and-ownership-preserving-of-outsourced-medical-data-fyf4xqgddc


Privacy and Ownership Preserving of Outsourced Medical Data

Elisa Bertino

Department of Computer Sciences

Purdue University

bertino@cs.purdue.edu

Beng Chin Ooi

School of Computing (SoC)

National University of Singapore

ooibc@comp.nus.edu.sg

Yanjiang Yang

Institute for Infocom Research, and

SoC, National University of Singapore

yanjiang@i2r.a-star.edu.sg

Robert H. Deng

School of Information Systems

Singapore Management University

robertdeng@smu.edu.sg

Abstract

The demand for the secondary use of medical data is in-

creasing steadily to allow for the provision of better quality

health care. Two important issues pertaining to this sharing

of data have to be addressed: one is the privacy protection

for individuals referred to in the data; the other is copyright

protection over the data. In this paper, we present a unified

framework that seamlessly combines techniques of binning

and digital watermarking to attain the dual goals of privacy

and copyright protection. Our binning method is built upon

an earlier approach of generalization and suppression by al-

lowing a broader concept of generalization. To ensure data

usefulness, we propose constraining Binning by usage met-

rics that define maximal allowable information loss, and the

metrics can be enforced off-line. Our watermarking algo-

rithm watermarks the binned data in a hierarchical manner

by leveraging on the very nature of the data. The method

is resilient to the generalization attack that is specific to the

binned data, as well as other attacks intended to destroy the

inserted mark. We prove that watermarking could not ad-

versely interfere with binning, and implemented the frame-

work. Experiments were conducted, and the results show the

robustness of the proposed framework.

1 Introduction

Nowadays, effective sharing of medical data is essential

to foster the collaboration within the health care commu-

nity and with other parties such as research institutes, phar-

maceutical and insurance companies, so as to enhance the

quality and efficacy of health care provision. For example,

a hospital may need to outsource clinical records in its au-

tonomous databases to a research institute in an attempt to

discover a new drug or evaluate a new therapy. Such need

is clearly shown by research trends in the area of health care

management and procedures that are increasingly based on

extensive analysis of medical data. The dissemination of

medical data could also be to satisfy legal requirements. As

reported by the National Association of Health Data Organi-

zation in 1996, 37 states in the United States had legislative

mandates to gather personal health information from hospi-

tals for cost-analysis purposes [22].

The direct release of medical data invariably violates in-

dividual privacy. Data must be thus properly processed be-

fore delivery in order to protect the privacy of the individuals

they refer to. A straightforward method for achieving indi-

vidual privacy is to de-identify (anonymize) the data, by re-

placing any explicit identifying information (e.g., name and

social security number (SSN)) by some randomized values.

This alone, however, does not suffice to guarantee the full

anonymity of medical data as pointed out by numerous stud-

ies (see e.g., [13, 28, 26, 29]). An example often outlined is

re-identification by linking attributes such as birth date, zip

code that are shared by the anonymized medical data and

some externally collected voting records. This has moti-

vated many more advanced approaches in the literature (see

Section 2). Of particular interest is generalization and sup-

pression [26, 28, 29] that represents values by corresponding

more general but semantically accordant alternatives.

The sharing of medical data also exposes data holders to

the threat of data theft. Related to this, yet another important

requirement regarding outsourced medical data is to protect

data ownership (copyright). It is quite obvious that medi-

cal data are an important asset to the data holders who have

collected and compiled the information. Incentives to unau-

thorized data distribution arise from an increasingly thriv-

ing data industry where firms such as biotech companies

collect, compile, share or sell (bio)medical data for profits.

Even though there are laws concerning copyright and own-

ership rights, we need effective mechanisms to establish and

protect the holders’ rightful possession of the data. Con-

sequently and naturally, digital watermarking techniques,

initially proposed for the protection of multimedia content

[6, 15], have been recently also applied to relational data.
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Figure 1. A domain hierarchy tree (DHT) for a column representing the types of person roles

As such, digital watermarking techniques represent a viable

solution for the problem of enforcing ownership of medical

data. However, a main difference of medical data with re-

spect to data from different domains is represented by the

need of also assuring privacy. It is thus clear that when deal-

ing with outsourced medical data, both individual privacy

and data ownership must be protected. To meet these dual

needs, we propose a framework that integrates techniques

of binning and digital watermarking, such that the medical

data to be outsourced would undergo two consecutive steps

of binning and watermarking, respectively. The main con-

tributions of our work include:

1. A unified framework that seamlessly combines binning

and digital watermarking for the protection of both individ-

ual privacy and data ownership. We give both theoretical and

experimental analysis on the “seamless-ness” of the combi-

nation.

2. A binning algorithm that enforces the functionality of

“binning”. The method bins downward, and extends an ear-

lier approach of generalization and suppression by allowing

a broader concept of generalization.

3. A hierarchical watermarking scheme that is resilient to

various attacks attempting to remove the embedded mark,

and especially robust against the specific generalization at-

tack. In addition, we propose an elegant solution to the right-

ful ownership problem concerning watermarking.

4. The adoption of usage metrics for preserving data qual-

ity with respect to the intended usage. We define our usage

metrics by modeling information loss, and propose an off-

line enforcement of the usage metrics.

5. Experimental studies of the proposed framework.

Compared to existing approaches, a main innovative as-

pect of our work is represented by a downward binning pro-

cess for the satisfaction of k-anonymity specification, due to

the off-line enforcement of usage metrics; our watermark-

ing algorithm is a novel hierarchical scheme that exploits

the very nature of the underlying data, which also provides

a neat solution to the rightful ownership problem.

Organization: We review related work in Section 2. In Sec-

tion 3, we give an overview of our framework. We then

proceed to detail our binning algorithm and watermarking

algorithm in Sections 4 and 5, respectively. In Section 6,

we present a theoretical analysis on the seamlessness of our

framework. Section 7 provides experimental results and

Section 8 concludes the paper.

2 Background and Related Work

Two classes of techniques closely related to our work

are information disclosure control and relational database

watermarking. Given a relational table containing medical

data, columns can be categorized into three types based on

the identifying information each contains. Columns that ex-

plicitly identify individuals (e.g., SSN) are known as identi-

fying columns, and columns containing potentially identify-

ing information that could be linked with other data sets to

re-identify individuals are called quasi-identifying columns.

Typical examples of quasi-identifying columns include zip

code, birth date, etc. The other columns contain no identify-

ing information. In this paper, we restrict ourselves to quasi-

identifying columns unless explicitly stated otherwise.

Information Disclosure Control

Information disclosure arises when either the identity of an

individual is directly revealed or something about an indi-

vidual can be derived from the released data. By conven-

tion, we call the former identity disclosure and the latter

attribute disclosure [18]. We only discuss the identity dis-

closure problem in this work, and refer interested readers to

[31] for in-depth discussions on the attribute disclosure.

One well known approach to identity disclosure con-

trol is to transform quasi-identifying columns to entertain

k-anonymity constraint (k is a constant), i.e., data are gen-

eralized and suppressed in such a way that every record

is indistinguishable from at least k-1 other records, so that

no search can be narrowed down to a particular individual

[13, 26, 28, 29]. The satisfaction to k-anonymity can also be

understood as: records containing the same value constitute

a bin, and the size of every bin is at least equal to k. By defi-

nition, generalization involves replacing a value with a more

general but semantically accordant value, while suppression

deals with preventing data releases. Generalization of cate-

gorical attributes is based on the fact that the representation

of medical data can be normally arranged into a domain hi-

erarchy tree (DHT), where the most general description of

the data is at the root of the tree while the leaves denote

the most specific descriptions. Figure 1 shows a DHT on

the type of roles: leaf nodes represent all possible particular
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Figure 2. Protection framework for outsourced medical data

roles a column may assume, and generality of the descrip-

tion increases with the level along the tree, until the root

node distinguishing no specificity. A generalization works

by replacing the values represented by the leaf nodes by

their corresponding ancestor nodes at a higher level. A valid

generalization in [26, 28, 29] requires all its generalization

nodes be at the same level in the domain hierarchy tree.

Clearly, generalization and suppression result in a loss

of specificity, thereby making the re-identification process

harder. However, the tradeoff between the level of pri-

vacy and the amount of information loss must be carefully

evaluated, as too much generalization could possibly render

the data useless while slight generalization could not pro-

vide adequate protection. [14] suggested associating usage

based metrics with the process of meeting k-anonymity. Our

framework incorporates the same idea of usage metrics, but

we define a different set of metrics, and suggest off-line en-

forcement of the metrics. Metrics in [14] are defined in ac-

cordance with the broader notion of generalization allowed

therein, which does not require all generalization nodes stay

at the same level. The binning method in [19] follows a sim-

ilar broader definition of generalization. Considering the

flexibility and finer granularity it offers, our binning algo-

rithm also includes such a broader notion in extending the

generalization and suppression in [26, 28, 29]. Moreover,

the off-line enforcement of usage metrics essentially enables

a downward binning in our context.

Another approach to the identity disclosure problem is to

perturb the data by adding noise or swapping values, while

at the same time maintaining some statistical properties of

the entire data set [17, 11]. It is again vital to determine

the right tradeoff between information loss and privacy –

a topic which is now under active research [8, 32]. Other

approaches dealing with data privacy and confidentiality but

addressing issues different from ours include [12, 30, 1, 3,

21, 4, 5].

Watermarking of Relational Data

Digital watermarking has long been investigated for copy-

right protection, mainly over multimedia content, e.g., im-

ages and video clips [6, 15]. There have been recent efforts

in watermarking relational databases. Due to the very nature

of relational data, watermarking techniques for databases

turned out not to be a direct deployment of techniques for

multimedia data. A seminal approach to watermarking rela-

tional data is presented in [2]. However, the use of Least Sig-

nificant Bits (LSB) embedding in the scheme makes it inher-

ently vulnerable, as a simple flipping of LSBs would com-

pletely destroy the inserted mark. [24] proposed a method

for watermarking numbers that is robust because the mark

embedding relies on data distribution rather than on trivial

LSB modification. The idea has later been integrated in a

framework for watermarking numeric attributes of relational

databases [25]. A theoretical investigation on watermarking

techniques for databases and XML documents is presented

in [7], which attempts to achieve watermarking while pre-

serving a set of parametric queries in a specified language.

Another approach [23] was recently proposed dealing

with watermarking categorical attributes in databases. In

essence, the data to be watermarked in our context become

categorical after binning, so our watermarking also reduces

to handling categorical data. Unfortunately, such approach

cannot be directly applied to our case because it is suscepti-

ble to a kind of generalization attack (see Section 5).

3 Overview of Our Framework

To simultaneously attain the goals of protecting individ-

ual privacy and copyright protection regarding outsourced

medical data, we combine techniques of binning and digital

watermarking into a unified framework. As shown in Fig-

ure 2, the framework comprises two key components, i.e.,

binning agent and watermarking agent, dedicated to binning

and watermarking, respectively. In the framework, the med-

ical data to be outsourced would undergo two consecutive

steps of transformation. Specifically, the binning agent first

bins the data to satisfy k-anonymity specification. After-

wards, the binned data are watermarked by the watermark-

ing agent by inserting within the data a mark, which, upon

extraction, asserts provable ownership. The data resulting

from these transformations are then expected to adequately

protect both privacy and copyright, thereby qualified for out-

sourcing. Both binning and watermarking are governed by

usage metrics in order to preserve data usability. Next, we

shall discuss some specific aspects of the framework.

Usage Metrics: Usage metrics define a set of maximal dis-

tortions that binning and watermarking are allowed to intro-

duce with respect to the intended data usage (see Section 4).
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Transformation exceeding the bounds is assumed to render

the data useless.

k-anonymity Specification: k-anonymity specification in-

cludes the system parameter k, and possibly also the set of

quasi-identifying columns to be binned and other relevant

constraints pertaining to binning.

Binning Agent: Driven by the binning algorithm, the bin-

ning agent attempts to bin the data to satisfy k-anonymity

specification while at the same time adhering to the usage

metrics. After binning, each bin is guaranteed to contain at

least k records, so no specific individual can be identified.

The binning algorithm takes as input the original data, the

k-anonymity specification, the domain hierarchy trees for

each quasi-identifying attribute, and the usage metrics. We

suggest a preprocessing step to create the domain hierarchy

trees and determine the system parameters.

Watermarking Agent: The watermarking agent continues to

process the binned data by embedding an owner-specific

mark. The underlying watermarking algorithm exploits a

secret watermarking key (may contain several elements),

known only to the data owner, to manipulate the process

of mark embedding. Without having possession of the se-

cret watermarking key, no one can erase the inserted mark

from the data. Watermarking also observes usage metrics,

ensuring that it does not corrupt the data in terms of the an-

ticipated usage; the domain hierarchy trees are needed as

well for inspection by our watermarking algorithm.

4 Binning Algorithm

Our binning algorithm extends the approach of general-

ization and suppression in [26, 28, 29] by allowing a broader

notion of generalization as in [14], which does not require all

generalization nodes of a generalization to be necessarily at

the same level of the domain hierarchy tree. In particular, a

valid generalization is represented by a set of generalization

nodes in the domain hierarchy tree that satisfy the follow-

ing condition: The path from every leaf to the root along the

tree encounters one (to guarantee generalizability) and only

one (to guarantee deterministic generalization) generaliza-

tion node. This definition includes the case of a leaf node

itself being a generalization node. We have seen domain of

a categorical attribute being organized into a domain hierar-

chy tree; we next describe the generalization of a numeric

column. It is accomplished by first dividing the domain

space of the column into a series of disjoint intervals, and

then pairwise combining them into a binary tree. With the

tree, generalization proceeds in the same way as for a cate-

gorical attribute. As an example, Figure 3 depicts the con-

struction of a binary domain hierarchy tree for the column

Age with domain [0, 150). In order to avoid over-binning

the data, intervals should be of moderate size (smaller) and

they need not to be of equal size.

Clearly, binning makes data less specific (more general),
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Figure 3. Constructing binary DHT for a nu-

meric attribute

thereby resulting in some information loss. It would make

no sense to meet k-anonymity specification if that renders

the data useless, thus data quality must be preserved. We

suggest constraining the binning process to abide by usage

metrics specifying a set of maximal allowable information

loss. More information loss than as specified would substan-

tially degrade the data quality with respect to the intended

data usage.

4.1 Usage Metrics

Consider first a categorical column c that associates with

a domain a hierarchy tree T , e.g., Figure 1. If Pharmacist

is generalized to Paramedic, under our definition of general-

ization, child nodes of Paramedic would become indiscrim-

inatable. This in turn implies that all entries in c containing

Pharmacist/Nurse/Consultant would become indiscriminat-

able. This concept of indiscrimination leads to our approach

for quantifying information loss InfLossc for the column c
as follows. Suppose a generalization results in a set of gen-

eralization nodes {p1, p2, ..., pM}; let Si be a set containing

the leaf nodes of the subtree that is rooted at pi, and the num-

ber of entries in c containing values in Si be ni, i = 1..M .

Information loss InfLossc is defined as

InfLossc =

∑M

i=1
(ni

|Si|−1

|S| )
∑M

i=1
ni

(1)

where S = S1

⋃
S2

⋃
...

⋃
SM is the set of leaf nodes of

the tree T . We allow some leaf nodes to remain ungeneral-

ized given that k-anonymity specification is already met, in

which case |Si| = 1.

We next consider a numeric attribute c, e.g., Age. Sup-

pose the domain of c, whose lower and upper bounds are

L and U , respectively, is generalized into M intervals. The

lower and the upper bounds for these intervals are Li and

Ui, respectively, i = 1..M . Let ni be the number of en-

tries in the column c whose values fall between Li and Ui,

InfLossc is then defined as

InfLossc =

∑M

i=1
(ni

Ui−Li

U−L
)

∑M

i=1
ni

(2)
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Once all InfLossi, i = 1..CN (CN is the total number

of the generalized columns) are determined, a normalized

loss InfLoss is computed by averaging over all generalized

columns in the table:

InfLoss =

∑CN

i=1
InfLossi

CN
(3)

Likewise, other forms of information loss, e.g., total in-

formation loss can be defined. In general, the usage metrics

for controlling information loss are defined as following:

InfLossi ≤ bdi ∀i = 1, ..., CN (4)

InfLoss ≤ bdavg

where B = {bd1, ..., bdCN} ⊂ R and bdavg ∈ R define the

bounds for maximal allowable information loss.

In practice, the enforcement of the above metrics in a nor-

mal way might not be ideal as it involves calculating infor-

mation loss and in turn checking against the bounds after

every step of binning. Fortunately, we can implement an

off-line enforcement, yielding a set of maximal generaliza-

tion nodes in each domain hierarchy tree. Maximal gener-

alization nodes are defined as 1) constituting a valid gen-

eralization; 2) each being the highest node in the domain

hierarchy tree to which the corresponding leaf nodes can be

generalized under the usage metrics. Usage metrics in the

form of maximal generalization nodes are obviously much

easier to enforce, only requiring that none of the leaf nodes

be generalized beyond its corresponding maximal general-

ization node. It is preferable that the maximal generalization

nodes are directly given as the usage metrics, rather than be-

ing transformed from the form of Equation (4).

We note that a generalization comprising the maximal

generalization nodes trivially satisfies k-anonymity specifi-

cation given that the data are binnable. The point is to meet

k-anonymity while minimizing information loss. It is thus

clear that binning would yield a set of generalization nodes

that are lower than or at most equal to the maximal general-

ization nodes. This reasonably reflects the underlying prin-

ciple that binning is not allowed to damage data usage. Let

us consider the earlier example of generalizing a numeric

attribute, where we suppose the set of intervals in satisfying

k-anonymity is depicted by the leaf nodes of the tree in Fig-

ure 4: enforcement of the usage metrics might most likely

allows for further generalizations, yielding the set of maxi-

mal generalization nodes denoted as elliptic nodes.

4.2 Binning

We decompose binning into two steps, i.e., mono-

attribute binning and multi-attribute binning. The mono-

attribute binning step bins attributes individually so that
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Figure 4. A DHT by enforcing usage metrics

each transformed attribute satisfies k-anonymity. The multi-

attribute binning step is required because, while each at-

tribute satisfies k-anonymity, combinations of them may not.

Consider an example of a transformed table, where 36 peo-

ple have an age between 25 ∼ 50 and 8 people are doctors,

each satisfying k-anonymity specification with k = 6. How-

ever, there might be only 4 people who are aged between

25 ∼ 50 who are also doctors.

For ease of referencing, we list in Table 1 the variables

and functions that will be used in this and the next section.

Notation Meaning

tr the domain hierarchy tree for an attribute

tbl the table to be protected

mingends the set of minimal generalization nodes

maxgends the set of maximal generalization nodes

ultigends the set of ultimate generalization nodes

k the system parameter for k-anonymity

k1, k2, η elements of the secret watermarking key

wm, wmd actual and replicated mark, respectively

Parent(nd, tr) returns the parent node of nd in tr

Children(nd, tr) returns the set of child nodes of nd in tr

Siblings(nd, tr) returns nd together with its sibling nodes in tr

Leaves(tr) returns the set of leaf nodes of tr

SubTree(nd, tr) returns the subtree of tr rooted at nd

Duplicate(wm) duplicates wm to produce wmd

Val2Nd(v, nds[]) returns the node in nds[] that represents v

Nd2Val(nd) returns the value represented by nd

SetµBit(v, b) sets the least significant bit of v to be the bit b

Index(nd, S) returns the index of nd in the set S

MajorVot(wmd) majority voting over wmd

Table 1. Variables and Functions

4.2.1 Mono-attribute Binning

For an individual attribute, our binning starts from the max-

imal generalization nodes downwards along the domain hi-

erarchy tree, until reaching a set of lowest nodes that consti-

tute a valid generalization catering to k-anonymity specifi-

cation. We term such nodes minimal generalization nodes.

Our way of downward binning is an advantage offered by the

off-line enforcement of usage metrics. The mono-attribute

binning is basically an exhaustive trial procedure in a search

for the set of minimal generalization nodes. For this rea-

son, downward binning may have efficiency advantage over
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previous work that bins upward along the tree (e.g., [19]).

Note that the observance of usage metrics is directly accom-

plished by starting binning from the maximal generalization

nodes. Figure 5 outlines the algorithm for generating the set

of minimal generalization nodes.

GenMinNd(tr, maxgends, tbl, k)

1. mingends ← NULL

2. foreach node nd ∈ maxgends
3. subtr ← SubTree(nd, tr)

4. mingends ← mingends
⋃

SubGMN(subtr, tbl, k)

SubGMN(tree str, tbl, k)

1. if NumTuple(str, tbl) < k
2. return NULL

3. forany node nd ∈ Children(str.root, tr)

4. if NumTuple(SubTree(nd, str), tbl) < k
5. return {str.root}
6. tmpset ← NULL

7. foreach nd ∈Children(str.root, str)

8. subtr ← SubTree(nd, str)

9. tmpset ← tmpset
⋃

SubGMN(subtr, tbl, k)

10. return tmpset

NumTuple(tree str, tbl)
1. int num = 0
2. foreach tuple ti ∈ tbl
3. if ti.val ∈ Leaves(str)

4. num ← num + 1
5. return num

Figure 5. Mono-attribute binning algorithm

We employ a simple rationale in generating a minimal

generalization node: a node is minimal if itself meets k-

anonymity, but not all of its child nodes do. This might lead

to an over-generalization of the data. A more aggressive

strategy could be capitalized on, e.g., a node is not minimal

if any of its child nodes satisfies k-anonymity.

4.2.2 Multi-attribute Binning

Multi-attribute binning involves further binning attributes,

each of which already satisfies k-anonymity. However, for

an individual attribute, the set of allowable generalizations

for the purpose of multi-attribute binning is already defined

by the nodes between the minimal generalization nodes and

the maximal generalization nodes. Consider Figure 6: the

set of allowable generalizations constrained by the minimal

generalization nodes and the maximal generalization nodes

are enumerated as {30, 31, 45, 46, 33, 22}, {30, 31, 32, 33,

22}, {30, 31, 21, 22}, {20, 45, 46, 33, 22}, {20, 32, 33, 22}
and {20, 21, 22}. As a result, the set of allowable general-

izations for the entire table is the enumeration of different
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Figure 6. A DHT for illustrating multi-attribute

binning

combinations of allowable generalizations for all attributes.

Let the number of quasi-identifying columns be CN , and

ni be the number of allowable generalizations for column

i, then the total number of allowable generalizations for the

table is
∏CN

i=1
ni.

Among these allowable generalizations, some do not sat-

isfy k-anonymity, and are thereby invalid; the remaining are

valid for k-anonymity. Nevertheless, not all these valid gen-

eralizations are equally satisfactory. The point here is to

choose among them an ultimate generalization that results

in the minimal information loss. Nodes in this ultimate gen-

eralization are called ultimate generalization nodes. Clearly,

the calculation of information loss can be done by using

Equation (1), (2) and (3), although this may not be ideal

as it may incur unacceptable computation penalty. Instead,

we prefer simplifying this calculation by solely considering

“specificity loss” regarding the domain hierarchy trees. Let

the total number of leaf nodes of a tree be N and the num-

ber of generalization nodes of an allowable generalization

be Ng , we define specificity loss due to generalization to be

(N − Ng)/N . This approach of estimating specificity loss

results in a more efficient implementation, but it may reduce

accuracy.

Figure 7 outlines the above approach for determining the

ultimate generalization nodes. The function EnumGen(.)

enumerates all distinct combinations of allowable general-

izations among attributes, and the function Selection(.) de-

termines the generalization that incurs least specificity loss.

GenUltiNd(mingends[1..CN], maxgends[1..CN], tr[1..CN])

1. for i = 1..CN

2. allowblgens[i] ← {genj | genj is a generalization

constrained by mingends[i], maxgends[i] in tr[i]}
3. allgens ← EnumGen(allowblgens[i], i = 1..CN)

4. validgens ← {genj | genj ∈ allgens
∧

genj satisfies

k-anonymity}
5. ultigen ← Selection(validgens)

Figure 7. Multi-attribute binning algorithm

4.2.3 Binning Algorithm

A relevant observation to make is that the identifying

columns are most likely to be the key attributes (e.g., pri-
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mary key) of the table, containing the most important part

of information. Hence it is frequently useful to maintain the

identifying columns traceable to the data holder in health

care domain. For instance, as reported in [9], in some cases

patients may benefit from being traced in research such as

the assessment of treatment safety. Moreover, many real-

world clinical projects such as those in [16] and in [10] sup-

port traceability of the medical data. Based on this obser-

vation, our binning algorithm adopts an one-to-one replace-

ment for data in the identifying columns. In particular, we

replace each data by its encrypted value that is generated

by an encryption function E() e.g., DES or AES. We point

out that keeping the identifying columns unsuppressed and

unmanipulated further is also important for watermarking.

Figure 8 outlines our complete binning algorithm, compris-

ing the encryption of the identifying columns and the bin-

ning of the quasi-identifying columns. Given the ultimate

generalization ultigen yielded by multi-attribute binning, the

function Bin(.) works by simply replacing each value in the

quasi-identifying columns by the value represented by its

corresponding node in ultigen.

Binning(tbl, ultigen)

1. foreach tuple ti ∈ tbl
2. ti.ident.val ← E(ti.ident.val)

3. ti.quasi-ident.val ← Bin(ti.quasi-ident.val, ultigen)

Figure 8. Binning algorithm

5 Watermarking Algorithm

By its very nature, watermarking modifies the data to be

watermarked, thereby further degrading data quality. Water-

marking works under a general assumption that the underly-

ing data can tolerate a certain degree of quality degradation.

The tolerance closely relates to the bandwidth for insertion,

implying that watermarking would fail unless the data can be

modified. The discovery of the available bandwidth appears

to be challenging in the case of watermarking relational data

[25, 23]. We next explain how to find the desired bandwidth

channel for insertion in the binned data.

5.1 Bandwidth Channel

In our context, columns of a table after binning become

essentially categorical, and data modification by watermark-

ing is equivalent to the permutation of data. We advocate

that a binned table can actually accommodate some degree

of data permutation, thereby providing the desired band-

width channel for watermarking.

From earlier discussions, we know that generalization of

a node in the hierarchy tree to its parent node renders in-

discrimination among this node and its sibling nodes. In

essence, a random permutation of values represented by

these nodes equals the effect of the generalization. As long

as such a generalization is allowed, watermarking relying

on the data permutation would definitely work. Recall that

the set of maximal generalization nodes defined by usage

metrics are normally atop the set of ultimate generalization

nodes resulting from binning. Hence, generalizations be-

tween the two levels still respect usage metrics, which in

turn guarantee the viability of watermarking. It is important

to notice a special case where a ultimate generalization node

itself is also a maximal generalization node. Permutation of

such nodes might result in information loss above the thresh-

old set by usage metrics. However, watermarking affects

only a small fraction of the data set, and hence such exces-

sive loss is expected to be minor. As a matter of fact, this is

the price that any watermarking must pay. More importantly,

we can readily tackle this scenario by slightly modifying the

way a maximal generalization node is defined. Specifically,

in determining the set of maximal generalization nodes, the

bounds in Equation (4) are given slightly lower than actually

required for sustaining data usage, so that a small fraction of

the table is allowed to be generalized to the values repre-

sented by the maximal generalization nodes. Note however

that such transformation on a large scale would definitely

destroy the data.

5.2 Watermarking at A Single Level

A direct way to take advantage of the above bandwidth

channel is to consider permutation at the level of each ulti-

mate generalization node (together with its sibling nodes).

The exact primitive enabling bit insertion works as follows.

Suppose an ultimate generalization node p needs to be per-

mutated, and p and its sibling nodes compose a sorted set

S. To insert a bit b, our basic idea for determining a target

node q in S such that p → q encodes the bit b is: the index

of q in S is even, if b = 0; the index of q in S is odd, if

b = 1. However, this does not suffice since some elements

in S may not be ultimate generalization nodes, so if the tar-

get node q is not an ultimate generalization node, validity of

the generalization (see Section 4) is violated. To solve this

issue, we shall continue the permutation process downward

among the child nodes of q, and possibly even lower, until

an ultimate generalization node is reached. Our definition

of generalization guarantees the reachability. This idea of

achieving embedding by data permutation is similar to [23],

but we do within finer domains (sub-domain of the column),

and more importantly we have solid justifications for per-

mutation. Unfortunately, watermarking at this single level is

susceptible to a kind of generalization attack that can com-

pletely destroy the inserted bits without knowing the water-

marking key.

Generalization attack: The generalization attack is specific

to the binned data. It works as follows: the attacker starts

a further generalization on the watermarked table, general-

izing each value to the value represented by a higher gen-
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eralization node in the domain hierarchy tree. Because of

the gap between the maximal generalization nodes and the

ultimate generalization nodes, the table would sustain data

usage. The generalization attack appears fatal as it does

not require the secret watermarking key at all. A careful

analysis indicates that it is the way we consider watermark-

ing only at the level of ultimate generalization nodes that

makes possible the attack. To thwart this attack, we must

additionally watermark all intermediate levels between the

maximal generalization nodes and the ultimate generaliza-

tion nodes. This constitutes the basic idea of our hierarchical

watermarking scheme.

5.3 A Hierarchical Watermarking Scheme

In the hierarchical watermarking, we consider water-

marking at every level, from the maximal generalization

nodes to the ultimate generalization nodes. Specifically, for

an ultimate generalization node p to be permutated, water-

marking starts by first determining the maximal generaliza-

tion node q that corresponds to p, followed by executing per-

mutations downward along the domain hierarchy tree from

the level of the child nodes of q, until the target node is an

ultimate generalization node. The exact primitive enabling

permutation at each level is the same as above. Consider

Figure 6 for example (for illustration’s sake, we need to in-

tentionally take the minimal generalization nodes therein as

the ultimate generalization nodes), where node 46 is going

to be permutated. First, the corresponding maximal gen-

eralization node 21 is determined. Next, permutation pro-

ceeds within nodes 32 and 33. If the target node is node 33,

then permutation stops; otherwise, the permutation contin-

ues within nodes 45 and 46, and eventually stops.

To avoid a large scale alteration, watermarking is ide-

ally restricted to a (small) portion of the whole data set.

We leverage on the (encrypted) identifying columns of the

binned table to select some tuples for embedding, recalling

that the encrypted identifying columns are assumed to keep

intact1. Based on a secret key k1 together with a secret tun-

able parameter η, tuples ti in the table tbl satisfying the fol-

lowing equation are chosen for insertion:

H(ti.ident, k1) mod η = 0 ∀ti ∈ tbl (5)

where H() is a cryptographic hash function e.g., MD5

or SHA1, and tbl.ident denotes the encrypted identifying

columns of tbl. Note that the way of secretely selecting tu-

ples directly pertains to the resilience of watermarking.

Typically, the available bandwidth is greater than the bit

length |wm| of the mark wm. This affords a multiple em-

bedding of wm for robustness reasons. That is, we repeat-

edly embed wm many times until the available bandwidth

1In case the identifying columns cannot be relied on, we can establish

virtual key attributes as in [20] by turning to other columns

is exhausted. In mark detection phase, the final mark is de-

termined by majority voting over all the recovered copies.

A straightforward way to achieve multiple embedding is to

duplicate wm for l times into wmd, as long as we attempt

an l-embedding, and then to insert wmd in place of wm.

Take tbl.c, a quasi-identifying column of tbl for exam-

ple, our hierarchical watermarking algorithm by integrat-

ing the above ideas, is outlined in Figure 9. The function

MaxGNd(nd, tr, maxgends) returns the maximal general-

ization node that associates with nd.

Embedding(tbl, tr, maxgends, ultigends, k1, k2, η, wm)

1. bits wmd ← Duplicate(wm)

2. foreach tuple ti ∈ tbl
3. if H(ti.ident, k1) mod η = 0

4. node targnd ← Val2Nd(ti.c, ultigends)

5. targnd ← MaxGNd(targnd, tr, maxgends)

6. do

7. targnd ← Permutate(targnd, tr, ti, k1, k2, wmd)

8. while targnd /∈ ultigends
9. ti.c ← Nd2Val(targnd)

Permutate(node nd, tr, tuple ti, k2, bits wmd)

1. sortedset S ← {si | si ∈ Children(nd, tr)}
2. int indx ← H(ti.ident, k2) mod |S|
3. indx ← SetµBit(indx, wmd[H(ti.ident, k2) mod |wmd|])
4. return sindx

Detection(tbl, tr, maxgends, ultigends, k1, k2, η, wm)

1. bits wmd ← NULL /* set wmd to be empty */

2. foreach tuple ti ∈ tbl
3. if H(ti.ident, k1) mod η = 0

4. node tmpnd ← Val2Nd(ti.c, ultigends)

5. bit[] b = NULL, int i = 0 /* reset */

6. do

7. sortedset S ←{si | si ∈ Siblings(tmpnd, tr)}
8. int indx ← Index(tmpnd, S)

9. b[i] ← indx&1

10. i ← i + 1
11. tmpdnd ← Parent(tmpnd, tr)

12. while tmpnd /∈ maxgends
13. wmd[H(ti.ident, k2) mod |wmd|] ← MajorVot(b)

14. wm ← MajorVot(wmd)

Figure 9. Hierarchical watermarking algorithm

In the algorithm, we exploit distinct keys k1 and k2 for

different calculations, which is vital in ensuring that there

is no mutual correlation between these calculations. Notice

that the hierarchical scheme enables to insert several copies

of a bit at every single embedding position, and the actual

number is equal to the number of levels from the correspond-

ing maximal generalization node to the ultimate generaliza-

tion node. Thus, when recovering a bit from a single em-
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bedding position, the bit is determined by majority voting.

Interestingly, in the voting process, we can assign a different

weight to each copy from a distinct level, depending on its

credit in determining the bit. This is of special use when en-

forcing the policy that the copy from a higher level is more

reliable than that from a lower level.

5.4 Resolving Rightful Ownership Problem

Robustness to attacks attempting to erase the embedded

mark is among the fundamental requirements of a sound wa-

termarking. However, this does not necessarily imply its

sufficiency in establishing ownership, because of the attack-

ing scenarios in Figure 10 (Dx, Wx and Kx are respectively

the original data, the mark and the secret watermarking key

of the entity x, Dw and Dw denote the watermarked data).

Figure 10. Rightful ownership attacks

Attack 1: the attacker inserts his bogus mark Wa into Dw,

which is the owner’s valid watermarked data, to create his

bogus Dw. Now that both Wo and Wa are contained in

Dw, the attacker and the owner can both claim the owner-

ship over Dw. This attack can be resolved by requiring the

attacker and the owner each to present his original data. As

the attacker’s “original” data Dw contains Wo of the owner,

false ownership claim by the attacker is clear.

Attack 2: In this case however, the attacker “extracts”

Wa from Dw to obtain his bogus original data Da, so that

Da⊕ka
Wa = Dw, where ⊕ka

denotes the embedding func-

tion under key ka. This attack is more subtle to handle, since

it does not always hold that Da contains Wo and Do does not

contain Wa. So far, the only practical solution in multime-

dia watermarking is to restrict Wo to be F(Do), where F(.)
is an one-way function, so that given Dw, it is impossible to

acquire Da satisfying F(Da) = Wa by the attacker.

These attacks are in fact the rightful ownership problem

originally raised in [27] in multimedia context. It will be of

particular interest to see how the rightful ownership prob-

lem is handled in our case. We notice that virtually none of

the existing proposals for watermarking databases has pro-

vided a satisfactory solution to this problem, as either they

considered merely one case of it (e.g., [2, 20]) or they did

not address it at all (e.g., [25, 23]). Results from the mul-

timedia sector show that without invoking a third party for

certifying the watermarked data Dw, the rightful ownership

problem is solvable only when the original data are avail-

able in court. We believe this directly applies to the context

of databases. Considering the large number of data a table

contains, we actually suspect the practicality of presenting to

the judge the entire original table as court proof in other pro-

posals. Surprisingly, the nature of the binned data enables us

to elegantly resolve this problem in our context. Recall that

the identifying columns of a binned table to be watermarked

are in encrypted format, which means the attacker has no

way to know the clear-text. So the mark in our scheme is

specified by applying the one-way function F(.) to a certain

statistical value v (e.g., mean) of these clear-text of the iden-

tifying columns. In resolving ownership dispute, the owner

presents v; decrypts the identifying columns and does the

same statistical computation over the decrypted data to get

v′; compares the two as valid if |v−v′| < τ , where τ is a pre-

defined threshold; extracts the mark from the table in dispute

and compares it with F(v) as usual in a normal watermark-

ing scheme. Note that most probably, the watermarked table

in dispute had been attacked, e.g., some tuples were deleted

or some spurious tuples were added, and this explains why

we acquire the mark from a statistical value instead of the

actual clear-text.

The proposed solution is specific to our integration of

binning and watermarking, since a normal database does not

have such encrypted attributes. In nature, we do not violate

“original data as court proof”, whereas the integrated prop-

erty of our framework provides an effective means to get

over direct reliance on the entire original table.

6 Analysis

We next explore the seamlessness of our framework from

a theoretical perspective. In other words, we are concerned

with the effect watermarking has on the result of binning.

The main issue is related to the fact that watermarking in our

context involves permutation such that some tuples in a bin

may be permutated to other bins, and thus some bins may

have, after watermarking, a size less than k. This means

that watermarking may compromise the satisfaction to k-

anonymity of binning. Without loss of generality, we re-

strict our discussions to a particular quasi-identifying col-

umn c, which corresponds to a domain hierarchy tree hav-

ing m maximal generalization nodes Ni (i = 1..m), and ni

ultimate generalization nodes associated with each node Ni.

We further make the following assumptions: (i) bins that

correspond to the ultimate generalization nodes are of equal

size; (ii) when a bit-embedding proceeds downward from

Ni, all the ni ultimate generalization nodes associated with

Ni have equal probability of becoming the target node when

permutations halt. The actual effect of watermarking on bin-

ning can be reduced to the way any particular bin (BIN) that

corresponds to a ultimate generalization node UGN is af-
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fected by any bit-embedding (E).

Lemma 1. Let the maximal generalization node corre-

sponding to UGN be Nk, and the probability of E reducing

the bin size of BIN by 1 be Pr−, then Pr− = nk−1

nk

∑
k

i=1
ni

.

Proof : Intuitively, for E to reduce the bin size of BIN
by 1, it must hold that as per our hierarchical watermark-

ing algorithm, 1) the bit chosen by E for insertion comes

from BIN ; 2) afterwards, E executes downward permu-

tations (starting from Nk) among the nk ultimate general-

ization nodes that correspond to Nk, and the target node

of such permutations is not UGN . From assumption (i),

probability that the tuple chosen by E comes from BIN
is 1∑

m

i=1
ni

, and from assumption (ii), probability of the

target node not being UGN is nk−1

nk

. Hence, altogether

Pr− = 1∑
m

i=1
ni

× nk−1

nk

= nk−1

nk

∑
k

i=1
ni

. ♦

Lemma 1 states the probability of any particular bit-

embedding E permutating a tuple out of a particular bin

BIN . We next check the probability of E permutating a

tuple from another bin to BIN .

Lemma 2. Let the maximal generalization node corre-

sponding to UGN be Nk, and the probability of E increasing

the bin size of BIN by 1 be Pr+, then Pr+ = nk−1

nk

∑
k

i=1
ni

.

Proof : For E to increase the bin size of BIN by 1, it must

hold that 1) E selects the tuple for insertion from any, but

UGN , of the nk ultimate generalization nodes that are asso-

ciated with Nk ; 2) the target node of the downward permu-

tations is UGN . From assumption (i), probability of the for-

mer is nk−1∑
m

i=1
ni

, and from assumption (ii), probability of the

latter is 1

nk

. Hence, Pr+ = nk−1∑
m

i=1
ni

× 1

nk

= nk−1

nk

∑
k

i=1
ni

.♦

Lemma 1 and Lemma 2 suggest that on average, the wa-

termarking process would neither decrease nor increase the

bin size of any bin since Pr− = Pr+. We therefore con-

clude that watermarking does not interfere with binning in

the satisfaction of k-anonymity specification under the two

ideal assumptions.

It is of importance to examine the assumptions from a

practical perspective. Making valid the first assumption is

not that hard: we can incorporate “restrained swapping”

(e.g., swapping tuples among bins that correspond to sibling

nodes) into binning. In contrast, the second assumption is

more tricky, because its validity totally rests with the local-

ity of ultimate generalization nodes on the domain hierarchy

tree. Even so, we believe that by relaxing the two assump-

tions, watermarking still cannot seriously interfere with bin-

ning because: 1) only a small percentage of the whole data

gets watermarked; 2) and the use of hash function in the

“suitability” selection step (Equation (5)) renders a uniform

culling, which means no particular bin will be drastically

affected. To attest this, we have done experiments and ob-

tained consistent results (see next section). After all, we

have a simple yet practical method to tackle the interference

by applying k+ǫ (ǫ is a small number) to binning in meeting

k-anonymity specification. A conservative method for deter-

mining ǫ would be as follows: let s be the biggest bin size

and S be the sum of all bin sizes, then ǫ = (s/S) ∗ |wmd|.

7 Experimental Studies

We implemented and conducted extensive experiments

on the above algorithms. The real world data set we ex-

perimented on include one (randomized) identifying column

and five quasi-identifying columns, whose schema is R(ssn,

age, zip code, doctor, symptom, prescription). By a prepro-

cessing step, we created a DHT for each quasi-identifying

column: the DHT for symptom is based on the International

Classification of Diseases (ICD-9), and other attributes are

on self-defined ontology, e.g., that for age is similar to Fig-

ure 3 but of narrower intervals. The whole data set contains

around 20000 tuples. Experiments were done on a PC with

2G CPU and 512M RAM, and source codes were written

in Microsoft C++. A main simplification we made is that a

set of maximal generalization nodes is directly given to each

column as usage metrics.

7.1 Robustness of Binning

First, our experiments focus on testing the binning algo-

rithm in satisfying k-anonymity. By providing to the algo-

rithm different values of k, we recorded the corresponding

loss of information. Figure 11 shows the relationship of k
versus information loss.
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Figure 11. k vs. information loss

From the figure, multi-attribute binning causes much

more information loss than mono-attribute binning, and

once k increases to a certain extent, information loss reaches

a saturation point and becomes rather stable. This is consis-

tent with the rationale in determining a valid minimal gen-

eralization node (Section 4.2), and this could be further op-

timized if the more aggressive strategy as introduced there

is employed. Further, we should also note that information

loss is closely related to the data size, the number of quasi-

identifying columns and k.
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Figure 12. Robustness of hierarchical watermarking

7.2 Robustness of Watermarking

In this set of experiments, we test the robustness of the hi-

erarchical watermarking scheme to the attacks that endeavor

to destroy the embedded mark, while in the absence of the

secret watermarking key. The following experiments were

conducted by implementing a multiple embedding of a 20-

bit mark.

- Subset Alteration

In these attacks, the attacker chooses at random a subset of

the data and then modifies them arbitrarily without affecting

the rest of the data. We vary the size of the randomly altered

data, and calculate the corresponding mark loss. Figure 12

(a) outlines the results. Clearly, the results show that our wa-

termarking scheme performs well against this attack. Even

in the case of more than 70% of data loss, our scheme loses

only approximately 30% of mark bits. Another fact shown

in the figure is that smaller η (more bandwidth) offers more

resilience, whereas more alteration to the data would be in-

curred. This is a trade-off that must be carefully considered

in practice.

- Subset Addition

In these attacks, new tuples are frequently added to the wa-

termarked set by the malicious attacker. Although this at-

tack does not involve erasing existing bits, it nevertheless

misleads the selection criteria (Equation (5)) to falsely take

some of the newly-added tuples as watermarked, thereby in-

troducing errors in majority voting the final mark. Keep in

mind that if the size of the new data exceeds the original data

size, priority of the former would dominate the latter. Fig-

ure 12 (b) highlights the scheme’s robustness to the Subset

Addition attacks. The results reflect the fact that the newly-

added bogus bits do not take precedence over the existing

bits in the majority-voting process.

- Subset Deletion

The attacker randomly deletes a percentage of the tuples in

an attempt to remove the mark. To test the effect of dropping

tuples to the loss of mark bits, we continually delete some

tuples each time by the following SQL clause:

DELETE FROMRWHERE SSN > lvali AND SSN < uvali

where lvali and uvali define bounds of the ith deletion,

within which the tuples are to be deleted. Figure 12 (c) plots

the series of mark loss due to the deletions. From the fig-

ure, it indicates that the hierarchical scheme is resilient to

the Subset Deletion attacks, and mark loss increases almost

linearly with the amount of data deleted.

We also tested the information loss due to watermarking,

and Figure 13 presents the results. Clearly, information loss

caused by watermarking is minor.
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Figure 13. Information loss of watermarking

7.3 Seamlessness of Framework

Finally, we shall examine how watermarking interferes

with binning, complementing the theoretic analysis in the

preceding section. The results are presented in Figure 14,

where the data in each column respectively represents the to-

tal number of bins, number of bins having bin size changed

and number of bins having bin size less than k. It can been

seen that a majority of the bins are affected by watermark-

ing, whereas the interference is minor in terms of satisfying

k-anonymity: none of the bins cannot meet k-anonymity

after watermarking. This is consistent with our analysis

that watermarking does not dramatically affect binning in

its compliance with k-anonymity specification.

8 Conclusion

Two important issues inherent to the outsourcing of med-

ical data are the protection of individual privacy and copy-

right protection over the data. To meet these dual needs,
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age zip_code doctor symptom prescription 

10 73   58   0 96  82   0 20   18  0 56  53  0 97  86  0 

20 68   61   0 88   79   0 20   17   0 52   48   0 90   82   0 

45 52  48  0 81  72  0 20  17  0 47  38  0 79  71  0 

100 42  35  0 62  56  0 18  15  0 36  31  0 59   48  0 

                                               Total number of bins  Number of bins having binsize changed Number of bins having binsize < k

k

Attribute

Figure 14. Effect of watermarking on binning

we have integrated techniques of binning and digital water-

marking into a unified framework, so as to provide compre-

hensive protection for outsourced data. Under our frame-

work, medical data are in turn binned to meet k-anonymity

specification, and watermarked to provide copyright protec-

tion. We have discussed at length the development of the

binning algorithm and the watermarking algorithm that pro-

vide the two core functions in our framework, and devel-

oped an elegant solution to the rightful ownership problem

regarding watermarking, which may be difficult to solve in

the context of other approaches. From both theoretical and

practical perspectives, we proved that watermarking would

not substantially interfere with binning in the satisfaction to

k-anonymity. Experimental results showed the robustness

of the proposed framework.
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