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Privacy and Quality Preserving Multimedia Data
Aggregation for Participatory Sensing Systems
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Abstract—With the popularity of mobile wireless devices equipped with various kinds of sensing abilities, a new service paradigm
named participatory sensing has emerged to provide users with brand new life experience. However, the wide application of
participatory sensing has its own challenges, among which privacy and multimedia data quality preservations are two critical problems.
Unfortunately, none of the existing work has fully solved the problem of privacy and quality preserving participatory sensing with
multimedia data. In this paper, we propose SLICER, which is the first k-anonymous privacy preserving scheme for participatory sensing
with multimedia data. SLICER integrates a data coding technique and message transfer strategies, to achieve strong protection of
participants’ privacy, while maintaining high data quality. Specifically, we study two kinds of data transfer strategies, namely transfer
on meet up (TMU) and minimal cost transfer (MCT). For MCT, we propose two different but complimentary algorithms, including an
approximation algorithm and a heuristic algorithm, subject to different strengths of the requirement. Furthermore, we have implemented
SLICER and evaluated its performance using publicly released taxi traces. Our evaluation results show that SLICER achieves high data
quality, with low computation and communication overhead.

Index Terms—Participatory Sensing, Privacy Preservation, K-Anonymity, Erasure Coding.

✦

1 INTRODUCTION

The wide application of mobile communication equipments

and the fast advance of sensing technologies have led to

the wide availability of privately-held, low-cost, advanced-

processing, and big-storage mobile wireless devices, that are

equipped with a number of embedded sensors (e.g., mi-

crophone, camera, accelerometer, gyroscope, and GPS). On

one hand, modern wireless communication technologies (e.g.,

2G/3G/4G, Wi-Fi, and Bluetooth) make the communication

between mobile devices and infrastructure, as well as between

mobile devices themselves, convenient and fast. On the other

hand, the mobile devices, especially smart phones, are no

longer a tool only for communication, but “computers” with

multifunction.

Participatory sensing [1] emerged as a new service paradigm

using human-carried mobile devices, such as smart phones, for

distributed data collection, exchange, analysis, and sharing.

With an estimated number of 6.8 billion mobile-cellular sub-

scriptions worldwide [2], participatory sensing may provide

an unprecedented spatial coverage, with very low or even no

deployment cost. Compared with traditional decentralized data

collection methods (e.g., wireless sensor networks), partici-
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patory sensing demonstrates several outstanding advantages,

including larger coverage, lower cost, mobile capability, more

sufficient energy supply, and more flexible interactive capa-

bility. Attracted by the practical and commercial value of

participatory sensing, many participatory sensing applications

have appeared. For instance, GreenGPS [3] provides the most

fuel-efficient routes to drivers; PEIR [4] presents a personal

environmental impact report for every individual; PEPSI [5]

[6] introduces a privacy enhanced infrastructure for participa-

tory sensing system; ARTSense [7] proposes an anonymous

reputation and trust mechanism for participatory sensing; and

Ikarus [8] uses sensor data collected during cross-country

flights via participatory sensing applications to study thermal

effects in the atmosphere, and PoolView [9] gives a privacy

preserving architecture for stream data collection. In addition,

participatory sensing has been widely used in many practical

situations [1], for instance, environment measurement, health

care, traffic monitoring, community service, crowdsourcing,

and so on.

However, the application of participatory sensing has a

number of challenges. One of the major challenges is on

privacy preservation [10]–[17]. Sensing record sent to the

service provider, is usually attached with spatio-temporal tags

indicating the location and time information of the data col-

lected. However, a corrupt service provider may infer private

information of the participants, such as identity, home and

office addresses, traveling paths, as well as participants’ habits

and lifestyles, from the sensing records. In turn, many users

are reluctant to contribute any sensing record if proper privacy

preservation scheme is not applied. Without sufficient number

of participants, participatory sensing applications cannot guar-

antee their quality of services at the expected level. There-

fore, designing privacy preserving schemes for participatory

sensing is highly important. Another major challenge is on

the variety of sensing data. Most of existing applications
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of participatory sensing only collect small pieces of sensing

data (e.g., temperature, velocity, and geographic location).

However, more and more newly emerged applications rely

on collecting information of surrounding environment in the

format of multimedia (e.g., digital image and video) [18],

which result in much higher volume of sensing data. Simply

applying existing privacy preserving schemes to participatory

sensing with multimedia data is not satisfactory, since existing

schemes either induce unacceptable amount of communication

cost, or degrade the utility/quality of the data badly, in case

of multimedia sensing.

In this paper, we present SLICER, which is a coding-

based k-anonymous privacy preserving scheme, working on

application layer, for participatory sensing with multimedia

data. Intuitively, k-anonymity means that the service provider

cannot identify the contributor of each sensing record from a

group of at least k participants. SLICER integrates a data cod-

ing technique and message exchanging strategies, to achieve

strong protection of participants’ privacy, while maintaining

high data quality and inducing low communication and com-

putation overhead.

The contributions of this work are listed as follows:

• We propose SLICER for participatory sensing with multi-

media data, to achieve both k-anonymous privacy preser-

vation and high data quality, with low communication and

computation overhead.

• We design an erasure coding based sensing record coding

scheme to encode each sensing record into a number

of data slices, each of which can be delivered to the

service provider through the other participants or the

record’s generator herself. When a proper data slice

exchanging strategy is applied, the contributor of each

particular sensing record is hidden in a group of at least

k participants.

• We propose two kinds of strategies for slice transfer.

The first and straightforward strategy is named Transfer

on Meet Up (TMU), which is to transfer a slice upon

meeting another participant. The latter delivers the slice

to the service provider. The second kind contains two

complementary sub-optimal strategies to transfer the s-

lices to a set of participants that might be met within a

required period of time, minimizing the total cost while

guaranteeing that the sensing record can be delivered

to the service provider with guaranteed high probability,

which is named Minimal Cost Transfer (MCT). The cost

difference can be resulted from the wireless communica-

tion fee, available bandwidth, battery power, and so on.

• We have implemented SLICER and evaluated its perfor-

mance using publicly released real traces of taxis [19].

Evaluation results show that SLICER achieves high data

quality, with low computation and communication over-

head.

The rest of this paper is organized as follows. In section 2,

we briefly introduce some technical preliminaries, including

the system model, privacy model, and design objectives. In

section 3, we describe our coding-based privacy preserving

scheme (SLICER), illustrate the basic rationale and detailed

design processes, propose the well designed algorithms of
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Fig. 1. The Architecture of Cloud-Based Participatory
Sensing.

slices transfer, and give the necessary analysis and proof of

privacy preserving. In section 4, we present the evaluation

results. In section 5, we talk about the related work and

make some comparison with ours. Finally, we conclude our

article and point out our potential directions of future work in

section 6.

2 TECHNICAL PRELIMINARIES

In this section, we present the system model, privacy models,

as well as objectives of our design.

2.1 System Model

We consider a cloud-based participatory sensing and service

framework as shown in Fig. 1, in which there is a service

provider and a number of mobile nodes/participants equipped

with different kinds of sensors.

The service provider aggregates, classifies, analyzes, and

stores sensing records reported from the participants, and

provides query services based on the records. A mobile

node/participant is a user carrying a portable and wireless-

enabled device (e.g., smart phone, tablet, and laptop). In this

paper, we use mobile node and participant interchangeably.

Participants can use their sensing devices to collect various

kinds of environmental information, such as geographical

location, temperature, electromagnetic signal, digital image,

video, and so on. In contrast to most of the existing work,

which focus on short sensor readings, we consider a partici-

patory sensing system that adapts to multimedia information,

such as digital image, audio, and video. We assume that

the participants can directly report sensing records through

pre-existing communication infrastructure, including GSM,

3G/4G, and Wi-Fi, or indirectly report the records with the

help of the other participants.

In this paper, we consider one service provider and a

set N = {a1, a2, . . . , an} of participants. Each participant

ai ∈ N would like to contribute her sensing records Ri = {<
t1, l1, d1 >,< t2, l2, d2 >, . . .} to the service provider, only

when her privacy is properly protected. The triple < t, l, d >
denotes a sensing record including timestamp, location info,

and data info. To facilitate reading, the summary of the

notations appeared in this paper is presented in Table 1.
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2.2 Privacy Model

Although participatory sensing provides a new service paradig-

m, its functionality relies on the contribution of participants.

Existing work [1], [11]–[13], [16], [17], [20]–[22] show that

contributed information may be misused to reveal the partici-

pants’ privacy [23]. Most users are not willing to join partici-

patory sensing applications, unless their sensitive information

is well protected from both service provider and neighboring

participants [12], [24], [25].

In this paper, we consider the problem of privacy preserving

in a semi-honest model, in which the adversary correctly fol-

lows the protocol specification, but attempts to learn additional

information by analyzing the transcript of messages received

during the execution [20], [26]–[31]. We classify the attacks

in the semi-honest model into two categories: external attack

and internal attack. The external attack aims to obtain private

information of participants by overhearing the message passing

through the wireless communication network. Such attack can

be prevented by end-to-end cryptographic schemes. Different

from the external attack, designing a scheme to prevent the

internal attack is much more challenging. The internal attack

may come from two different kinds of entities, including the

service provider and the participants.

• Service provider’s attack: The service provider has full

access to the sensing records reported by the partici-

pants. It might infer considerable amount of sensitive

information about the participants (e.g., home address,

frequently visited places, traveling path, and even the

lifestyle), if a proper privacy-preserving scheme is not

provided. For instance, the sensor readings collected by

a user who drives from home to work might reveal the

participant’s traveling path as well as her home address.

In this work, we focus on protecting users’ location/path

privacy against the service provider, while assuming that

the service provider does not have other background

or correlated information about participants. It is also

important to consider the privacy protection of the content

of multimedia data. However, it is out of the scope

of this work. For interested readers, please refer to the

previous literatures [32] [33] [34] for privacy processing

techniques.

• Participants’ attack: Participants may receive some sens-

ing records, when they serve as relays for other par-

ticipants (e.g., in [35]). Semi-honest participants might

position themselves to some critical locations in order to

collect sensitive information by pretending to be relays. In

this work, we assume that the participants do not collude

with the service provider, and there is no collusion among

different participants.

2.3 Design Objectives

The design of a privacy preserving scheme should prevent

both the external and the internal attacks. Specifically, first, the

design needs to prevent external eavesdroppers from obtaining

any meaningful information. Second, the design needs to

prevent service provider from recognizing the identity of

the participant who contributes a particular sensing record,

Symbol Description

N = {a1, a2, . . . , an} The participants set
< t, l, d > An original sensing record
Ri = {< t1, l1, d1 >, . . .} The sensing records set
m Number of encoded slices from one record
k Minimal number needed to construct record
EC(·) Erasure coding algorithms.
H(·, ·) Cryptographic hash function
rij Encoded slice
r′ij Encrypted slice

ENCRY PT (·, ·) Asymmetric encryption function
p(aj) Meeting probability
c(aj) Cost of aj for delivering a slice
P Threshold possibility
xi Boolean parameter
DECRY PT (·, ·) Asymmetric decryption function

EC−1(·) Decoding function

TABLE 1
Notations

and to prevent the participants from knowing the content

of the relayed sensing record. Especially, we require the

privacy protection scheme be k-anonymous [36] against the

service provider. Here, k-anonymity is reached when the

service provider can only identify a particular participant that

contributes a sensing record with probability no more than

1/k.

Definition 1 (K-Anonymous Participatory Sensing): A pri-

vacy preserving participatory sensing scheme satisfies k-

anonymity against the service provider, if for any sensing

record reported to the service provider, the service provider

cannot distinguish the generator of the record from a group of

at least k participants.

Besides the objective on privacy preservation, the design

should also satisfy the following requirements:

• The design should maintain high quality of the sensor

readings.

• The design should be tolerant of packet/message loss.

• The design can only induce low computation and com-

munication overhead.

3 CODING-BASED PRIVACY PRESERVING

SCHEME

In this section, we present the design of our coding-based k-

anonymous privacy preserving scheme — SLICER. We first

outline the general idea of SLICER, and then explain the

details of each component. Finally, we analyze the privacy

preservation properties of SLICER.

3.1 Design Rationale

The main idea of SLICER is to hide the generator of each

sensing record among a group of at least k participants,

through which all parts of the sensing record are reported to

the service provider. Thus, the service provider cannot identify

the generator of the original sensing record from at least k
participants. We will illustrate the designing challenges and

our idea in this section.

(1) Sensing Record Coding
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Fig. 2. Work Flow of SLICER

If we simply transfer the (encrypted) sensing record to k
participants, then the communication overhead is k times the

size of the sensing record, which is unacceptable especially

when the sensing record contains multimedia data. Therefore,

we incorporate erasure coding to encode each sensing record

into a number of small slices. Then each of the slices can be

transferred to a participant, and the latter reports the slice to

the service provider. Once the service provider receives enough

number of slices, not necessarily all the slices, it can decode

the original sensing record. The usage of erasure coding has

two advantages. One is to greatly reduce the communication

overhead needed to transfer the sensing record (slices in this

paper) to other participants. The other is to increase the

reliability of the system, when the slices may be lost due to

various reasons.

(2) Transfer Strategy

Since the slices need to be transferred to a set of partici-

pants, carefully selecting the participants to transfer to may

affect the performance of the scheme. The straightforward

strategy is to transfer a slice whenever another participant

is met. However, when the participants in the system have

different capabilities, the straightforward way may not be

the best strategy. In this paper, we consider the case, in

which the participants have different cost to deliver the same

slice. The cost difference can be resulted from the wireless

communication fee, available bandwidth, battery power, and so

on. Through analysis, we also propose two sub-optimal slice

transfer strategies to minimize the total cost for delivering the

slices in section 3.3.2.

Fig. 2 shows the general work flow of our SLICER. Specif-

ically, a sensing record contains the sensor reading and spatio-

temporal information. Then, SLICER encodes the sensing

record using an erasure coding technique(e.g., Tornado [37]),

encrypts the encoded slices, and attaches an unique tag, to

generate encrypted slices. Next, SLICER selectively transfers

the encrypted slices to the target participants, following one

of its transfer strategies. The slices are delivered to the

service provider through different participants. Finally, the

service provider decrypts the slice and reconstructs the original

sensing record, when enough number of slices are received.

In the following subsections, we present the design details of

SLICER’s major components, including Coding, Transferring,

and Reconstructing.

3.2 Coding

Algorithm 1 Sensing Record Coding Algorithm

Input: A sensing record < t, l, d > from participant ai ∈ N ,

and coding rate k/m.

Output: Encrypted slices {r′ij |1 ≤ j ≤ m}.
1: {rij |1 ≤ j ≤ m} ← EC(< t, l, d >);
2: nonce← random();
3: tag = H(i, nonce);
4: for all j = 1 to m do

5: r′ij = ENCRY PT (rij ||tag,KEYpub);
6: end for

7: return {r′ij |1 ≤ j ≤ m};

Algorithm 1 shows the pseudo-code of our sensing record

coding algorithm. Given a sensing record < t, l, d > from

participant ai ∈ N , we encode it into a number of slices, each

of which will be delivered to the service provider through

different participants. We encode the record < t, l, d > using

erasure coding (e.g., Reed-Solomon [38] and Tornado [37]).

Basically, erasure coding breaks a sensing record into frag-

ments, expands and encodes with redundant data pieces into

m slices. The original record can be reconstructed from any k
out of m encoded slices, where m > k. The ratio k/m is the

coding rate. Here, the combined size of any k slices is approx-

imately equal to the size of the original record, according to

Tornado Codes [37]. Intuitively, if the service provider decodes

the record from k slices reported by k different participants,

the real generator of the record is hidden in a group of k par-

ticipants, which provides a privacy guarantee of k-anonymity.

Furthermore, SLICER inherits the property of loss tolerance

from erasure coding to achieve high record reconstruction ratio

with relatively lower communication overhead. We denote the

encoded slices by {rij |1 ≤ j ≤ m}:

{rij |1 ≤ j ≤ m} = EC(< t, l, d >),

where EC(·) is one of the erasure coding algorithms.

Since the service provider may receive a large number of

encoded slices originating from various participants’ sensing

records, we have to tag the slices to clearly indicate which

slices belong to the same record. Since directly tagging a slice

with its generator’s ID and a sequence number will reveal

the identity privacy of the generator to the service provider,
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Fig. 3. An Example of Transfer on Meet Up

we adopt a cryptographic hash function (e.g., SHA-1 [39]) to

create the tag:

tag = H(i, nonce),

where H(·, ·) is a cryptographic hash function and nonce is an

arbitrary number. Since the pseudo-random number generator

usually takes discrete time as the seed in practice, if multiple

participants happen to initialize their pseudo-random number

generators at the same time, then the same sequences of

numbers will be generated as the nonce, resulting in encoded

slices originating from different sensing records having the

same tag. This will cause failure in the process of sensing

record reconstruction. Therefore, we append the participant’s

ID to the randomly generated nonce, in order to eliminate the

harm of nonce collision. Noting that the use of IDs in the

form of plaintext reveals the participants privacy, we hash the

combination of the generators ID and the nonce.

To prevent the content of encoded slices being revealed to

external attacker and neighboring participants, we encrypt the

encoded slices and the tag using the public key KEYpub of

the service provider and get the encrypted slices:

r′ij = ENCRY PT (rij ||tag,KEYpub), 1 ≤ j ≤ m,

where ENCRY PT (·, ·) is an asymmetric encryption func-

tion, and || is string concatenation operation.

3.3 Transferring

To prevent the service provider from recognizing participants’

identities with the collected sensing records, not all slices of a

sensing record can be directly sent to the service provider by

the generator. To guarantee k-anonymity, at least k − 1 slices

need to be delivered by participants other than the generator.

We note that although all the slices can be transferred to and

delivered by participants other than the generator, SLICER

requires the generator to report (at least) one slice to the

service provider by herself, in order to guarantee the integrity

of the sensing record.

In this paper, we consider two kinds of slice transferring

strategies: transfer on meet up (TMU) and minimal cost

transfer (MCT).

3.3.1 Transfer on Meet Up (TMU)

This is the straightforward way to spread the encrypted slices.

One slice of each sensing record is transferred, when the

generator meets another participant. Later, all the participants,

including the generator, report the slices(and received slices)

to the service provider.

Fig. 3 shows a toy example of applying the strategy of TMU.

Assume that there is a participant A who is going to office

from her home. She meets other participants B, C, and D in

sequence on her way to the office. The upper part of Fig. 3

shows the path that A travels, and the lower part shows the

slices each of the users hold with advance of time. Assume

that A, B, C, and D initially have 3, 0, 2 and 3 slices of

their own, respectively, and meetings occurs at T1, T2, and

T3, at where a participant transfers one slice to the one met.

For example, at T1, A transfers one slice to B. After that, A
has 2 slices left, and B holds 1 slice from A. Finally, after

three meetings, A has 1 own slice and 2 slices from C and

D, B has 1 slice from A, C has 1 own slices and 1 from A,

and D has 2 own slices.

3.3.2 Minimal Cost Transfer (MCT)

In this section, we consider the case that different participants

consume different costs to deliver a slice. The cost difference

can be resulted from the wireless communication fee, available

bandwidth, battery power, and so on. Intuitively, high cost

will reduce people’s enthusiasm to participate in the sensing

activities. Here, we present our algorithms for the problem of

Minimal Cost Transfer (MCT).

Each sensing record has an expiration time, before which the

record has to be delivered to the service provider. We assume

that each participant ai ∈ N knows a set N(ai) ⊂ N of par-

ticipants that might be met before the expiration of the sensing

record. For each participant aj ∈ N(ai), let p(aj) and c(aj) be

the meeting probability before the expiration time and the cost

of the participant aj for delivering a slice. As we mentioned

before, the cost can be resulted from the wireless commu-

nication fee, available bandwidth, battery power, and so on.

We assume that there is a mobility prediction module ( [40]–

[42]) to provide the prediction of N(ai), (p(aj))aj∈N(ai), and

(c(aj))aj∈N(ai), based on historical event logs.

The objective of MCT is to pick a subset of participants

F ⊆ N(ai) as forwarders of the slices to minimize the

cost for delivering the slices, satisfying one of the following

requirements.

• Requirement 1: It is expected to meet at least m − 1
participants from the forwarder set F , namely MCT-EXP

problem;

• Requirement 2: The (expected) probability of meeting at

least m−1 participants from F is at least P (0 ≤ P ≤ 1),

namely MCT-PRO problem.

Next, we will present our approaches to solve the above two

problems, MCT-EXP problem and MCT-PRO problem.

Solution to MCT-EXP Problem

We first consider the MCT-EXP problem (i.e., MCT

problem with requirement 1), which can be formulated as a

binary program with an objective of minimizing the expected



1536-1233 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMC.2014.2352253, IEEE Transactions on Mobile Computing

6

delivery cost of the slices, as follows:

Objective:

Minimize
∑

aj∈N(ai)

(c(aj)p(aj)xj)

Subject to:

∑

aj∈N(ai)

(p(aj)xj) ≥ m− 1, (1)

xj ∈ {0, 1}, ∀aj ∈ N(ai) (2)

Here, constraint (1) guarantees that the participant ai is ex-

pected to meet at least other m−1 participants in the selected

forwarder set F = {aj ∈ N(ai)|xj = 1}. Constraint (2)

indicates the possible values of xj . If aj is selected to be

a candidate for delivering a slice, then xj = 1; otherwise,

xj = 0.

We note that the above formulation of MCT-EXP Problem

can be reduced to the 0-1 Knapsack Problem [43] with

an objective of maximizing the expected cost of the

complimentary of the forwarder set. The re-formulated

equation can be written as follows:

Objective:

Maximize
∑

aj∈N(ai)

(c(aj)p(aj)(1− xj))

Subject to:

∑

aj∈N(ai)

(p(aj)(1− xj)) ≤
∑

aj∈N(ai)

p(aj)− (m− 1), (3)

xj ∈ {0, 1}, ∀aj ∈ N(ai) (4)

In the reduced 0-1 Knapsack Problem, p(aj) and c(aj)p(aj)
are the weight and value of the jth item, respectively, while

the capacity of the knapsack is
∑

aj∈N(ai)
p(aj) − (m − 1).

Here, constraint (3) guarantees that the sum of the weights

must be less than the knapsack’s capacity. Constraint (4) is

exactly the same as constraint (2). Consequently, we can have a

Fully Polynomial Time Approximation Scheme (FPTAS) [43],

which runs in polynomial time and is correct within 1− ϵ per-

cent of the optimal solution, to solve the MCT-EXP problem.

Due to limitations of space, we refer the reader to [43] for the

detailed solution.

Solution to MCT-PRO Problem

Although we can have an FPTAS solution to the MCT-EXP

problem, it is still not satisfactory, because the probability of

meeting m − 1 participants cannot be guaranteed at a high

level. Therefore, we further consider the MCT-PRO problem,

which strictly require that the probability of meeting at least

m − 1 participants from the forwarder set F is at least at a

preset level P . Again, we formulate the MCT-PRO problem

as a binary program, which aims to minimize the average

delivery cost of the m− 1 slices, as follows:

Objective: Minimize

∑

y⃗:
∑

ag∈N(ai)

(xgyg)=m−1

(

∑

aj∈N(ai)

(c(aj)xjyj)
∏

aj∈N(ai)

p(aj)
yj

)

∑

y⃗:
∑

ag∈N(ai)

(xgyg)=m−1

∏

aj∈N(ai)

p(aj)yj

Subject to:
∑

ag∈N(ai)
xg

∑

t=m−1

∑

y⃗:
∑

ag∈N(ai)
(xgyg)=t

∏

aj∈N(ai)

(

p(aj)
yj

·(1− p(aj))
1−yj

)

≥ P, (5)

xj ∈ {0, 1}, ∀aj ∈ N(ai) (6)

Here, the numerator of objective formula calculates the

total “weighted” cost of all possible combinations of m − 1
participants from a selected set of forwarders F = {aj ∈
N(ai)|xj = 1}, while the denominator denotes the total

“weight” of these combinations. The “weight” of a combi-

nation of m− 1 participants here is the possibility of meeting

exactly all of them by ai. Consequently, the objective formula

is to minimize the weighted-average cost for delivering the

slices. Constraint (5) guarantees that ai can meet at least

m − 1 participants in the selected forwarder set F = {aj ∈
N(ai)|xj = 1} with probability at least P . Constraint (6) is

exactly the same as constraint (2). In the binary program, y⃗ is

a binary vector with |N(ai)| bits. However, since the above

binary program cannot be efficiently solved in polynomial

time, we propose a polynomial time greedy algorithm, which

can achieve good performance in most of the cases.

We first sort the participants in set N(ai) by

p(aj)/c(aj), aj ∈ N(ai) in non-increasing order β:

β : a′1, a
′
2, . . . , a

′
|N(ai)|

,

such that

p(aj)

c(aj)
≥

p(ag)

c(ag)
, ∀1 ≤ j < g ≤ |N(ai)|.

Then, we find the smallest number α of participants in the front

of the ordered list β, such that the probability of meeting at

least m−1 of them is at least P (i.e., constraint (5) is satisfied).

We call the last selected participant in this process as critical

participant and α as critical number. The pseudo-code for

finding the critical participant is shown by Algorithm 2.

In Algorithm 2, we first check whether there are enough

participants (Lines 1-3). If not, then there is no feasible

solution; otherwise, we use a dynamic programming-based

method to find the critical participant a′α (Lines 4-14). In

this process, we first initialize a one-dimensional array ρ
for storing intermediate results (Line 4). Each element ρ[j]
(0 ≤ j ≤ |N(ai)|) means the probability of meeting j
participant(s), given the first α participant(s) in the list β. Then

we test the participants in list β one by one (Lines 5-9) and

update the array elements up to ρ[α] (Lines 10-13), until the

critical participant a′α is identified. If no critical participant is
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Algorithm 2 Finding Critical Participant

Input: Set of participants N(ai), profile of meeting

probabilities (p(aj))aj∈N(ai), profile of delivery costs

(c(aj))aj∈N(ai), ordered list β, and the minimal proba-

bility P .

Output: Critical participant a′α.

1: if |N(ai)| < m− 1 then

2: return “No feasible solution.”;

3: end if

4: ρ← 0|N(ai)|+1; ρ[0]← 1− p(a′1); ρ[1]← p(a′1); α← 1;

5: while
∑α

j=m−1 ρ[j] < P do

6: if α = |N(ai)| then

7: return “No feasible solution.”;

8: end if

9: α← α+ 1;

10: for g = α to 1 do

11: ρ[g]← ρ[g − 1]p(a′α) + ρ[g](1− p(a′α));
12: end for

13: ρ[0]← ρ[0](1− p(a′α));
14: end while

15: return a′α;

found, then return with no feasible solution (Lines 6-8). The

runtime of Algorithm 2 is O(n2), where n = |N(ai)|.
Noting that having more than α participants in the front of

the ordered list β, constraint (5) is always satisfied. Conse-

quently, after locating the critical participant a′α, if any, each

set with γ ∈ {α, α+1, . . . , |N(ai)|} participants in the front of

the ordered list β is a feasible solution of the MCT-PRO prob-

lem. So, our next job is to find the γ ∈ {α, α+1, . . . , |N(ai)|}
that minimize the objective function of the MCT-PRO problem

formulation. Algorithm 3 shows our pseudo-code for selecting

forwarder set F , given the critical participant a′α found by

Algorithm 2.

Algorithm 3 maintains a two-dimensional matrix ρ to store

intermediate results. Each element ρ[j][g] (0 ≤ j, g ≤ |N(ai)|)
represents the probability of meeting g participants, under

the condition that participant a′j is met, given the first γ
participants in the list β (during the process, the position of a′1
and a′j is switched for calculating the probabilities of row ρ[j]).
After initialization (Line 1), we iterate each of the possible

values of γ from 1 to |N(ai)| (Lines 2-19). For the iterations of

γ from 1 to α−1, we only update the dynamic matrix ρ (Lines

3-12) without checking the average delivery cost, because the

necessary number of participants has not been reached. From

the iteration with γ = α on, we check the average delivery cost

with m− 1 participants (Line 14), after updating the dynamic

matrix ρ (Lines 3-12). If a lower average delivery cost is found

(i.e., cost′ < cost), we update the current smallest average

delivery cost and its corresponding forwarder set (Lines 14-

17). Finally, Algorithm 3 returns the forwarder set F . The

running time of Algorithm 3 is O(n3), where n = |N(ai)|.
Algorithm 3 can return a feasible result if there are suffi-

cient number of meeting opportunities with other participants.

However, we note that it is possible that a sensing record

generator cannot meet enough participants to transfer each of

the encoded slices from a record to a different participant. In

Algorithm 3 Forwarder Set Selection

Input: Set of participants N(ai), profile of meeting

probabilities (p(aj))aj∈N(ai), profile of delivery costs

(c(aj))aj∈N(ai), ordered list β, and critical participant a′α.

Output: Set of forwarders F .

1: ρ← 0|N(ai)|+1,|N(ai)|+1; cost← MAX REAL;

2: for γ = 1 to |N(ai)| do

3: for j = 1 to |N(ai)| do

4: for g = γ downto 2 do

5: if j = γ then

6: ρ[j][g]← ρ[j][g − 1]p(a′1) + ρ[j][g];
7: else

8: ρ[j][g]← ρ[j][g − 1]p(a′g) + ρ[j][g];
9: end if

10: end for

11: ρ[j][1]← p(a′j); ρ[j][0]← 1;

12: end for

13: if γ ≥ α then

14: cost′ ←
∑γ

j=1 c(a
′
j)ρ[j][m− 1];

15: if cost′ < cost then

16: F ← first γ participants in β; cost← cost′;
17: end if

18: end if

19: end for

20: return F ;

this case, we use the prediction model based on the history to

estimate the number of encounters beforehand. For participants

who do not have sufficient slice transfer opportunities, we

allow them to transfer more than one slice during each

meeting. Suppose h slices are transferred each time, then the

record generator is hidden in ⌈k/h⌉ participants.

3.4 Reconstructing

After receiving at least k slices encoded from the same sensing

record, the service provider can reconstruct the original sens-

ing record. Besides maintaining a database storing the sensing

records, the service provider also keeps a table T caching

slices that have not been decoded.

Algorithm 4 shows the pseudo-code of our sensing record

reconstructing algorithm. Upon receiving a reported slice s,

the service provider decrypts the slice using her private key

KEYpriv to get the encoded slice s′ and a tag that uniquely

identifies the record it is encoded from:

(s′, tag) = DECRY PT (s,KEYpriv),

where DECRY PT (·, ·) is an asymmetric decryption func-

tion.

The service provider adds the encoded slice s′ into the

caching table T with index tag, and then check whether there

are k encoded slices with the same tag. Then, the service

provider checks the integrity of the k slices. If these slices pass

the integrity check, service provider extracts the k encoded

slices with the same tag, and then decodes the original sensing

record:

< t, l, d >= EC−1({s̄| < s̄, t̄ >∈ T ∧ t̄ = tag}),
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Algorithm 4 Sensing Record Reconstructing Algorithm

Input: Caching table T .

Output: Each original sensing record < t, l, d >.

1: while TRUE do

2: Receive slice s;

3: (s′, tag)← DECRY PT (s,KEYpriv);
4: Add (s′, tag) into T ;

5: if |{s̄| < s̄, t̄ >∈ T ∧ t̄ = tag}| ≥ k then

6: if IntegrityCheck({s̄| < s̄, t̄ >∈ T ∧ t̄ = tag})=true
then

7: < t, l, d >← EC−1({s̄| < s̄, t̄ >∈ T ∧ t̄ = tag});
8: Remove {s̄| < s̄, t̄ >∈ T ∧ t̄ = tag} from T ;

9: Store sensing record < t, l, d >;

10: else

11: Remove {s̄| < s̄, t̄ >∈ T ∧ t̄ = tag} from T ;

12: end if

13: end if

14: end while

where EC−1(·) is the decoding function corresponding to

EC(·). Otherwise, the collected slices marked with tag are

removed from the caching table.

3.5 Analysis

In this section, we show that SLICER can provide strong

privacy protection against the external and internal attacks.

3.5.1 Protection Against External Attacks

The external attacker eavesdrops messages passed in the

participatory sensing system, in order to collect sensitive infor-

mation about particular participants. In SLICER, we employ

an end-to-end cryptographic encryption scheme, such that the

external attacker cannot decrypt the slices transferred among

participants, as well as that reported to the service provider.

Although the external attacker may extract some information

from the eavesdropped packets to uniquely identify the partici-

pant, she cannot get the concrete content of the sensing record.

Because the eavesdropped content is under the protection of

the end-to-end encryption, such that the eavesdropper cannot

decrypt it unless she colludes with service provider. There-

fore, SLICER provides privacy protection against the external

attacks.

3.5.2 Protection Against Internal Attacks

The internal attack may come from both the participants and

the service provider. We distinguish two cases:

Protection against participants’ attack

Each participant may receive some slices, when she is

selected as a slice deliver for participants met. Similar with

the external attacker, the participant cannot decrypt the slice

for delivering.

Protection against service provider’s attack

Since the service provider has full access to the sensing

records contributed by the participants, she can easily infer

private information about the participants, if proper privacy-

preserving scheme is not provided. However, SLICER can

achieve the k-anonymity and protect participants’ privacy

information against the service provider. Therefore, we can

draw the following theorem.

Theorem 1: SLICER achieves k-anonymity, when there are

k participants who deliver slices to the service provider.

Proof: In SLICER, we isolate the participants’ identity

and the sensing records, by encoding each sensing record into

m slices and letting at least k different slices be delivered to

the service provider through different participants. To achieve

this, we designed three different algorithms (TMC, MCT-EXP,

and MCT-PRO) in section 3.3 according to different situations

to select at least m participants (including the generator itself)

as forwarders to transfer m slices to the service provider. Then,

the original sensing record can be decoded by the service

provider if and only if receiving at least k different slices.

Therefore, the identity of the record generator is hidden among

a group of at least k participants.

We note that SLICER’s privacy guarantee degrades to

⌈k/h⌉-anonymity, when a sensing record generator cannot

meet enough participants to transfer slices and thus has to

transfer h slices during each meeting. Further, if the sensing

record generator is completely isolated and cannot meet any

other participant (i.e., h = k), SLICER cannot preserve the

privacy on linkage between identity and location. In this case,

an alternative privacy preserving scheme (e.g., [11], [21], [44])

can be applied.

4 EVALUATION

We have implemented the SLICER and evaluated its perfor-

mance on taxi traces collected from practice. In this section,

we specify evaluation setups and metrics, and present evalua-

tion results.

4.1 Setup and Metrics

Our evaluation is based on the realistic GPS mobility traces

of 500 taxi cabs over 30 days in San Francisco, USA,

which were collected by Cabspotting Project [19] and can be

accessed from the CRAWDAD [45] website. In this real world

deployment, each cab is outfitted with a GPS tracking device

that is used by dispatchers to efficiently reach customers. Each

cab sends a location-update triplet (timestamp, identifier, geo-

coordinates) to a central server in a period varied from 30

to 60 seconds, which forms the mobility traces we used in

this paper. We extend this scenario to a participatory sensing

situation by assuming that the cabs are participants equipped

with mobile devices.

We consider a mobile infrastructure with the whole 500

participants. We set that every participant generates one record

per day, and the period of validity of the record is 24 hours.

The loss possibility of the slices varies from 0.2 to 0.4.

We evaluate the performance of SLICER using the follow-

ing four metrics.

• Reconstruction Ratio: The percentage of sensing records

successfully reconstructed by the service provider. This

reflects the loss tolerance of SLICER.

• Communication Overhead: The total amount of data

transmitted to guarantee required reconstruction ratio.
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• Computation Overhead: The time consumed to process a

sensing record.

• Total Transfer Cost: The sum of the cost for delivering a

sensing record (i.e., m−1 slices) to the service provider.

4.2 Evaluation Results on Reconstruction Ratio

We compare the performance of SLICER implemented with

the three transfer strategies proposed in Section 3 (i.e., T-

MU, MCT-EXP, and MCT-PRO), with an existing privacy

preserving schemes for participatory sensing, namely Simple

Exchanging [35], in which the sensing records are transferred

among participants as a whole without coding. We should note

that we did not compare with [11], [12], [21], because the

setup of these work are significantly different with ours.
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Fig. 4. Impact of Participant Number on Reconstruction
Ratio

Fig. 4 shows the reconstruction ratios achieved by the

four schemes with growing number of participants, which

are selected from the public taxi trace dataset. We set the

coding rate to 10/20 and the probability of slice loss to 0.2 in

this simulation. To be fair, we let the four evaluated schemes

have the same communication overhead, and then compare

their achieved reconstruction ratios. Specifically, given that

the coding rate of our three SLICER strategies is 10/20,

the total size of encoded slices is doubled from the original

sensing record. So, we let the Simple Exchanging scheme

transfer twice for each sensing record. We can see from

Fig. 4 that SLICER with TMU and SLICER with MCT-

PRO perform better than Simple Exchanging, when there are

sufficient number of participants (i.e., > 200 participants).

This is because SLICER inherits high loss tolerant capability

from erasure coding technique. Specifically, the reconstruction

ratio of SLICER with TMU, SLICER with MCT-PRO reaches

0.97 when there are 400 participants or more. In contrast,

Simple Exchanging has relatively stable reconstruction ratio

(about 0.86). However, we can see that SLICER with MCT-

EXP performs not well, due to the fact that the MCT-EXP

strategy may not guarantee the probability of meeting m− 1
participants at a high level. In addition, when the number

of participants is less than 200, Simple Exchanging performs

the best. This is because Simple Exchanging only needs one

other participant to deliver the sensing record, while SLICER

needs m−1 participants. However, Simple Exchanging cannot

improve its reconstruction ratio with the help of increasing

number of participants, and loses its advantage when the

number of participants grows beyond 200. Furthermore, Sim-

ple Exchanging cannot provide the strong guarantee of k-

anonymity. So the results of this simulation confirms that

SLICER with TMU or MCT-PRO is preferred when there

are sufficient number of participants in the participant sensing

system.
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Fig. 5. Impact of Coding Rate k/m on Reconstruction
Ratio (We fix k = 10, and vary m in this evaluation.)

Then, we evaluate the impact of coding rate (k/m) on

reconstruction ratio of our transfer strategies, including TMU,

MCT-EXP, and MCT-PRO. The evaluation results are shown

in Fig. 5. Here, we fix k = 10, and vary the value of m
from 15 to 30 with a step of 5 in this evaluation. The slice

losing probability is again set to 0.2. From Fig. 5, we can see

that the reconstruction ratios achieved by the three transfer

strategies increase with the decrement of coding rate (i.e.,

increment of m in the evaluation) and increment of the number

of participants. Having coding rates of 10/25 and 10/30, each
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of the three transfer strategies produces close reconstruction

ratios, which are clearly higher than those in cases of 10/15

and 10/20. This indicates that coding the sensing record into at

least 25 slices can achieve relatively good reconstruction ratio

on the dataset used in our evaluation. We note that the coding

ratio still need to be carefully set for different application

scenarios in order to obtain high reconstruction ratios with

appropriate costs.
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Fig. 6. Impact of Inaccurate Mobility Prediction Module
on the Reconstruction Ratios of Our Designs

Furthermore, we evaluate the impact of inaccurate mobility

prediction module on the performance of our designs. In this

set of evaluations, we directly add noises to the meeting

probabilities generated by the mobility prediction module to

make them deviate from the ground-truth prediction. Fig. 6

shows the evaluation results. By adding ±5% (±10% and

±20%) noise, we mean the meeting probabilities are randomly

increased or decreased by up to 5% (10% and 20%) from

their ground truth values, respectively. In this evaluation, the

coding rate is set to 10/20, and the probability of slice loss

is 0.2. Fig. 6(a) shows the results for MCT-EXP. We can

observe that the reconstruction ratios achieved by MCT-EXP

with ±5% and ±10% noise are very close to the case with

ground-truth prediction. Specifically, when ±10% noise is

added, reconstruction ratio is only decreased by 4.92% from

the result on ground truth, given 500 participants. Only when

the noise is as large as ±20%, the reconstruction ratio is

decreased by 15.28% for 500 participants. Besides, the results

shown in Fig. 6(b) for MCT-PRO is quite similar to those for

MCT-EXP. Reconstruction ratios of MCT-PRO with ±5% and

±10% noise have good approximations to that of MCT-PRO

with ground-truth prediction, while MCT-PRO with ±20%

noise suffers from 16.1% decrement on construction ratio for

500 participants. These results show that our approaches can

tolerate small amount of prediction inaccuracy

4.3 Evaluation Results on Overhead
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Fig. 7. Communication Overhead to Achieve Reconstruc-
tion Ratio of 0.99

We evaluate the communication overhead of four schemes

(TMU, MCT-EXP, MCT-PRO, and Simple Exchanging) to

achieve a targeted reconstruction ratio of 0.99, under different

slice losing probabilities. We set the sensing record size to

1MB. Three loss probabilities are evaluated. To achieve the

reconstruction ratio of 0.99, the coding rate of SLICER needs

to reach 10/18, 10/21, and 10/26, when the loss probability is

0.2, 0.3, and 0.4, respectively. Similarly, we also set proper

transmission redundancies for the Simple Exchanging for

different loss probabilities. As shown in Fig. 7, we can see

that the communication overhead of SLICER is always lower

than Simple Exchanging under different losing probabilities,

showing that SLICER has better loss tolerance. Although the

communication overheads of the four schemes increase with

the loss probability, the growth speed of SLICER is much

slower. In addition, the performance of SLICER implemented

with different transfer strategies has subtle differences due to

the reason that participants selected by SLICER with MCT-

EXP and MCT-PRO may not be met in some probability. This

result confirms that SLICER can achieve low communication

overhead.
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We also evaluate the computation overhead of SLICER with

different transfer strategies (as shown in Fig. 8, which is a
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log-log scale plot), comparing with the traditional encryption

only scheme, which is the Simple Exchanging [35] scheme

(RSA is adopted in this simulation). What we consider in

SLICER are only the computations needed at mobile device

side, including erasure coding (Tornado [37]), hashing (SHA-

1 [39]), encryption (RSA [46]), and running the three different

transfer strategies. Our schemes are evaluated in Windows 7

OS environment, with C++ programmed simulator running

on a computer with a CPU speed of 2.40GHz. In Fig. 8,

we can see that SLICER induces some extra computation

overhead compared with the Simple Exchanging scheme,

when dealing with the same size of data. This is caused

mainly by the usage of erasure coding. Although, SLICER

with TMU, SLICER with MCT-EXP, and SLICER with MCT-

PRO consume 42.5%, 48.3% and 42.7% more time than

the Simple Exchanging method when dealing with a 10MB
sensing record, respectively, the per kilobyte computation

overheads are still very small and can be afforded by mobile

devices. Specifically, for a 10MB sensing record, SLICER

with TMU, SLICER with MCT-EXP, and SLICER with MCT-

PRO consume 0.479ms/KB, 0.480ms/KB, and 0.499ms/KB,

respectively.
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Then, we compare the total slice transfer cost when using

different strategies (Simple Exchanging, TMU, MCT-EXP,

and MCT-PRO) to achieve an expected construction ratio of

0.9994. The transfer cost on each participant is generated ran-

domly from (0, 1], the meeting probability (used in Minimal

Cost Transfer) comes from the statistics of the 500 partici-

pants’ trace data, the probability of slice loss is set to 0.2, and

the coding rate is set to 10/20. As shown in Fig. 9, Simple

Exchanging performs the worst, and SLICER with TMU also

suffers from relatively high transfer cost, which is close to the

excepted value (i.e., 0.5 × 19 = 9.5). Minimal Cost Transfer

performs better than the previous two when the participants

are sufficient, due to the well designed algorithms, especially

the MCT-EXP. We believe the MCT-PRO is more reasonable

due to its threshold probability of P (0.9). In addition, the

transfer cost of SLICER converges with the growth of number

of participants, because more participants will provide more

meeting opportunities, higher meeting probability, and more

low-cost relays to select. For example, the total cost for

transferring one record is lower than 3.6 by SLICER with

MCT-PRO, when there are 500 participants. This means a per

participant cost of 0.19. The results of this simulation confirm

that our algorithm for minimal cost transfer can reduce transfer

cost.

4.4 Summary of Evaluation Results

We summarize the above evaluation results as follows:

• SLICER with TMU provides the best reconstruction ratio

when the participants are sufficient in the participatory

sensing system. It also has relatively low communication

and computation overhead compared with other SLICER

strategies. However, TMU has the highest transfer cost.

• SLICER with MCT-EXP is more sensitive to inaccurate

mobility predictions than MCT-PRO (and actually TMU

is not sensitive at all), but has a lower computation

overhead.

• SLICER with MCT-PRO achieves the lowest transfer cost

and (near) the best reconstruction ratio, but has a little bit

higher computation overhead.

Generally speaking, SLICER with MCT-PRO provides good

reconstruction ratio with appropriate overhead most of the

time, while SLICER with TMU can be a good alternative when

the mobility prediction module is not available or inaccurate.

5 RELATED WORK

In this section, we first review some related work on privacy

preserving techniques for participatory sensing, and then re-

view the work on data aggregation. Finally, we analyse some

key differences with the closely related previous work.

5.1 Privacy Preserving Techniques

In the current state-of-the-art, a number of privacy preserving

techniques for participatory sensing systems, especially the

location-based services (LBSs), have been proposed by previ-

ous researchers, mainly to address the privacy of data source

identity, user location, user trajectory, and sensing data content

itself. These techniques can be classified into the following

four categories.

5.1.1 Randomization Based Techniques

Randomization (noise) based technique [13], [47]–[49], where

noise (e.g., Gaussian noise) may be added into the original

data, can hide the real value of sensitive information (e.g., the

trend of the data over time). This method was widely studied

and used in data mining field. However, the loss of data quality

is a significant shortcoming.

5.1.2 Generalization

The k-anonymity [36] model, which aims to hide each user’s

sensitive information among k−1 others’, is a universal metric

for privacy preservation, and has been applied to participatory

sensing in several previous work [11], [50]. However, this

kind of method usually needs an honest third-party as the

anonymizer, which is not allowed in ubiquitous semi-honest

models. Therefore, when a more severe situation of semi-

honest third-party is considered, these approaches cannot meet

requirements.
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5.1.3 Cloaking Techniques

Cloaking techniques usually use generalization or perturbation

to replace the actual location with larger area or to cloak

real location using some functions (e.g., [11], [44], [50],

[51]). However, while spatial cloaking techniques can well

protect single location information, they fail to protect the

trace privacy, with which user’s identity is also inferable [22],

[52]. Recently, several work were proposed aiming to solve

the trajectory privacy problems [21], [35], [53]. However,

same questions exist that the protection of privacy reduces

the quality of reported data.

5.1.4 Cryptography Based Solutions

End-to-end encryption, which can guarantee the high security

of reported data, is widely used for the privacy preserva-

tion [12], [54]–[57]. However, encryption can only protect

participants’ privacy from external attacks (e.g., the eavesdrop-

per). When the encrypted data arrives at the service provider

side, service provider can decrypt ciphertext and obtain the

corresponding plaintext. Therefore, encryption technique fails

to prevent the service provider from inferring users sensitive

features. Since internal attacks are also undesirable, designing

privacy preserving schemes for participatory sensing against

both external and internal attacks is highly important.

5.2 Data Aggregation Protocols

Data aggregation is a widely used technique in wireless sensor

networks. Data aggregation algorithms are designed to gather

and aggregate data in an energy efficient manner so that

the network lifetime is enhanced [58]–[60]. Cam et al. [61]

presented a multi-stage real-time alert aggregation technique

over mobile networks that greatly reduces the amount data

transmission and attempts to maximize the bandwidth uti-

lization. Kumar et al. [62] proposed a learning automata-

based opportunistic data aggregation and forwarding scheme

for alert generation in vehicle ad hoc networks (VANETs),

which overcomes the challenges of high velocity and constant

topological changes in VANETs and can adaptively select the

next hop for data forwarding and aggregation from the other

nodes. However, security issues are not considered in these

data aggregation protocols.

As mentioned above, security is an important issue in the

process of data aggregation. Secure data aggregation protocols

(e.g., [59], [63], [64]) try to achieve security requirements

(e.g., data integrity, data confidentiality, authentication, and

etc.) along with data aggregation. Aviv et al. [65] proposed

a privacy-aware geographic message exchange protocol for

Human Movement Networks (HumaNets). However, they only

consider static networks. Therefore, these methods are not

suitable for participatory sensing, where the network changes

dynamically.

5.3 Differences with Existing Work

In the literature, [35] and [12] are the two most closely

related work to ours. Christin et al. [35] proposed to hide

participants’ travel paths via collaborative message exchanging

in physical proximity. However, although by carefully setting

the exchange strategies and the reporting strategies, various

levels of privacy preservation against the application admin-

istrator can be achieved (e.g., k-anonymity), the approach is

still vulnerable to privacy breach from malicious participants,

since the triplets encapsulating the whole sensor readings

are directly transferred to the encountered participants. Shi

et al. [12] elegantly implemented a data aggregation method

for supporting various aggregation functions on numerical

data. However, their method cannot be applied to multimedia

sensing data. In contrast, SLICER proposed in this paper

is a coding-based k-anonymous privacy preserving scheme

for high quality multimedia data aggregation in participatory

sensing systems.

6 CONCLUSION AND FUTURE WORK

In this paper, we have presented a coding-based privacy

preserving scheme, namely SLICER, which is a k-anonymous

privacy preserving scheme for participatory sensing with mul-

timedia data. SLICER integrates the technique of erasure

coding and well designed slice transfer strategies, to achieve

strong protection of participants’ private information as well as

high data quality and loss tolerance, with low computation and

communication overhead. We have studied two kinds of data

transfer strategies, including TMU and MCT. While TMU is a

simple and straightforward strategy, MCT contains two com-

plimentary algorithms, including an approximation algorithm

and a heuristic algorithm, designed for satisfying different

levels of delivery guarantee. We also implement SLICER and

evaluate its performance using publicly released taxi traces.

Our evaluation results confirm that SLICER achieves high

data quality, strong robustness, with low computation and

communication overhead.

For future work, one possible direction is to study the

problem of privacy preservation in the query process [66] [67],

and design new privacy preserving query schemes based on

SLICER. We also think about the lost-packet authentication in

server side to increase the construction ratio and further reduce

the communication overhead. Another possible direction is

to design efficient slice transfer algorithm, considering the

limitation of mobile devices’ battery power, storage space,

availability, computation ability, and communication band-

width.
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