
Privacy-Aware and Trustworthy Data Aggregation

in Mobile Sensing

Jingyao Fan∗, Qinghua Li† and Guohong Cao∗
∗Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802
†Department of Computer Science and Computer Engineering, University of Arkansas, Fayetteville, AR 72701

Email: {jfan,gcao}@cse.psu.edu, qinghual@uark.edu

Abstract—With the increasing capabilities of mobile devices
such as smartphones and tablets, there are more and more
mobile sensing applications such as air pollution monitoring
and healthcare. These applications usually aggregate the data
contributed by mobile users to infer about people’s activities
or surroundings. Mobile sensing can only work properly if the
data provided by users is adequate and trustworthy. However,
mobile users may not be willing to submit data due to privacy
concerns, and they may be malicious and submit forged data
to cause damage to the system. To address these problems,
this paper proposes a novel privacy-aware and trustworthy data
aggregation protocol for mobile sensing. Our protocol allows the
server to aggregate the data submitted by mobile users without
knowing the data of individual user. At the same time, if malicious
users submit invalid data, they will be detected or the polluted
aggregation result will be rejected by the server. In this way,
the malicious users’ effect on the aggregation result is effectively
limited. The detection of invalid data works even if multiple
malicious users collude. Security analysis shows that our scheme
can achieve the trustworthy and privacy preserving goals, and
experimental results show that our scheme has low computation
cost and low power consumption.

I. INTRODUCTION

Mobile devices, especially smart phones, are becoming

more and more important in our daily life. With enhanced

sensing capabilities such as camera, microphone, accelerom-

eter, GPS, etc. and communication capabilities such as 4G,

WiFi and Bluetooth, mobile devices can provide useful data

to infer about our daily life (location, health, activity, etc.) as

well as the environment (air pollution, noise, traffic, etc.), and

hence help improve the quality of life.

There are many popular mobile sensing applications such

as traffic monitoring [1], pollution monitoring [2], health

monitoring [3] and survey applications that use participants

as sensors [4]. In these applications, aggregation of the data

submitted by mobile users are useful for inferring about

the environment and people’s life or identifying important

phenomena in a certain area. For example, the average time

people spend on social media can help us learn about people’s

social life pattern. The number of people who have caught

a certain flu can help us learn about the flu and plan for

vaccines. The maximum moving speed of road traffic during

rush hours can provide important information about traffic

This work was supported in part by the National Science Foundation (NSF)
under grant CNS-1320278 and CNS-1421578.

jam and help people adjust their schedules and ways of

transportation accordingly.

Although these mobile applications are very useful, in

many cases, the collected data may raise privacy concerns.

Participants may not trust the aggregation server or anyone else

to see their data in plaintext. For example, to monitor the flu

trend in a certain area, the server needs to collect information

about the number of users infected with flu. However, the

infection status of a user is sensitive and he may not be willing

to participate in any sensing task if his privacy cannot be well

protected.

Another important issue is whether the data provided by

mobile users should be trusted or not. It is possible that a

user’s device malfunctions and provides wrong sensing results

to the server, or even worse, the mobile user is malicious and

intentionally forges data to mislead the server. In either case,

the server ends up with wrong aggregation statistics and hence

makes wrong inferences.

There are lots of existing works on preserving user privacy

in data aggregation [5], [6], [7], [8], [9]. However, they assume

that mobile users are trustworthy. As a result, a single forged

data can make the aggregation result significantly deviate from

the true value and become useless. On the other hand, there

are also many existing works on trustworthy data aggregation

in wireless sensor networks [10], [11], [12], [13]. However,

they do not consider user privacy, and we are not aware of

any data aggregation protocol that addresses both privacy and

trustworthiness issues.

For general mobile sensing applications, some recent re-

search [14], [15] addresses trust and privacy simultaneously.

Their root of trust is that multiple users can measure the same

data at the same time and location, and thus a measurement

that deviates from the majority can be deemed as untrusted.

However, this is not true for a broad range of aggregation

applications, where each user generates his own data inde-

pendently and the validity of his data cannot be judged from

other users’ data. For such applications, their schemes may

mistakenly punish honest users with diverse data. Moreover,

since they target general mobile sensing applications instead

of data aggregation, only anonymity is provided for privacy

protection. However, anonymity-based approaches are known

to be vulnerable to tracking attacks [16], [17], [18].

In this paper, we address privacy and trustworthiness issues

together for data aggregation in mobile sensing. We provide

data trustworthiness by ensuring that every user must submit

a valid data value predefined by the aggregation server. For

instance, if a server wants to count the number of users

infected with a flu, it can predefine two values 1 (which means

infected) and 0 (which means uninfected) for each user to

choose from. The proposed scheme ensures that a malicious

user who submits values other than 1 and 0 will be detected by

the server, which means that the malicious user cannot submit

1,000 to convince the server that many people have caught this

flu. Different from existing research on preserving privacy by

submitting data in an anonymous way, the proposed protocol

preserves privacy by hiding users’ data from the server, i.e.,

user’s data is not revealed to the server in clear-text.

The contributions of this paper are as follows:

• We propose a novel concept data value vector to restrict

the behavior of malicious users. Instead of submitting

any value he wants, a malicious user has to pick a value

from the predefined data value vector. This vector can

effectively limit the effect of malicious users on the final

aggregation result.

• We propose a novel privacy-aware data validation tech-

nique which enables the aggregation server to validate if

each user has submitted valid data from the data value

vector, without knowing the user’s data in clear-text. The

validation technique works even if multiple malicious

users collude.

• We design a Privacy-Aware and Trustworthy data Ag-

gregation (PATA) protocol for mobile sensing. PATA

nontrivially combines the aforementioned two techniques

with blind signature and homomorphic encryption to

prevent privacy leakage and mitigate invalid data injected

by malicious users. If a malicious user submits invalid

data, he will be detected or the polluted aggregation

result will be rejected by the server. To the best of our

knowledge, this is the first data aggregation protocol to

address both privacy and trustworthiness at the same time.

• We have implemented PATA and evaluation results show

that its computation cost and energy cost are very low.

The rest of the paper is organized as follows. Section II

introduces related work. Section III describes our system

model, threat model and cryptographic primitives and provides

an overview of our protocol. Section IV explains our proposed

protocol in detail. Section V and Section VI present security

analysis and performance evaluation, respectively. Section VII

and Section VIII present discussions and conclusions.

II. RELATED WORK

Secure data aggregation schemes [12] [10] have been pro-

posed to get a good approximation of the true aggregation

result with the presence of compromised intermediate aggre-

gation nodes. However, they assume raw data from sensors to

be trustworthy and they reveal sensing data to the aggregators.

Other research that considers the presence of untrusted mobile

users focuses on how to identify malicious users to avoid

future attacks [11], [13]. However, they reveal user’s identities

and their data to other parties.

Fig. 1: System Model

Many privacy preserving techniques have been proposed

[8], [5], [6], [7], [9]. Among them, [8] and [6] focus on sum

aggregation and they use cryptography algorithms to ensure

that the server can only decrypt the sum of participants’ data

but not any individual data. Shi et al. [5] propose a novel

slicing and mixing technique and combines it with binary

search to support count as well as a wide range of non-additive

aggregation. Li et al. [9] achieve privacy for sum, count,

min and max aggregation by using homomorphic encryption.

Groat et al. [7] propose a non-cryptographic method that

adds camouflage values to obfuscate users’ data. However, all

of the above schemes assume the users are trustworthy and

these schemes will generate wrong aggregation results with

the presence of malicious users.

ARTSense and TAPAS [14], [15] address data trustworthi-

ness in an anonymous way. However, they focus on tasks with

similar sensing factors (time, location, etc) and similar sensing

results which limit the application of their works. Moreover,

even with anonymity, users’ privacy can still be violated if

the data submitted is so sensitive that the server can infer the

identity or location of the user. Different from their work,

our solution identifies malicious users from the encrypted

sensing data. VPA [19] uses homomorphic MAC to achieve

integrity and let the participants compute the aggregation result

collaboratively without revealing individual sensor readings.

Different form their work, our scheme doesn’t require peer-

to-peer communication.

III. PRELIMINARIES

A. System Model and Assumptions

Fig. 1 shows our system model, which consists of an ag-

gregation server and multiple Mobile Nodes (MNs). MNs are

mobile devices like smartphones and tablets. The server wants

to get the aggregate statistics from m MNs. In the following,

we focus on the sum aggregation, but our aggregation protocol

for sum can be easily extended to other aggregate statistics

such as count, average, histogram, and even maximum and

minimum [9]. Before the server and MNs start any sensing

task, the server first chooses the data value vector according

to the application. The data value vector is a novel concept

we propose to provide data trustworthiness and restrict the

behavior of malicious users. It is a vector of all data values that

are considered to be valid by the server, sorting in increasing

order (More details about data value vector will be given in

Section VII). Each sensing task is processed in the following

TABLE I: Notations
m Number of mobile users in the system

ni The ith MN
(e,N) RSA public key of server
(d,N) RSA private key of server
g A small prime
h A random number in ZN , coprime to N
k0 Decryption key of the server for aggregation
ki Encryption key of ni for aggregation
oi Original report of user i
si Signed report of user i
ci Encrypted report of user i
t The taskID of current task
H() A cryptographic hash function

D = [d1, d2, ..., dw]
Data value vector, a vector of all valid values
of a sensing result, sorted in increasing order

three steps. First of all, each MN reports its sensing data to

the aggregation server via WiFi or 3G (Step 1). On the server

side, all data are collected to calculate the aggregate statistics

(Step 2). Then the server validates each MN’s report (Step

3). We focus on how to protect users’ privacy throughout the

process and how to achieve data trustworthiness in Step 3.

B. Threat Model

1) Threats from the Server: The server may be curious

about some private information of MNs which can be inferred

from the sensing reports. For example, the server can infer

that the MN has been infected with flu from a report with high

body temperature. On the other hand, the server’s primary task

is to obtain the aggregate statistics. Therefore, we assume that

the server is honest but curious, and it will follow our protocol

when processing sensing reports.

2) Threats from MNs: We cannot fully trust MNs. Mobile

devices can malfunction sometimes and send invalid data,

causing the server to have wrong aggregate statistics. Even

worse, an MN may be malicious and sends invalid data to

jeopardize the system intentionally.

Malicious MNs may collude with each other: a malicious

MN sends an invalid report to the server during aggregation to

cause disturbance to the aggregate statistics. Then during data

validation, it can use a valid report that it obtains from another

colluding MN who appears to be “honest”. In this way, the

malicious MN can affect the aggregation result without being

discovered by the server.

3) Our Goal: First, we want to prevent the server from

reading any individual’s report, and in this way protect the

privacy of MNs. Second, we aim to detect the injection of

invalid data values (values not from the data value vector),

and identify the malicious MNs who submit invalid data to

derive wrong statistics.

C. Cryptographic Primitives

1) Blind Signature: Blind signature is a form of digital

signature [20]. It can be implemented with common public key

signing schemes, e.g., RSA and DSA. To get a blind signature

on message x, the user combines it with a random “blinding

factor”. The blinded message x′ is sent to the signer and the

signer signs it using its private key. The resulting signature s′

is sent back to the user. The user then removes the blinding

Fig. 2: An overview of PATA

factor from s′ to get a signature s on x. s is identical to the

signature generated by a normal signing protocol and thus can

be verified with the signer’s public key. This blind signature

technique can ensure both unlinkability and unforgeability.

D. Overview

Here we give an overview of our protocol to provide a

general idea of how it works and the detailed solution will be

presented in Section IV. Our approach has four phases: Setup,

Data Preprocessing, Data Aggregation, and Data Validation.

Setup In this phase, a set of secrets are generated and

assigned to the server and MNs, which will be used to

generate encryption and decryption keys during the Data

Aggregation phase (More details about secrets will be given

in Section IV-A2). The secret distribution and key generation

process ensure that the server can only decrypt the aggregated

result but cannot decrypt any individual’s report. Also, the

server will generate system parameters, RSA keys and the

data value vector and then broadcast them to all MNs.

Data Preprocessing (Step 1 and Step 2 in Fig. 2) Each

MN picks a value D[j] from the data value vector D based

on its sensing result and uses D[j] in its sensing report. For

example, if the sensing result is 2.1 and the data value vector

is [1, 2, 3], the MN will use 2 as its data value in the report

(More details about data value vector in Section VII). Then

each MN gets its sensing report blindly signed by the server

so that the server cannot see the data value. This signed report

will be used in the following two phases by MNs. Since an

MN cannot generate a signature itself, it will not be able to

change the data value.

Data Aggregation (Step 3 in Fig. 2) In this phase, each

MN encrypts the signed report it obtained during the Data

Preprocessing phase using its encryption key and then sends it

to the server. On receiving all ciphertexts, the server aggregates

them together and then decrypts it using its decryption key to

get the aggregated result. The server will not be able to decrypt

any individual MN’s report because their keys satisfy certain

conditions.

Data Validation (Step 4 and Step 5 in Fig. 2) In this

phase, the server validates if each MN has submitted a report

with valid data from the data value vector and has followed

our protocol honestly. Firstly, the server generates a validation

vector V based on the data value vector and the taskID, and

sends V to each MN. On receiving this validation vector, the

MN multiplies its own signed report with the corresponding

element in the validation vector. The result is sent to the server

Task Initiation

Report Generation

Blind Signature

server side
MN side

1. Random number a, taskID t

3. Random number b4.
2.

5. Pick from data value

vector , use and to

get original report

6. Choose blind factor r7. Blinded report8. Sign on

9. Signed, blinded report 10. Remove blind factor to

get signed report

Fig. 3: Data Preprocessing

who can verify if the MN has cheated or not based on this

result. The whole process is done with encryption, and thus the

server is able to validate each MN’s report without knowing

the data value. More details will be shown in the next section.

IV. PROPOSED SCHEME

In this section, we present each phase of our protocol in

detail, based on the notations shown in Table I.

A. Setup

This phase runs before the server and MNs start processing

sensing tasks. It only needs to be done once.

1) System Parameters Generation: The server first gener-

ates the RSA public and private key pair (e,N) and (d,N), a

small prime g and a random number h ∈ ZN that is coprime to

N . According to the application’s sensing task, the server will

generate a data value vector D = [d1, d2, ..., dl, ..., dw], which

includes all possible sensing values that are considered to be

“valid” by the server, sorted in an increasing order. The public

key (e,N), small prime g, random number h, and the data value

vector are sent to all MNs.

2) Secret Distribution: To preserve privacy, the server’s

decryption key and MNs’ encryption keys must satisfy certain

conditions (For example, for sum aggregation, the sum of

server’s key and all MNs’ keys should be 0). To achieve this

goal, we adapt the scheme proposed in [9]. A trusted authority

is responsible for generating and assigning secrets to the server

and all MNs. For each sensing task, the server and MNs will

use these secrets to generate their keys.

Let ni (i = 1, 2, ...,m) denote node i in the system. The

trusted authority first generates mc random and different se-

crets and divides all the secrets evenly into m disjoint subsets.

Let S denote the set formed by all mc secrets and Si denote the

ith subset. Then the authority randomly selects q secrets from S

to form a subset Ŝ and sends all secrets in Ŝ to the server. Then

it divides secrets in S− Ŝ evenly into m disjoint subsets S̄i and

sends Si and S̄i to ni. Obviously, S = ∪mi=1Si = (∪mi=1S̄i) ∪ Ŝ.

Using these secrets, the server and MNs can generate their

keys for each sensing task. (How keys are calculated from the

secrets is shown in Section IV-C.)

B. Data Preprocessing

In this phase, a new round of sensing is initiated by the

server and each MN generates its sensing report and obtains a

blind signature for it. For ni and the server, this phase proceeds

in the following steps as shown in Fig. 3

Report Encryption

Aggregation and Decryption

Discrete log

Signed

Reports

Encryptd

Reports

Fig. 4: Data Aggregation

Task Initiation When the server wants to collect sensing

data for a new task, it generates a random number a and a

unique taskID t and sends them to all MNs. On receiving a

and t, ni generates a random number b and sends it to the

server. Both the server and ni will compute xi as xi = H(a|b).
The server ensures that all xi are different. (xi for different

MNs are different so that collusion can be prevented.)

Report Generation ni does the sensing and examines the

data value vector to pick a value dli (suppose li is the index of

dli in D) that is closest to its true sensing data. Then it uses this

value (dli) in its original sensing report oi: oi = gdli xi mod N.

Blind Signature ni randomly chooses a number r which

is relatively prime to N as a blinding factor to get a blinded

report: o′i = gdli xir
e mod N . o′i is sent to the server and the

server then signs it using its RSA private key: s′i = (o′i)
d mod

N = (gdli xir
e)d mod N . The server sends this signature s′i

back to ni and ni removes the blinding factor to get the

signed report si: si = (s′ir
−1) mod N = (gdli xi)

d mod N. The

unlinkability property ensures that the server cannot know oi

and the unforgeability property ensures ni cannot change the

value dli in its report.

C. Data Aggregation

In this phase, the server will aggregate all sensing reports

without knowing each MN’s data value. For ni and the server,

this phase is done in the following steps as shown in Fig. 4.

Report Encryption First, ni calculates its encryp-

tion key for the current task t: ki = (
∑

σ∈S̄i
H(fσ(t)) −∑

σ∈Si
H(fσ(t))) mod N. Here, fσ is a member of the pseudo-

random function family Fλ = {fσ : {0, 1}λ → {0, 1}λ}σ∈{0,1}λ

indexed by σ. Then ni encrypts the signed report si with ki:

ci = (gdli xi)
d ·hki mod N. The encrypted report ci is sent to the

server.

Aggregation and Decryption First, the server generates

its decryption key for task t: k0 =
∑

σ∈Ŝ
H(fσ(t)) mod N. We

can easily verify that:
∑m

i=0 ki = 0. After collecting all MNs’

encrypted reports, the server multiplies them together and then

decrypts the product using k0 and all xi chosen during Task

Initiation of Data Preprocessing:

S =hk0

m∏

i=1

[(gdli xi)
d · hki]

m∏

i=1

x−d
i mod N

=
m∏

i=0

hki (
m∏

i=1

gdli)d mod N = (g
∑m

i=1 dli)d mod N

Using its own RSA public key (e,N), the server can get: S′ =

Se mod N = g
∑m

i=1 dli .

Validation Vector Generation

Mutual Validation

server side
MN side

1. Generate vector C using t

3. Generate Vector V:
4.Validation Vector V:

5. Verify 6. Certificate
7. Verify

data value vector D

Report Value

Signed report

2. E= Encrypt((d, N), D)

V[i] = C[i] · E[i]

Fig. 5: Data Validation

Discrete log The server needs to compute the discrete log

of S′ base g to get the sum. For fast decryption, we use the

low-cost algorithm proposed by Galbraith emphet al. [21]. The

method requires average decryption time (1.714+o(1))
√
mP (P

is the plaintext space , which is roughly (dw − d1)).

D. Data Validation

In this phase, the server validates if each MN’s report is

valid in the following two steps as shown in Fig. 5.

Validation Vector Generation First, using the taskID t

and its own RSA private key, the server generates a certificate

vector C of the same length as the data value vector:

C = [(H(t))d mod N, ..., (H(t))d mod N]

The server encrypts the data value vector D with g and its

RSA private key and gets an encrypted value vector E:

E = [(g−d1)d mod N, ..., (g−dw)d mod N]

The server then multiplies each item in C with the correspond-

ing item in E and gets a validation vector V :

V = [(g−d1H(t))d mod N, ..., (g−dwH(t))d mod N]

Then V is sent to each MN.

Validation ni knows dli is the li
th value in the data value

vector. It multiplies the signed report s with the li
th value in

V to get a validation certificate ∆:

∆ = (gdli xi)
d · (g−dliH(t))d mod N = (H(t)xi)

d mod N

Using the server’s public key (e,N), the MN verifies that ∆

is a valid signature over H(t)xi. (Without this verification, the

server can put different elements in vector C. Then it can map

an MN’s ∆ to the corresponding element in C, thus knowing

the MN’s data value.) Then it sends ∆ back to the server. The

server knows the xi assigned to ni. It computes:

∆′ = ∆ · x−d
i mod N = (H(t))d mod N

Since the server knows H(t), it can easily verify if the result

∆′ equals to (H(t))d mod N or not. If ∆′ does not equal to

(H(t))d mod N , the server detects that the MN did not follow

our protocol (e.g., submitting an invalid report) and thus can

be removed from the system.

E. Node Management

MNs may join or leave the system or the server may want to

revoke a malicious MN’s participation in future sensing tasks.

To deal with leave, join and revoke, the trusted authority needs

to update secrets for the server and MNs. However, for a large

system with many MNs, the communication cost may be high.

To reduce the communication cost, we adapt the ring-based

interleaved grouping technique proposed in [22] on top of our

protocol. All MNs are divided into q interleaved groups, with

each node belonging to two groups. For each group of nodes,

the authority assigns secrets to the server and MNs as shown

in the Secret Distribution process. Let SiA, S̄iA and SiB , S̄iB

denote the sets of secrets that ni receives from group A and

B (the two groups it belongs to), respectively. ni merges the

sets like this: Si = SiA ∪ SiB , S̄i = S̄iA ∪ S̄iB . Suppose the sets

of secrets the server gets from q groups are S1, S2, ..., Sq. The

server merges them together: Ŝ = ∪qi=1Ŝi.

1) Join: The joining MN will be inserted into a random

position in the ring. After insertion, the two groups that

cover this position may violate the group size property, thus

regrouping is needed. Then the authority will assign new sets

of secrets to the adjusted groups and the server. Li et al. [22]

proved that at most 4u nodes need to update keys (u is the

size of the smallest group).

2) Leave: The leaving MN is removed from the ring. After

deletion, the two groups that cover this position may violate

the group size property and the overlap property. Thus, the

trusted authority need to regroup. Then it will assign new

secrets to the changed groups and the server. It has been

verified in [22] that at most 6u MNs need to update their keys.

3) Revoke: If the server discovers an MN has cheated, it

will revoke the MN from the system. To do revocation, the

server sends this MN’s id to the authority which will update

secrets as the “Leave” process shown above.

V. SECURITY ANALYSIS

A. Privacy

To analyze how well our PATA can protect each MN’s

privacy, we first define a privacy attack game between an

adversary and a challenger.

• The challenger generates a random number y ∈ {0, 1}.
Then it runs the System Parameters Generation process

and generates secret keys k0, k1, ..., km such that
∑m

i=0 ki =

0. It sends the system parameters and k0 to the adversary.

• The adversary chooses a set of data values {d1, ..., dm} and

sends them to the challenger. The challenger chooses a

corresponding set of data values {d′1, ..., d′m} that satisfies
∑m

i=1 di =
∑m

i=1 d
′
i. Then the adversary makes a sequence

of the following queries to the challenger:

Signing Query: The challenger picks a random number r

relatively prime to N . If y = 0, the challenger sends tuple

(gd1re, ..., gdmre) to the adversary. If y = 1, the challenger

sends (gd
′
1re, ..., gd

′
mre) to the adversary.

Encryption Query: If y = 0, the challenger returns

(gd1hk1 , ..., gdmhkm) to the adversary. If y = 1, the chal-

lenger returns (gd
′
1hk1 , ..., gd

′
mhkm) to the adversary.

• The adversary outputs ŷ ∈ {0, 1}
We do not include the validation in the query because the

validation certificates that the server gets from MNs do not

contain any information about MNs’ data. Let S denote the

event that ŷ = y and Pr[S] denote the probability that event S

occurs. We define the advantage of the adversary to be |Pr[S]−
1/2|.

Definition 1. (Server Obliviousness). A scheme is server

oblivious if no probabilistic polynomial-time adversary has

more than negligible advantage in winning the above game.

Server obliviousness is a strong privacy guarantee since it

ensures that the server knows nothing about each individual

user’s data.

Theorem 1. Our PATA protocol is server oblivious assuming

that decisional Diffie-Hellman (DDH) is hard.

Proof: Let x
R←− X denote the action of assigning x a value

sampled from the uniform distribution on set X. Let P() denote

the system parameters generation oracle, K() denote the aggre-

gation key generation oracle, X () denote the oracle generating

random numbers x1, ..., xj that satisfy
∏j

i=1 xi =
∏j

i=1 g
dire and

Z() denote the oracle generating random numbers z1, ..., zj that

satisfy
∏j

i=1 zi =
∏j

i=1 g
dihhi . Let Qs and Qe denote the tuples

returned by the challenger in Signing Query and Encryption

Query, respectively. We formally define a sequence of games

Game j (j = 0, 1, 2...,m) based on the above game:

Game j. We model the adversary as a deterministic algorithm

A and the attack game is described algorithmically as follows:

y
R←− {0, 1}, (g, h,N)← P(), (k0, ..., km)← K()

(d1, ..., dm)← A(), r
R←− {0, 1}N , (x1, ..., xj)← X (g, r, d1, ..., dj)

(z1, ..., zj)← Z(g, h, k1, ..., kj , d1, ..., dj)
if y = 0 : Qs ← (gd1re, ..., gdmre), Qe ← (gd1hk1 , ..., gdmhkm)

else : Qs ← (x1, ..., xj , g
dj+1re, ..., gdmre)

Qe ← (z1, ..., zj , g
dj+1hkj+1 , ..., gdmhkm)

ŷ ← A(g, h,N, k0, (d1, ..., dm), Qs, Qe)

Obviously, Game m is equivalent to the original game. Thus

it is sufficient to prove that any polynomial-time adversary’s

advantage (|Pr[Sm] − 1/2|) in the above game is negligible.

From Lemma 1 and Lemma 2 (See the Appendix), we have

that |Pr[Sm]− 1/2| = |Pr[Sm]− Pr[S0]| is negligible.

B. Trustworthiness

Definition 2. (Pollution Attack). Malicious users submit in-

valid data that is not within the data value vector which can

result in wrong aggregation statistics without being detected.

To analyze how well PATA can protect against pollution

attacks, we first define a pollution attack game between an

adversary and a challenger.

• The challenger generates valid data values {d1, ..., dw},
RSA key pairs, a random value γ and sends {d1, ..., dw}
and (e,N) to the adversary.

• The adversary chooses a data value α 6∈ {d1, ..., dw} and

makes the following queries to the challenger:

Signing Query: The challenger returns αd mod N .

Validation Query: The challenger returns {(γ
d1

)d mod

N, ..., (γ
dw

)d mod N}
• The adversary outputs δ

Let S denote the event that δ = γd mod N . We define the

advantage of the adversary in winning the above game to be

Pr[S]. It is not hard to see that S corresponds to the event that

a malicious MN passes data validation after submitting invalid

data.

Definition 3. (Pollution Resistance). A scheme is pollution

resistant if no probabilistic polynomial-time adversary has

more than negligible advantage in winning the above game.

Pollution resistance ensures that pollution attacks will be

detected by the server through data validation.

Theorem 2. Our PATA protocol is pollution resistant assum-

ing that RSA signature is secure.

Proof: We prove that if the adversary can win the

above game, he can break RSA signature. Let A() denote

the adversary and P() denote the parameters generation oracle

of the challenger. Let Qs and Qv denote the tuples returned

by the challenger in Signing Query and Validation Query,

respectively. We construct an algorithm B(θ) based on the

pollution attack game:

({d1, ..., dw}, d, e,N, γ)← P()

Qs ← (
γ

θ
)d mod N,Qv ← {(

γ

d1
)d mod N, ..., (

γ

dw
)d mod N}

δ ← A({d1, ..., dw}, e,N, γ,Qs, Qv), output δ

Breaking RSA signature means that we can generate ad mod N

given a ∈ ZN . If the input to B is a, we can get the signature

like this: B(a)/Qs = γd/(γ
a
)d mod N = ad mod N . Therefore,

winning the above game means breaking RSA signature.

C. Collusion Attacks

Definition 4. (Collusion Resistance). A scheme is collusion

resistant if: 1) even when the server colludes with a set of

MNs, server obliviousness still holds for the uncompromised

MNs; 2) even when a set of MNs collude with each other,

pollution resistance still holds.

Theorem 3. Our PATA protocol is collusion resistant.

Proof: First we prove part 1) of collusion resistance. We

add a new query to the query part of the original attack game:

Collusion Query: The adversary chooses a set of compro-

mised users U and for all ni ∈ U , the challenger returns the

corresponding ki and d′i to the adversary.

Server obliviousness holds for the uncompromised nodes

if no probabilistic polynomial-time adversary has more than

negligible advantage in winning this revised game. The proof

that this game is hard to win is similar to the proof of

Theorem 1.

Next we prove part 2) of collusion resistance. We revise the

original pollution attack game like this:

• The challenger generates valid data values {d1, ..., dw}, a

set of different random numbers {x1, ..., xm}, RSA key

pairs, a random value γ and sends {d1, ..., dw}, xi and (e,N)

to the adversary.

• The adversary chooses a data value α 6∈ {d1, ..., dw} and

makes the following queries to the challenger:

Signing Query: The challenger returns (αxi)
d mod N .

Validation Query: The challenger returns {(γ
d1

)d mod

N, ..., (γ
dw

)d mod N}
Collusion Query: The adversary chooses a set of collud-

ing users U (ni 6∈ U) and the challenger generates a data

TABLE II: Cost Analysis per Task

Server MNs

Storage (bits)
1024(3m+ w + 1)+

w log2 P

1024(w + 4)+

w log2 P

Computation (modular exp.) m+ 2w +
√
mP 3

Communication (bits) 1024m(w + 6) 1024(w + 6)

value βj for each nj ∈ U . The challenger then returns xj ,

βj , (βjxj)
d mod N and (γxj)

d mod N of all colluders to the

adversary.

• The adversary outputs δ

Let S denote the event that δ = (γxi)
d mod N . We define the

advantage of the adversary in winning the above game to be

Pr[S]. It is not hard to see that S corresponds to the event

that a colluding MN passes data validation after submitting

invalid data. Pollution resistance still holds if no probabilistic

polynomial-time adversary has more than negligible advantage

in winning this revised pollution attack game. The proof that

this game is hard to win is similar to the proof of Theorem 2.

In fact, we can see from the above game that collusion is

prevented because the server ensures xi for different MNs are

different during Data Preprocessing (See Section IV-B).

VI. EVALUATIONS

A. Cost Analysis

Suppose each secret is 256 bits and each node is assigned

with four secrets (As shown in [22], with four secrets per node,

80-bit security can be achieved even for a system with 104

MNs). MNs’ encryption keys, the server’s decryption key and

RSA keys are 1024 bits long. The plaintext space of possible

data values is P and the data value vector is of size w. The

range of sum is R (R = mP). The storage cost, computation

cost and communication cost of the server and MNs are shown

in Table II.

1) Storage Cost: Each MN needs to store its secrets, the

signed report, the server’s public key, the data value vector, and

the validation vector. The server needs to store its RSA key

pairs, its secrets, the data value vector, the validation vector

and all MNs’ encrypted reports. When m = 1, 000, P = 106,

and w = 100, the storage cost is about 200K bits on MNs and

3M bits on the server. For modern computer and smartphones,

the storage cost is not an issue.

2) Computation Cost: According to existing benchmark

data [23], modular exponentiation dominates the computation

cost. Thus we mainly consider modular exponentiations here.

On the MN side, three modular exponentiations are needed

per task. This cost is very low and is not an issue.

On the server side, in Setup, Data Preprocessing and Data

Validation phases m+2w modular exponentiations are needed.

Such computation overhead is not an issue for modern server

machines. However, in the Data Aggregation phase, the server

needs to compute discrete log which is generally difficult. To

speed up the decryption, we use a parallel version of Pollard’s

kangaroo method, and the decryption cost can be reduced to

about 1.714
√
R modular exponentiations.

TABLE III: Running Time per Task on the Server

(a) Effect of m

m Setup Preprocess Validation

10

169 ms

2 ms 14 ms

100 8 ms 29 ms

1000 15 ms 51 ms

(b) Effect of R

R Aggregation

102 2.7 ms

104 15 ms

106 85 ms

TABLE IV: Running Time per Task on Mobile Nodes

Setup Preprocessing Aggregation Validation

0.16 ms 48.5 ms 1.4 ms 0.6 ms

3) Communication Cost: For the server and ni, the mes-

sages exchanged during one task are as follows: random

number a and b, blinded report o′i and signed blinded report

s′i during Data Preprocessing; encrypted report ci during

Data Aggregation; the validation vector and ∆ during Data

Validation. Even with large m and w, the communication cost

is still small and not an issue at all since data aggregation

applications are not time-sensitive.

B. Implementation and Cost Evaluations

To measure the computation cost and power consumption,

we build a prototype and use Java to implement our proto-

col. The prototype includes several MNs and a server. The

smartphones we use to implement MNs are Android Nexus S

Phones with 1GHz CPU, 512MB RAM and Android OS 4.4.2.

The laptop we use to implement the server is a MacBook Air

Laptop with 1.3GHz CPU, 8GB RAM and MAC OS 10.9.2.

MNs communicate with the server through WiFi. We use RSA

blind signature as the blind signature scheme and SHA-256 as

the hash function.

1) Computation Cost: Based on the analysis in Sec-

tion VI-A, on the server side, we measure the running time

of Setup, Data Preprocessing, and Data Validation phases

for different m and measure the running time of the Data

Aggregation phase for different R. The results are shown in

Table III. For most applications, a plaintext space of 106 is

more than enough. In this case, with 1, 000 mobile nodes, the

running time per task on the server is less than 400 ms. On

the MN side, none of the four phases’ are affected by m or R.

The running time of each phase is shown in Table IV. We can

see that, on the MN side, the running time is about 50 ms.

2) Power Consumption: We use Monsoon Power Monitor

to measure power consumption as in [24]. Since each MN’s

computation complexity is not affected by other MNs, we eval-

uate the power consumption with different R when m = 100.

The results are shown in Table V. We can see the power

consumption of our scheme is low, even when the sum range

is vary large. To further understand the energy cost of our

protocol, we also use an Android application PowerTutor to

estimate the total amount of energy consumed per task as well

as the amount of energy consumed by LCD display, WiFi, and

CPU, respectively. The results are shown in Table VI. We can

see that most of the energy (more than 90 percent) is consumed

by LCD and the amount of energy consumed by WiFi and

CPU is small. Even with R = 106, an MN can complete more

than 200, 000 tasks before running out of battery.

TABLE V: Power Consumption on Smartphones with m=100

R 102 104 106

Power Consumtion (mW) 182.67 204.82 224.65

TABLE VI: Energy Cost on Smartphones with m=100

R 102 104 106

Energy Cost per Task (mJ)

LCD 55.9 65.1 85.9

WiFi 2.7 3.0 3.8

CPU 2.1 2.5 3.5

Total 60.7 70.6 93.2

Tasks per Battery (3.7 V,1500 mAh) 329160 283002 214378

C. Degree of Privacy

The goal of our PATA scheme is to ensure that the server

does not know the value of the data that each MN submits, and

we want to measure how well this privacy goal is achieved. We

define a metric to measure the data privacy provided by PATA:

DP (ni) =
∑w

l=1 p̂(dl)||dl− di||. DP (ni) is the data privacy of ni.

p̂(dl) is the probability for the server to guess if ni submits

dl (the lth value in the data value vector). If dl = di, then

||dl − di|| = 1; otherwise, ||dl − di|| = 0.

If the server has no knowledge of MNs’ data at all, p̂(dl)

follows uniform distribution. In our data aggregation, the

server knows the average of all collected reports, and thus

we use a normal distribution with µ to be the average, and

σ = (dw − d1)/4. Note that using range/4 as an estimate of the

standard deviation is widely used in statistics, and using the

range of our data value vector as the range of collected data is

also reasonable in our model. Since the server guesses values

based on the data value vector, the probability calculated from

the normal distribution should be unified so that
∑w

l=1 p̂(dl) = 1:

p̂(dl) =
f(dl,µ,σ)∑

w
l=1

f(dl,µ,σ)
. Here f(dl, µ, σ) is the probability density

function of N (µ, σ). In our experiments, each mobile node

submits a random value in the range of the data value vector

and the server guesses based on the average of the collected

reports as shown above. The results are shown in Fig. 6. We

can see that PATA can provide a high level of privacy.

VII. DISCUSSIONS

A. Data Value Vector

The data value vector may be linear or non-linear. For

example, to monitor the flu trend by collecting how many

users are infected, the server can set the data value vector as

[0, 1], where 0 means that a user is fine and 1 means that a

user has caught this flu. Even when the data range is large,

we can still select a small number of representative values to

meet the application requirement. For example, to collect how

many hours people spend on social media (Facebook, Twitter,

etc.) every week, the server can pick a data value vector like

[0, 2, 5, 10, 20, 30, 50, 100]. This short vector covers the range of

possible hours people spend on social media and includes

values at different levels. Certainly, based on the application

requirement, more fine grained data value vector can be used,

at the cost of more communication bandwidth.

B. Trustworthiness

Our PATA scheme considers data inside the data value

vector to be valid. Further validation within the data value

Fig. 6: Degree of Privacy

vector is not the focus of this paper. Our solution works

especially well for those applications that aggregate binary

sensing results (0 or 1, “yes” or “no”, etc.), and there are many

such applications: survey applications that use participants as

sensors to learn about people’s habits and life patterns [4]

(e.g., whether a user smokes or not, whether a user watches

TV every night, etc.) and user context detection applications

that use sensors on mobile phones to learn about people’s

surroundings and current activities [25], [26] (e.g., using light

sensors to detect whether a user is at a club or not, using

microphones to detect whether a user is talking or not, using

accelerometers to detect whether a user is driving on the

highway or not, etc.). For these applications, PATA can prevent

malicious users from submitting invalid data to trick the server

and at the same time protects participants’ privacy well. For

other applications that aggregate data with a larger range (e.g.,

the blood pressure of users, the time users spend on Facebook,

etc.), PATA can still provide certain degree of trustworthiness

while protecting the privacy. Also, by properly setting the

data range in the data value vector, the negative effects of

the malicious users can be minimized.

C. Trusted Authority

In Section IV, we assume that a trusted authority is re-

sponsible for generating secrets for the server and MNs. The

assumption can be relaxed to an honest-but-curious key dealer

which does not collude with the aggregation server. The key

dealer follows our protocol to generate secrets for all parties

but it may try to infer MNs’ data value by eavesdropping

communications between the server and MNs. Under this

relaxed assumption, we only need to add an encryption and

decryption step to the Data Aggregation phase: each MN

encrypts the encrypted report ci with a pre-shared key with

the server and sends the final result to the server. To get the

aggregate statistics, the server first decrypts each MN’s cipher-

text using the pre-shared key and then does the Aggregation

and Decryption described in Section IV.

D. Fault Tolerance

Some nodes may fail to submit reports for a task. In order to

get the aggregate statistics for the remaining MNs, the server

can ask the key dealer to submit encrypted reports for the

failed nodes. Suppose nj is a failed node. First the key dealer

generates an original report oi = g0+δ (δ is a noise which

can be chosen as small values from the data value vector)

and has the server sign it blindly. Since the key dealer knows

nj’s encryption key kj , it can submit an encrypted report cj =

(gδ)d · hkj mod N to the server. On receiving all reports, the

server can decrypt as follows:

S =hk0 (gδ)dhkj

m∏

i 6=j

[(gdli xi)
d · hki]

m∏

i 6=j

x−d
i mod N

=(gδ+
∑

0<i 6=j≤m dli)d mod N

The server can then get a noisy sum for the remaining nodes

following the PATA protocol. With some appropriate noise,

differential privacy can even be achieved [22].

VIII. CONCLUSIONS

We proposed a novel privacy-aware and trustworthy data

aggregation protocol (PATA). Our protocol utilizes blind sig-

nature, homomorphic encryption, as well as a novel encrypted

vector-based data validation technique. The server can ag-

gregate users’ data without actually knowing any individ-

ual’s data. Our protocol also enables the server to validate

users’ trustworthiness in a privacy-preserving manner based on

whether they submit valid data report following our protocol.

Security analysis shows that our scheme can protect the

privacy of mobile users from a curious server and at the

same time can protect the system from malicious users.

Experimental results based on a prototype show that our

protocol runs very fast even when the plaintext space is

large and many mobile users exist in the system. The power

consumption of the smartphone is also very low. These results

show that our protocol is feasible for a wide range of mobile

sensing applications with various plaintext spaces and resource

constraints.

REFERENCES

[1] A. Thiagarajan, L. Ravindranath, K. LaCurts, S. Madden, H. Balakr-
ishnan, S. Toledo, and J. Eriksson, “VTrack: Accurate, Energy-Aware
Road Traffic Delay Estimation Using Mobile Phones,” in Proc. of ACM

SenSys, 2009.
[2] E. Kanjo, “NoiseSPY: A Real-Time Mobile Phone Platform for Urban

Noise Monitoring and Mapping,” MONET, vol. 15, no. 4, 2010.
[3] M. Rostami, A. Juels, and F. Koushanfar, “Heart-to-Heart (H2H):

Authentication for Implanted Medical Devices,” in ACM SIGSAC, 2013.
[4] P. Vicente, E. Reis, and M. Santos, “Using Mobile Phones for Survey

Research,” IJMN, vol. 51, no. 5, 2009.
[5] J. Shi, Y. Zhang, and Y. Liu, “Prisense: Privacy-Preserving Data Aggre-

gation in People-Centric Urban Sensing Systems,” in INFOCOM, 2010.
[6] V. Rastogi and S. Nath, “Differentially Private Aggregation of Dis-

tributed Time-Series with Transformation and Encryption,” in Proc. of

ACM SIGMOD, 2010.
[7] M. M. Groat, W. He, and S. Forrest, “KIPDA: k-Indistinguishable

Privacy-preserving Data Aggregation in Wireless Sensor Networks,” in
Proc. of IEEE INFOCOM, 2011.

[8] W. He, X. Liu, H. Nguyen, K. Nahrstedt, and T. Abdelzaher, “PDA:
Privacy-Preserving Data Aggregation in Wireless Sensor Networks,” in
Proc. of IEEE INFOCOM, 2007.

[9] Q. Li and G. Cao, “Efficient and Privacy-Preserving Data Aggregation
in Mobile Sensing,” in Proc. of IEEE ICNP, 2012.

[10] B. Przydatek, D. Song, and A. Perrig, “SIA: Secure Information Aggre-
gation in Sensor Networks,” in Proc. of ACM SenSys, 2003.

[11] W. Zhang, S. K. Das, and Y. Liu, “A Trust Based Framework for
Secure Data Aggregation in Wireless Sensor Networks,” in Proc. of

IEEE SECON, 2006.
[12] Y. Yang, X. Wang, S. Zhu, and G. Cao, “SDAP: A Secure Hop-by-

Hop Data Aggregation Protocol for Sensor Networks,” in Proc. of ACM

MobiHoc, 2008.

[13] X. Xu, Q. Wang, J. Cao, P.-J. Wan, K. Ren, and Y. Chen, “Locating
Malicious Nodes for Data Aggregation in Wireless Networks,” in Proc.

of IEEE INFOCOM, 2012.
[14] X. Oscar Wang, W. Cheng, P. Mohapatra, and T. Abdelzaher, “ARTSense

: Anonymous Reputation and Trust in Participatory Sensing,” in Proc.

of IEEE INFOCOM, 2013.
[15] L. Kazemi and C. Shahabi, “TAPAS: Trustworthy Privacy-Aware Par-

ticipatory Sensing,” KAIS, vol. 37, no. 1, 2013.
[16] P. Kalnis, G. Ghinita, K. Mouratidis, and D. Papadias, “Preventing

Location-Based Identity Inference in Anonymous Spatial Queries,” IEEE

Transactions on Knowledge and Data Engineering, vol. 19, no. 12, 2007.
[17] H. Zang and J. Bolot, “Anonymization of Location Data Does Not Work:

A Large-Scale Measurement Study,” in Proc. of ACM MobiCom, 2011.
[18] C. Y. Ma, D. K. Yau, N. K. Yip, and N. S. Rao, “Privacy Vulnerability

of Published Anonymous Mobility Traces,” in ACM MobiCom, 2010.
[19] R. Zhang, J. Shi, Y. Zhang, and C. Zhang, “Verifiable Privacy-Preserving

Aggregation in People-Centric Urban Sensing Systems,” Selected Areas

in Communications, IEEE Journal on, vol. 31, no. 9, 2013.
[20] D. Chaum, “Blind Signatures for Untraceable Payments,” in Proc. of

CRYPTO, 1983.
[21] S. Galbraith, J. Pollard, and R. Ruprai, “Computing Discrete Logarithms

in an Interval,” Mathematics of Computation, vol. 82, no. 282, 2013.
[22] Q. Li and G. Cao, “Efficient Privacy-Preserving Stream Aggregation in

Mobile Sensing with Low Aggregation Error,” in PETS, 2013.
[23] D. J. Bernstein and T. L. (editors), “eBACS: ECRYPT Benchmarking of

Cryptographic Systems,” http://bench.cr.yp.to, accessed 10 May 2014.
[24] W. Hu and G. Cao, “Energy-Aware Video Streaming on Smartphones,”

in Proc. of INFOCOM, 2015.
[25] K. Hinckley, J. Pierce, M. Sinclair, and E. Horvitz, “Sensing Techniques

for Mobile Interaction,” in Proc. of ACM UIST, 2000.
[26] H. Lu, W. Pan, N. D. Lane, T. Choudhury, and A. T. Campbell,

“SoundSense: Scalable Sound Sensing for People-Centric Applications
on Mobile Phones,” in Proc. of ACM MobiSys, 2009.

APPENDIX

LEMMAS AND PROOFS

Lemma 1. |Pr[S0]| = 1/2

Proof: In Game 0, Qs and Qe are the same for y = 0 and

y = 1. Thus the probability that the adversary correctly guesses

y is the same as a random guess.

Lemma 2. |Pr[Sj+1]− Pr[Sj]| = ǫddh, where ǫddh is the DDH-

advantage of a polynomial-time adversary.

Proof: We prove that if the adversary can distinguish

between Game j and Game j − 1. We construct an algorithm

D(α, β, δ) as follows:

y
R←− {0, 1}, (g,N)← P(), (k0, ...kj−1, kj+2, ..., km)← K()

(d1, ..., dm)← A(), r
R←− {0, 1}N , (x1, ..., xj)← X (g, r, d1, ..., dj)

(z1, ..., zj)← Z(g, h, k1, ..., kj , d1, ..., dj)
if y = 0 : Qs ← (gd1re, ..., gdmre), Qe ← (gd1hk1 , ..., gdmhkm)

else : Qs ← (x1, ..., xj , g
dj+1re, ..., gdmre), Qe ← (z1, ..., zj−1,

∏j
i=1 g

dj

∏j−1
i=1 zi · δ ·

∏m
i=j+2 β

ki

, gdj+1δ, gdj+2βkj+2 , ..., gdmβkm)

ŷ ← A(g, β,N, k0, (d1, ..., dm), Qs, Qe)

if y = ŷ, output 1; else output 0

Suppose a, b, c ∈ ZN are three different random numbers.

The DDH problem is to distinguish between (ga, gb, gab) and

(ga, gb, gc). If the input to D is (ga, gb, gab), the computation

proceeds as in Game j, and Pr[D(ga, gb, gab) = 1] = Pr[Sj]. If

the input to D is (ga, gb, gc), the computation proceeds as in

Game j + 1, and Pr[D(ga, gb, gc) = 1] = Pr[Sj+1]. Therefore,

distinguishing between Game j and Game j+1 means solving

DDH problem.

