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ABSTRACT Future Intelligent Transport Systems (ITS) will require that vehicles are equipped with

Dedicated Short Range Communications (DSRC). With these DSRC capabilities, new privacy threats are

emerging that can be taken advantage of by threat actors with little experience and cheap components.

However, the origins of these privacy threats are not limited to the vehicle and its communications, but

extend to non-vehicular devices carried by the driver and passengers. A shortcoming of existing work is that

it tends to focus on a specific aspect of privacy leakage when attempting to protect location privacy. In doing

so, interactions between privacy threats are not considered. In this work, we investigate the privacy surface

of a vehicle by considering the many different ways in which location privacy can be leaked. Following

this, we identify techniques to protect privacy and that it is insufficient to provide location privacy against a

single threat vector. A methodology to calculate the interactions of privacy preserving techniques is used to

highlight the need to consider the wider threat landscape and for techniques to collaborate to ensure location

privacy is provided against multiple sources of privacy threats where possible.

INDEX TERMS Location Privacy; Connected Vehicles; Privacy Surface; Technique Interaction

I. INTRODUCTION

C
ONNECTED and Autonomous Vehicles (CAVs) are

expected to be widely deployed on road networks glob-

ally within the next decade. Therefore, transportation net-

works will deploy Intelligent Transportation Systems (ITSs)

to manage these vehicles. An issue with these systems is

that they raise privacy concerns due to the ease in which

they allow a vehicle to be tracked. However, vehicle tracking

has been of interest to threat actors trying to violate privacy

for some time. In the recent past, violating location privacy

has only been generally available to resource rich threat

actors for mass surveillance or knowledgeable threat actors

that focus on individual vehicles. For example, Automatic

Number Plate Recognition (ANPR) allows vehicles to be

tracked en masse, but it requires a deployment of ANPR

cameras over a large area that is both expensive and no-

ticeable. Individual vehicles can be tracked by threat actors

with limited resources using location recording devices, but

physical access is required for installation and they may be

noticed by the driver. New vehicular technologies provide

methods of vehicle tracking that are cheaper, have fewer

limitations, easier to deploy, and in some cases, harder to

detect.

These new tracking techniques usually do not focus solely

on the vehicle’s location but also consider its identity and the

time was detected. This can be because the threat actors are

interested in who was where at specific times, or how the

location of a vehicle changes over time. Location, time, and

identity are types of context information and protecting the

privacy of the context in which a vehicle performs actions

is often harder than protecting against content privacy leaks.

Content privacy can be protected using encryption, however,

context privacy requires bespoke solutions for the context

being protected and the different scenarios it is protected in.

A privacy hierarchy is provided in Figure 1.

There are two main issues with existing work on protecting

vehicular location privacy. The first is that there is a lack

of positioning of the context in which location privacy is

being provided. This necessary to understand which threats

an adversary will take advantage of and why. In response,

we propose a privacy surface which identifies the threat
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actors, their motivations, and capabilities. This landscape

consists of existing threats, techniques to counter them, and a

classification of both threats and techniques. In this paper, we

focus on live privacy threats and only briefly cover historical

threats. This is because live privacy threats can be converted

into historical privacy threats by threat actors logging data.

Different types of live privacy threats can be protected by

the same approaches when converted to historical privacy

threats, whereas the live threats themselves need to be pro-

tected in different ways.

The second issue is that existing privacy preserving tech-

niques tend to be developed in isolation and do not consider

the impact the wider threat landscape has on the imple-

mentation of the privacy preserving technique. For example,

the majority of survey papers focus on specific areas, such

as Location Based Services (LBSs) [1, 2, 3], instead of

considering a wider range of privacy threats. Some look at

privacy [4] or privacy and security [5] in general, but do not

present a broad range of privacy threats.

To address this, the privacy landscape classes identified

in this paper are used to predict the ways in which privacy

preserving techniques will need to be adjusted to consider

other simultaneous privacy threats. This is because the inter-

actions between different privacy threats and techniques may

render the privacy preserving technique for the original threat

ineffective when considering additional privacy threats and

techniques. For example, one highlighted area to consider

is the interaction between different sources of identity (such

as a vehicle’s identity and the identity of devices within the

vehicle) which periodically change that public identity. This

identity change needs to be synchronised to prevent linking

the old to new identity of one source via an unchanged

identity from another source. We also identify a number

other of specific cases that warrant future investigation into

how to protect location privacy when multiple privacy threats

interact. Future work in this area needs to consider the

interactions of privacy preserving techniques, to ensure live

vehicular privacy is preserved.

To summarise, the contributions of this paper are:

1) To propose a privacy surface of connected vehicles to

identify the live privacy threats, threat actors, and the

privacy preserving techniques used to provide privacy.

2) To classify the threats and techniques into common

categories in order to support a generic analysis.

3) To identify potential ways in which privacy threats

interact and may require changes to the privacy pre-

serving technique when considering other privacy

threats and techniques.

The remainder of this paper is structured as follows. The

survey of privacy threats to a vehicle will be presented in

Section II. The threat actors will be identified in Section III

before the survey of privacy preserving techniques is presen-

ted in Section IV. In Section V we will analyse the impact

that privacy preserving techniques have on each other, before

a discussion of our work in Section VI. Section VII will
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Figure 1: Privacy Hierarchy

Figure 2: Heatmap of GPS trajectory collected over two

weeks.

present future work on this topic and this paper concludes

in Section VIII.

II. LOCATION PRIVACY THREATS

Modern vehicles are identifiable by more than just their

appearance and licence plate numbers. This is a result of

their increased complexity and functionality, provided by

new technologies that enable communication with road in-

frastructure and other vehicles, such as Dedicated Short

Range Communications (DSRC). These communication vec-

tors provide possibilities for vehicle identification, and thus

may compromise privacy. If a threat actor is able to obtain a

detailed history of a vehicle’s location it will be capable of

creating an analysis of this data that reveals information the

owner of the vehicle may wish to keep private. One potential

analysis is a heatmap representing the frequency of locations

where the vehicle has been. An example heatmap generated

from data collected over a two week period from the same

person is shown in Figure 2. In this map there are three points

of interest, including their home, workplace, and a local bar,

accompanied by the routes used between them. Linking even

this small series of GPS trajectories to a map, it is possible to

elicit the details of someone’s pattern of life [6].

In this section we identify the various privacy threats

through which the location privacy of a vehicle may be

compromised. In Section IV the privacy preserving tech-

niques that correspond to these threats will be presented. The

2 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3038533, IEEE Access

M. Bradbury et al.: Privacy Challenges with Protecting Live Vehicular Location Context

Figure 3: Some of the identifiable features of vehicle

privacy threats are classified into eight classes: (A) Direct

Access to GNSS Data, (B) Visual Identification, (C) Services,

(D) Internal Vehicle Communication, (E) External Vehicle

Communication, (F) Non-vehicle Communication, (G) Be-

haviour, and (H) Historical Data. Each class has a number

of different techniques that can be used to preserve privacy

that will be discussed in Section IV. As threat identification

is a continuous process, not all live privacy threats may be

present in this categorisation.

A. DIRECT ACCESS TO GNSS DATA

One of the simplest ways in which a vehicle can be tracked

is to attach a Global Navigation Satellite System (GNSS)

sensor (such as GPS) to the outside of a vehicle, along with

a battery and a cellular radio to report the location to a

threat actor. Additional sensors, such as accelerometers can

be included to improve accuracy. These devices are cheap

and easy to obtain [7]. The downside is that a device needs to

be attached to each vehicle that a threat actor wishes to track,

which makes mass vehicle tracking infeasible.

These vehicle tracking devices may be intentionally in-

stalled by some authority. For example, a logistics firm may

wish to track and manage their fleet of vehicles. Even if

unintentional, it is possible that the data captured may be

personal to the driver and privacy sensitive. Similarly, per-

sonal information is available by insurance companies who

give preferential rates to those willing to install a black box

in their vehicle [8].

B. VISUAL IDENTIFICATION

Vehicles have been partially identifiable since their inception

by their colour, shape, manufacturer, and other aspects such

as tyre tread (highlighted in Figure 3). Since the beginning of

the 20th century it has been mandatory to have an identifying

number plate attached to the vehicle. The UK passed the Mo-

tor Car Act 1903 [9, §2(1–2)], making unique licence plates

mandatory in 1904, around the same time some states in the

USA also introduced them. Since then, it has been possible

to identify a vehicle upon inspection of the series of letters

and numbers attached to it. With the advent of Automatic

Number Plate Recognition (ANPR) [10], this identification

was automated and widespread tracking of vehicles became

possible.

ANPR operates by first finding number plates in an image

and processing it to allow optical character recognition to

identify the symbols attached to the vehicle. Due to inex-

pensive image recording equipment and the development of

reliable image processing algorithms, ANPR is now used by

law enforcement throughout the world. It is also used in many

other scenarios, such as on toll roads and bridges, and in car

parks. For example, London has several tracking systems for

the Congestion Charge, the Low Emission Zone, the Dartford

Crossing, as well as several other law enforcement systems

for speeding and other offences [11]. In total, there are over

8500 cameras deployed in the UK which process over 25

million licence plates every day [12].

If a vehicle can be identified at several checkpoints across

the road network, it is possible to build a picture of the

vehicle’s location over time. With more checkpoints in the

road network, a more accurate tracking of the vehicle’s

route can be performed. Furthermore, when a vehicle is

identified at one checkpoint, for example using ANPR, it is

also possible to re-identify the vehicle at a later checkpoint

using only it’s visual characteristics [13], such as its shape

and colour [14], model [15], or a combination of several

features [16, 17].

Another approach that does not rely on images of vehicles

is to use the patterns provided by magnetic induction loops,

which differ based on the shape of a vehicle and the metals

from which it is made [18]. While these systems in general

are less reliable than ANPR, due to the many similarities

of different vehicles, they are more robust to occlusions of

certain parts of the vehicle, such as the number plate.

C. SERVICES

Attaching an external GNSS sensor requires physical access

to the vehicle, but modern vehicles often disclose their loc-

ation directly to LBSs, in order to provide location context

to their requests. For example, the location of a vehicle can

be used to improve the accuracy and speed of searches in a

navigation system, or to provide information regarding local

attractions. Depending on the requirements, the service might

use a single location or trajectory of a single vehicle [19] or

multiple vehicles. Temporal and identity information are also

aspects that will need to be protected [20, 21], however, con-

text linking attacks might be conducted to obtain a consistent

identity [21].

The widespread usage of LBSs has allowed service pro-

viders to gather massive amounts of location information

about where vehicles are and at what time. This information

is often used to provide better services to the vehicles, such

as real time traffic speeds in navigation apps such as Google

Maps or Waze. However, this information can be analysed

to extrapolate travel patterns and traffic analysis [2] such as

an individual’s driving behaviour, hobbies, home and work

locations, and other personal information. The service pro-
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viders are trusted to not abuse this information and to protect

it from other threat actors. Further threats against historical

information will be discussed in Subsection II-H.

D. VEHICLE COMMUNICATION (INSIDE VEHICLE)

Vehicles are equipped with many sensors to report on various

statuses, including the wheel speeds, steering angle, and

suspension movements. The majority of sensors are hard-

wired to an Electronic Control Unit (ECU), as this offers

high reliability and fast communication. ECUs are connected

via a Controller Area Network (CAN) bus (or equivalent),

which can be accessed using a On-Board Diagnostic (OBD)

reader on the OBD port or using vulnerabilities that enable

remote access [22]. Modern vehicles typically have a GNSS

sensor connected to an ECU, meaning that location is usu-

ally available via the CAN bus. Installing an OBD reader

requires internal access to the vehicle, and remote access is

challenging and limited, meaning it would likely be easier for

a threat actor to attach their own external sensor.

Due to lower costs and practical restrictions, some sensors

transmit their readings wirelessly. For example the Tyre

Pressure Monitoring System (TPMS) consists of a sensor

inside each tyre that transmit pressure measurements wire-

lessly. Messages in the TPMS contain a unique identifier that

cannot be changed, and are broadcasted unencrypted [23]

to a range of around 40 metres. This unencrypted broadcast

enables a nearby adversary to eavesdrop the messages and

identify the vehicle. Further, as the identity cannot be altered

without changing the tyres, certain protection schemes (such

as pseudonyms [24]) are unsuitable to protect privacy.

Another wireless vehicular communication system that

uses unique identifiers, and thus are a vector for location

privacy leakage is Remote Keyless Entry (RKE) [25]. When

a button press is required to operate RKE a single sequence

of short-range broadcasts is performed to unlock the vehicle,

which is unlikely to be sufficient to track the vehicle [26].

Passive RKE (PRKE) systems, which unlock the vehicle

when the key is in proximity, rely on a periodically broad-

casted beacon in either the key or the vehicle. While the low

power of these broadcast make them difficult to eavesdrop,

this repeated communication containing the unique identifier

increases the possibility of tracking and is a particular issue

when the beacon is in the key, which travels with the driver

even outside the vehicle.

E. VEHICLE COMMUNICATION (V2X)

While internal vehicle communications can reveal the loca-

tion context of the vehicle unintentionally or through malice,

some of the most likely privacy threats arise when the vehicle

broadcasts its own location to cooperate with other vehicles

or Intelligent Transportation System (ITS) infrastructure.

The cooperative awareness message (CAM) is a European

Telecommunication Standards Institute (ETSI) ITS standard

that is periodically broadcasted by ITS Stations (including

vehicles) [27]. CAMs are mainly used to facilitate vehicular

awareness of vital traffic events by exchanging status inform-
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Figure 4: Vehicle Communication Threats

ation, where the content differs depending on the station

type. For vehicles, the CAM contains the time, location,

speed, heading, time, acceleration and other attributes. The

information transmitted by CAMs are essential for many

safety services in ITS network such as hazardous location

warning, road condition warning, traffic condition awareness,

and collision avoidance [28].

CAMs are sent with a digital signature that allows receiv-

ers to verify the authenticity of the message. They are not

encrypted to minimise the processing time of the messages in

safety critical scenarios, as the processing time is not allowed

to exceed 50 milliseconds to maintain safety [27]. This com-

bination leaks identity information (via the digital signature)

and highly accurate information on where a vehicle is at a

given point in time. By recording multiple CAMs a vehicle’s

route can be tracked. As CAMs are expected to be generated

frequently (between 0.1 and 1 second [27]) this information

has a very high time resolution.

In ITS networks, the applications can be classified into

three groups such as traffic management, user-oriented ser-

vices and safety services. Although ANPR systems are

employed for traffic management, alternatives include bar-

codes, Radio Frequency Identification (RFID), DSRC, and

Bluetooth. Barcode systems are rarely used to track moving

vehicles as they are negatively affected in adverse weather

conditions and, as with ANPR, require line of sight to the

vehicle. Vehicles equipped with an RFID transponder can

communicate with receivers on the roadside, enabling vehicle

tracking and automatic toll payments [29]. In Norway, auto-

PASS requires vehicles to communicate with toll plazas. The

unique identifier broadcasted from vehicles interacting with

autoPASS can be recorded by anyone with appropriate DSRC

equipment.

Safety services have mandatory requirements of bounded

transmission delay and low access delay to keep the highest

level of safety while user-oriented services require broad

bandwidth. The Medium Access Control (MAC) layer has

an important role fulfilling these needs [30]. User-oriented

services are the value-added services, which can provide

road information, advertisements and entertainment during

the travels. One example are Time-Division Multiple Access

(TDMA) based MAC protocols, that divide time into slots

and allocates the slots so no more than one ITS node has

access to send messages in a specific slot. The advantage of

4 VOLUME 4, 2016
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this is that wireless collisions are avoided and the timeliness

of protocols can be guaranteed. However, the slot in which

a vehicle broadcasts acts as an identifier. This means that a

unique TDMA MAC slot will allow a semi-local threat actor

to track the trajectories of vehicles by listening to the wireless

communication channel. This is depicted in Figure 4.

F. NON-VEHICLE COMMUNICATION

It is not just communication from the vehicle that can leak

privacy, but also communication from additional devices and

peripherals within the vehicle. Some examples are shown

in Figure 5, such as when a mobile phone is within range

of a single cell tower, the telecommunication companies are

aware that the phone is within range of that single tower. Mul-

tiple towers can be used to accurately pinpoint the location

of a phone over time [31]. This information is often recorded

and shared with authorities, including the police. This kind

of tracking is applicable to vehicles because cellular devices

are usually within the vehicle (such as mobile phone), but

also because vehicles increasingly ship with cellular radios

to support standards such as eSIM [32].

Many of the location privacy violations that will be presen-

ted require a unique identity to allow tracking a user over

time. The first example of such an identity is the International

Mobile Subscriber Identity (IMSI), which is unique across

all mobile phone users worldwide. IMSI catchers are devices

that can be used to obtain the IMSI of active users. The

different cellular protocols require different approaches to

obtain the IMSI number. Typically, a device is required to

act as a fake base station that has mobile devices connect

to it instead of the real base station, allowing a man-in-the-

middle attack to be performed [33]. This is easy to perform

in 2G/GSM as there is authentication in only one direc-

tion (the phone does not authenticate the cellular network).

Man-in-the-middle attacks are possible on both 3G [34] and

4G/LTE [35]. Eavesdropping attacks against the 4G network

can also allow an attacker to recover the IMSI number of

targets [36]. Other techniques have also been investigated

where IMSI numbers can be obtained over WiFI [37]. To

avoid privacy issues with the ISMI number, Globally Unique

Temporary Identifiers (GUTI) are allocated and used in most

scenarios in an attempt to provide identity privacy. However,

the GUTI values do not change frequently enough across a

city area to obfuscate the user’s identity. The work in [38,

Table 1] concluded that the GUTI tended to remain the same

over the 3 days a device was monitored in a city.

IMSI leakage is also likely to occur as a result of users

bringing their mobile phones into the vehicle. Therefore,

leaking a uniquely identifying number for users will also leak

a uniquely identifying number for the vehicle the user is in.

The downside is that location context is only leaked via the

proxy of signal strength. An adversary would need multiple

IMSI catchers, or a mobile IMSI catcher in order to track a

vehicle over a long distance.

An alternative to using IMSI numbers to track users is

to instead take advantage of vulnerabilities in the 4G/LTE

Radio Resource Control (RRC) protocol [38]. As the user

equipment (i.e., a phone) does not verify (intentionally for

one case, and unintentionally — a bug — for the other) that

a request for information comes from a telecommunications

operator and because the request and response are unencryp-

ted, a threat actor can trigger these messages to obtain a user’s

location. The responses can contain the radio tower the phone

is connected or GPS coordinates if supported.

Bluetooth devices use a short range wireless link to com-

municate with each other. Examples of typical devices in-

clude MP3 players, wireless headphones, and mobile phones.

An example of an application of mobile phones using

Bluetooth is the rSAP (remote SIM access protocol), which

allows a vehicle to access the SIM card of a phone to

make calls. However, Bluetooth devices perform a periodic

broadcast of an advertisement packet in order to inform

nearby devices of their presence. Privacy is leaked by the

inclusion of the device’s MAC address in the advertisement

packets [39]. By recording where and when Bluetooth MAC

addresses have been detected, the route a device has taken

can be calculated.

Cars are increasingly being equipped with IEEE 802.11

WiFi hotspots that devices within the vehicle can connect

to. These hotspots are intended to offer internet connectivity

via a cellular radio, or to allow devices to control certain

aspects of the vehicle (such as the infotainment system). To

enable connectivity WiFi, hotspots broadcast beacon frames

which contain the Service Set Identifier (SSID) among other

information important for devices looking to connect to

the hotspot. The SSID gives the network a name and this

leads to identity leakage. Similar to Bluetooth, both the

hotspot and IEEE 802.11 devices will broadcast their MAC

addresses [40], the channel the hotspot communicates on is

another dimension that can be used to identify a target in

more detail, and there are a variety of additional pieces of

information that can be used to fingerprint an IEEE 802.11

device [41].

In certain cases it is not necessary for the content of

VOLUME 4, 2016 5



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3038533, IEEE Access

M. Bradbury et al.: Privacy Challenges with Protecting Live Vehicular Location Context

the message to be leaked for an adversary to be able to

trace a target. For example, in the case of Wireless Sensor

Networks (WSNs) [42] the direction from which a message

was received (a kind of context information) is sufficient for

an attacker to trace back to a valuable asset. This direction

context could be obtained using directional antennas, but it

is more likely that multiple omni-directional antennas will be

used instead. An attacker just receiving a CAM or DENM

leaks the time and location of a vehicle. The velocity can

be calculated by the difference in distance of subsequent

messages, and those subsequent messages can be linked by

checking that aspects of the calculated values are sensible.

Examples of these checks include position change and velo-

city change.

G. BEHAVIOURAL DATA

Different drivers behave differently and have different styles

when interacting with the controls of the vehicle [43]. Some

drivers may typically brake more sharply than others at traffic

lights, for example, and some drivers may maintain a consist-

ent speed whereas others may fluctuate regularly. These dif-

ferences can be used to categorise their driving style [44, 45]

and to assess skill of a driver [46], but the personal driving

behaviours can also be used to identify the driver behind

the wheel [43, 47], or if there is a change of driver [48].

Using twelve signals from the CAN, including steering wheel

angle, velocity, pedal positions, and torque, Hallac et al. [49]

were able to determine the driver from data collected when a

vehicle was driven around single corners.

It is possible to measure the driving behaviours visually

and using RADAR, but velocity, road position, and accelera-

tions can be observed only coarsely and intermittently. An al-

ternative may be to use the accelerometers and other sensors

in smartphones, which some apps may have permission to

access. While GNSS provides the vehicle’s location directly

to apps, privacy conscious users may disable localisation

while giving access to other sensors that do not present

obvious privacy issues. For example, in [50] a magnetometer

is used to detect changes in the driving angle and then map

those changes onto a potential route.

H. HISTORICAL DATA

Organisations may wish to legitimately collect location in-

formation about a user after being given affirmative consent

to do so. This data could be used for a wide range of purposes.

For example, Google gathers the live location of users to

provide a number of features, such as live traffic densities

and estimated journey times, how busy a venue is, and many

others. Other services such as recharging vehicles could po-

tentially reveal privacy information due to the way the service

is used over a period of time [51]. The historical data used to

provide these services will need to reside in a database. The

information in this database could potentially be leaked to a

threat actor who was not expected to be allowed to view the

database [52]. This may be through vulnerabilities, such as

SQL injections, insider attacks, or other attacks.

All the live location privacy threats previously mentioned

could potentially have data that leaks privacy stored in a

database. This transforms the threat from gathering live

information to gathering historical information. While this

reduces the impact duration of the threat, it is possible to gain

access to a database remotely, and the likelihood increases for

threats with difficult and long setups. For example, whereas

ANPR tracking requires a lengthy setup of cameras, network-

ing, and software, accessing an ANPR database with loca-

tions can be remote and is more likely. In general, the number

of vehicles impacted also increases, as a single database is

likely to contain information about many vehicles.

Data summaries might be published with the intention to

provide useful information but protect the privacy of specific

individuals. However, it is important to ensure that privacy

about a population or organisation is also not leaked. One

example where this was not the case, is when the fitness

tracking app Strava published heat maps of user activity and

unintentionally revealed the physical layout of military bases

around the world [53]. A privacy radius can be used, such

that locations within a radius (typically centred on a user’s

home or workplace) are not disclosed. However, these are

imperfect with overlapping privacy zones providing insight

into their origins as well as the risk they may be part of a

database leak.

If an adversary gains access to a historical database of a

vehicle’s location information, then it is not just past move-

ment that is revealed but also potential future movement.

There is a large body of work on predicting the location of

a vehicle at a time in the future. Primarily this is for traffic

flow prediction, and can be performed using Autoregress-

ive Integrated Moving Average (ARIMA) models [54] or

machine learning approaches [55]. While this may not be a

direct privacy concern, it is likely the same approaches work

for predicting an individuals movements. When combined

with additional data, such as vehicle data [56] or geospatial

information [57], location and destination prediction of indi-

viduals can be achieved with higher accuracy.

I. SUMMARY

In summary, there are many privacy threats against a vehicle,

some of which are from devices within the vehicle. Table 1

presents a summary of the identified threats and includes

the presence the attacker requires to take advantage of that

privacy threat. This summary includes the number of vehicles

impacted by the privacy threat and the attacker’s presence as

defined in Table 2. The attacker’s presence will be elaborated

on in Section III. Note that a Database Leak is shown separ-

ately as any of the previous threats could be transformed into

an attack on historical data by storing it in a database.

III. THREAT ACTORS

In order to properly understand how a privacy threat will

be exploited, it is necessary to understand the threat actor

performing the exploitation. There exist multiple actors who

wish to violate the location privacy of a vehicle. These actors
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Name Class
# Vehicles
Impacted

Presence
Required

Physically Attached
Sensor

TA Single Local

Fleet Management and
Black Boxes

TA Single Remote

Smartphone Sensor
Data (Permission —
GNSS)

TA Single Remote

ANPR Tracking TB Many Semi-Local

Tracking via Visual
Features

TB Many Semi-Local

Location Based
Services

TC Some Remote

CAN Bus Access TD Single (Varies)

Vehicular Sensor
Network Identifier

TD Single Semi-Local

PRKE TD Single Semi-Local

Signal Direction
Context

TD /
TE / TF

Single Semi-Local

TDMA MAC Slots TE Single Semi-Local

CAM/DENM Identifier TE Single Semi-Local

Triangulation (e.g., via
Cell Tower)

TF Many Semi-Local

ISMI Catchers TF Many Semi-Local

Bluetooth Identifier TF Single Semi-Local

WiFi Identifier TF Single Semi-Local

Driving Style TG Single Semi-Local

Smartphone Sensor
Data (Permissionless
— Magnetometer)

TG Single Remote

Database Leak TH Many Remote

Table 1: Privacy Threat Summary

Impact Low Medium High

Vehicles
Impacted

Single: A
single vehicle
is impacted

Some: A
small number
of vehicles
are impacted

Many: A
large number
of vehicles
are impacted

Threat Actor
Presence

Local Semi-local Remote

Table 2: Ranking dimensions used to measure location pri-

vacy threats

each have different capabilities, resources, and expertise,

which changes the ways they are able to obtain location

information about vehicles. These actors also have different

intents, for some threat actors the usage of this data will have

a malicious purpose, others will be interested in gathering

data to provide services, while others aim to benefit all road

users. This section will analyse the threat actors who wish to

violate location privacy and will consider the desire to protect

against them.

To perform this analysis we identify four key attributes that

indicate what actions threat actors can perpetrate: (i) capab-

ilities, (ii) equipment, (iii) intent, and (iv) presence. Where

capabilities indicates the knowledge, skills and experience

the threat actor has, equipment specifies the resources avail-

able to the threat actor, intent is for what purpose the threat

actor is violating location privacy, and presence indicates the

location of the adversary.

A. THREAT ACTOR CAPABILITY

The knowledge and skills that the threat actor has will spe-

cify the threats that the threat actor can take advantage of.

Typically less capable threat actors will be able to perpetrate

fewer privacy violations. However, more proficient threat

actors may develop highly technical privacy attacks that with

the intent of providing them to less capable threat actors

to deploy. The capability level will also link with the setup

time before privacy can be violated, with a higher capability

leading to a lower setup time.

Layman→ Proficient→ Expert→ Multiple Experts

• Layman: Basic knowledge and low technical profi-

ciency. Uses existing tools to exploit vulnerabilities.

• Proficient: Able to develop new tools to exploit vulner-

abilities based on having experiences in the past.

• Expert: Extensive knowledge in the system domain.

• Multiple Experts: Multiple individuals with expert

knowledge of the system. Will have insider knowledge

that has not been made public.

B. THREAT ACTOR RESOURCES

The equipment that a threat actor has access to will de-

termine which threats it is capable of taking advantage.

In some of the privacy threats discussed so far, such as

tracking via Bluetooth and WiFi, simple and cheap off-the-

shelf equipment will be sufficient. Other threats will require

standard equipment such as cameras to perform ANPR track-

ing. Whereas, specialised equipment would be necessary

to track CAM/DENM identifiers sent over IEEE 802.11p,

and bespoke equipment needed to deploy ISMI Catchers.

Alternatively, it may be possible to use standard equipment

such as Software Defined Radios (SDRs) instead of the

specialised or bespoke equipment. For example, a threat actor

could implement an IEEE 802.11p radio using an SDR rather

than purchasing IEEE 802.11p equipment. The downside to

this is that the threat actor would require a greater technical

knowledge and the setup time would be higher.

Off-the-shelf→ Standard→ Specialised→ Bespoke→

Multiple Bespoke

• Off-the-shelf: Access to reasonably priced off-the-shelf

equipment. This equipment will be limited in its capab-

ilities.

• Standard: Access to expensive widely available off-

the-shelf equipment.

• Specialised: Access to expensive specialised equip-

ment.

• Bespoke: Able to purchase or design custom equipment,

but limited to small deployments.
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Threat Actor Motivations Capability Opportunity Impact Resources

Amateur (Cracker)
Curiosity, Self-
actualisation,
Passion

Layman
Open access
knowledge (Low)

Unlinkable data,
unidentified
vehicle tracking

Low financial,
Off-the-shelf
equipment

Unorganised Crime
(Hacktivist)

Financial gain,
Vehicle theft,
Passion

Proficient
Restricted
knowledge
(Medium)

Single identified
vehicle tracking

Standard
equipment

Organised Crime
(Cyber Criminal)

Financial Gain,
Ideology

Expert

Sensitive
knowledge
(Medium or
High)

Single or
multiple
identified vehicle
tracking

Specialised
Equipment

Organised
Corporation

Financial Gain,
build services
based off data,
Ideology

Multiple Experts
Sensitive
knowledge
(High)

Multiple
identified
vehicles tracking

High financial,
large bespoke
deployments

Government

Improve
infrastructure,
track criminals,
Political

Multiple Experts
Critical
knowledge
(Critical)

Single-multiple
identified
vehicles and
traffic tracking

Nationwide
bespoke
deployments

Table 3: Example Threat Actors

• Multiple Bespoke: Able to purchase or design multiple

pieces of custom equipment and deploy in bulk.

C. THREAT ACTOR INTENT

It is important to understand the intent of a threat actor.

Different threat actors intend to collect data that violates the

privacy of a vehicle for different reasons. The typical intent

that is protected against is malicious, where the threat actor

intends to violate privacy in order to cause harm to the vehicle

or person privacy is violated against. However, in other cases

the threat actor may not intend to violate privacy of users,

but may unintentionally reveal it to many people. Common

examples include government officials leaving unencrypted

disks on public transport. It may also be the case that privacy

violating information is collected to improve the lives of

people the data is gathered about. Privacy preserving tech-

niques will be different when considering different intends of

the threat actor. Additional techniques will also be available

to benign and unintentional threat actors to protect privacy.

Benign→ Unintentional→ Malicious

• Benign: A threat actor that collects information that

is kept secure and private. The information is used for

good purposes, such as providing a service, or improv-

ing the transportation network.

• Unintentional: A threat actor that collects information

and intends to keep it secure and private, but fails to

do so. This may be due to poor security leading to

data breaches, or released datasets not being properly

anonymised.

• Malicious: A threat actor that intentionally obtains in-

formation that aims to use it for nefarious purposes. This

may involve releasing or selling unanonymised data.

D. THREAT ACTOR PRESENCE

The presence of the threat actor is important in understanding

the threats it can perpetrate. A local threat actor will be cap-

able of perpetrating more privacy violations, but this comes

at an increased difficulty and risk for the threat actor (such as

capture by authorities). Whereas remotely violating privacy

is limited in the privacy violations that can be performed, but

comes with a lower risk to the threat actor. There is also an

impact regrading the quantity of vehicles that a threat actor

can violate privacy, as semi-local and remote threat actors

will likely be able to impact more vehicles’ privacy.

Internal→ Local→ Semi-Local→ Remote

• Internal presence is when the threat actor is able to

access the inside of the vehicle. This includes physical

access to components within the vehicle’s body, but also

if malware is deployed to internal components remotely.

• Local presence is when the threat actor is physically

located outside of the vehicle (typically within several

meters of the vehicle). This threat actor is able to attach

devices to the outside of the vehicle.

• Semi-Local presence is when the threat actor is phys-

ically nearby the vehicle. They may be out of sight of

the vehicle, but still in wireless range. This threat actor

may be capable of eavesdropping or visually observing

vehicles.

• Remote presence is when a threat actor only has access

to vehicle information via the internet. This threat actor

is incapable of observing the vehicle locally, but may

gain control of devices within the vehicle in order to

obtain Internal presence to observe events.

E. EXAMPLE THREAT ACTORS

A table of example threat actors is shown in Table 3 which

is created based on the works in [58, 59, 60]. These threat

8 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3038533, IEEE Access

M. Bradbury et al.: Privacy Challenges with Protecting Live Vehicular Location Context

actors are specific examples of different combinations of

intent, capabilities, and resources, but also includes details

specifying the threat actor’s: motivations (why does it want

to violate location privacy), opportunity (how aware of situ-

ations in which privacy can be violated), and the impact it

can have on location privacy. It is important to consider who

is violating privacy, because there will be limitations to the

privacy a technique can achieve based on the type of threat

actor that is violating privacy.

IV. PRIVACY PRESERVING TECHNIQUES

With an understanding of the threats to vehicular location

privacy and the threat actors that perpetrate the threats, the

techniques used to provide privacy can be examined. There

has been much work performed in developing techniques to

protect location privacy. This section will examine privacy

protection techniques and classify them into five categories:

(A) Signal Jamming, (B) Perturbing Identity, (C) Perturbing

Data, (D) Changing Communication Patterns, and (E) Chan-

ging Behaviour. These categories are intentionally broad due

to the wide range of privacy threats being considered. More

specific categorisations have been considered in other work

that focuses on specific location privacy threats (such as

in [1]), but are not suitable for the broad range of threats

being considered in this work.

A. JAM SIGNAL

To protect against certain types of threat a vehicle may seek to

jam signals being broadcasted. For example, if a threat actor

has attached a GNSS sensor to the vehicle, then jamming the

GNSS signal would prevent location logging. The downsides

are that (i) the vehicle would also not be aware of its location

via GNSS, (ii) an additional signal is present that a threat

actor could possibly track, and (iii) GNSS jamming is illegal

in many parts of the world (e.g., Title 47 U.S.C §§ 301,

302(b) and 333 for the USA and Section 68 of the Wireless

Telegraphy Act 2006 for the UK). For many threats, jamming

signals would be unsuitable to provide location privacy be-

cause it denies availability.

B. PERTURBING IDENTITY

To protect the identity, one option is to encrypt the uniquely

identifying number broadcasted in messages. For example,

in a TPMS encrypting the per sensor identifier while leaving

the rest of the message unencrypted protects the identity and

facilitates issue diagnosis by humans due to the unencrypted

contents [61]. Each time a message is broadcast a different

encrypted value would be sent, essentially making it appear

as if a random identifier was being used. This means that the

message contents can still be used by existing tools, meaning

both backwards compatibility and privacy are provided. To

obtain a stronger encryption the authors of [61] propose the

encrypted identifier be lengthened from 32 bit to 64 bit, but

this would break backwards compatibility.

This technique works for TPMS because the sender and

receiver are only a single communication hop away from

each other, and hardware deployers can ensure the vehicle

is aware of what TPMS identifiers to expect and how they

will be encrypted. For other systems that do not have such a

tight integration, this approach of encrypting the identifying

information such that it is different with each broadcast may

not be feasible.

To enable vehicle tracking, having a consistent identity

that can be observed at different locations and times al-

lows a threat actor to link individual observations into a

more comprehensive dataset of the route taken. One of the

key techniques to protect location privacy of vehicles is

the use of temporary pseudonyms that change frequently.

By changing pseudonyms the threat actor is less able to

link between individual observations [62]. Such a technique

is useful for a variety of communication protocols, such

as V2X, WiFi, Bluetooth and others. How the pseudonym

change is managed is important, as other vehicles need to

be quickly updated when identities are revoked [63] while

minimising the likelihood of an adversary being able to link

pseudonyms [64].

Pseudonyms can be used in different circumstances. For

example, a benign threat actor may be gathering data (which

they have been given permission to do so) and anonymising

the data by generating pseudonyms for users themselves.

Alternatively, the vehicles themselves may be periodically

changing the pseudonyms they broadcast to other vehicles

and road-side infrastructure to protect against data gathering

by malicious threat actors.

A recent innovation that is currently being experimented

with are digital number plates [65]. They use an e-ink display

to show the vehicle’s registration number and open the pos-

sibility to show alerts that change along with other messages.

Because the number plate displayed is customisable, the

registration number could be a pseudonym that is period-

ically changed. As this technique would then be similar to

pseudonyms used in wireless broadcast techniques, unlinking

strategies would be needed to ensure the old pseudonym

could not be linked to the new pseudonym. An alternate

approach could be to use adversarial machine learning. As

the display on the number plate is customisable, it may

be possible to display a pattern that prevents the optical

character recognition component of ANPR from being able

to discern the characters in the number plate [66].

Identity anonymity-based approaches are also used to pre-

serve the location privacy of LBS users. This is necessary

because LBS providers are assumed to correctly process and

respond to requests, but they may attempt to disclose identity

of a user [67]. k-anonymity [68] is one of the most popular

anonymity-based approaches, where it focuses on controlling

the release of quasi-identifiers of users in a dataset, where

quasi-identifiers are a combination of characteristics that

enable linking to a user. The technique requires that the each

quasi-identifier of an individual must be indistinguishable

from k − 1 other individuals, where k > 1.

In the context of protecting vehicular location privacy

within LBSs, a linking attack is successful if the user’s
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location is revealed by the queries sent to a LBS. Anonymity

can be achieved by cloaking a location area, such as by New

Casper [69], Prive [70], and PrivacyGrid [71] which provide

k-anonymity by cloaking an area that contains at least k users

at the time of a query submission. Other approaches involve

using dummy locations to mask a user’s real location [72], or

allows user to set a minimum level of anonymity desired and

the maximum temporal/spatial tolerance that they are willing

to accept [67].

However, it can be difficult to achieve k-anonymity for

LBS users in practice. The number of k-vehicles may be

smaller in sparse traffic and a large cloaked location area may

be impractical for many LBSs. Furthermore, a shortcoming

of k-anonymity is that if an adversary has sufficient back-

ground information it may be capable of distinguishing an

individual from the k others [73].

There are limitations to perturbing identity because certain

aspects of the vehicle are immutable (or sufficiently difficult

to change). For example, the colour and shape of a vehicle

can contribute to uniquely identifying it and both would

be difficult to change. Also as digital licence plates are in

their infancy, nearly all vehicles will be fitted with standard

number plates which require time and effort to change. The

frequency that these kinds of identity can be changed is lower

than other aspects of identity (such as wirelessly broadcast

pseudonyms), which means they can be used to link higher

rate identity change techniques.

There can also be limitation against specific privacy

threats. For example, using temporary pseudonyms to prevent

tracking of WiFi devices is insufficient as there are a number

of implicit characteristics of using WiFi devices (network

destinations, advertised SSIDs, IEEE 802.11 options, and

sizes of broadcast packets) that allows a threat actor to be

able to potentially identify a device [41]. This means that

multiple privacy preserving techniques will need to be used

for a subset of privacy threats.

C. PERTURBING DATA

Privacy of individuals can be also protected by perturbing

the records in a database. The existing data perturbation

techniques include additive noise, aggregation, swapping re-

cords, or generating synthetic data based on statistics of the

original data [74]. Data perturbation techniques can be simple

and cost-efficient compared to other Privacy Preserving Data

Mining techniques [75]. A common classification of data

perturbation techniques are input and output perturbation.

Input perturbation techniques adjust the data provided to a

service or function; and output perturbation performs the

computation on the original data, but the result is provided

with added noise [76, 77].

Among these techniques, Differential Privacy (DP) is use-

ful due to the formal quantification of the provided pri-

vacy. Centralised Differential Privacy (CDP) and Local Dif-

ferential Privacy (LDP) are the two main models used to

achieve DP, however, there are emerging studies on hybrid

DP models [78]. CDP performs output perturbation where

the original data is aggregated in a trusted curator and the

amount of perturbation is calibrated according to the query

outputs. The aim of CDP is to ensure query outputs are nearly

identical with addition or removal of a single record in a

database. Input perturbation techniques such as Randomised

Response [79] can be used in LDP. In LDP, data owners

perturb their data before transmitting it to other parties. Com-

putation and analysis is then run on the perturbed data which

mean there is no need for a trusted curator when applying

LDP. Therefore, LDP provides stronger privacy guarantee

than CDP but results in greater noise [80].

The notion of geo-indistinguishability [81] is proposed to

preserve the exact locations of individuals in a radius r with

the level of privacy preserving depending on r and a distance-

based probabilistic noise is introduced to the location data.

However, due to the distance based sensitivity measurement

and sparsity of location dataset, it might be needed to add

a large amount of noise to ensure DP. Cormode et al. [82]

applied a hierarchical tree structure to decompose geometric

areas into smaller areas. Herewith, they could reduce the

amount of needed noise. Ou et al. [83] claimed the privacy

model should not only consider the privacy of a single user of

a LBS, but should also consider location correlation among

multiple users. The authors proposed a model to quantify

location correlation of two users using a hidden Markov

model and protect the multi-user location correlation via a

differentially private trajectory release mechanism. DP tech-

niques promise a rigorous level of privacy, however, there

are limited applications that have adopted DP in practise.

Some examples where DP has been proposed to be used

include: scheduling the recharging of electronic vehicles [84]

where the location of the vehicles are perturbed, vehicle

platooning [85], and streaming data of multiple vehicles to

Edge services [86].

D. CHANGING COMMUNICATION PATTERNS

As the MAC time slot assignment can be linked to the identity

of a vehicle, if a vehicle changes its pseudonym then the

MAC time slot remaining the same would allow a threat

actor to link the old and new pseudonym. The work in [87]

synchronises the change in MAC time slot and pseudonym to

prevent the attacker from performing this linking.

To prevent a threat actor from gaining information, one

option is for the vehicle and the devices to cease broadcasting

for sufficient time to reduce the linkability of its location

before it stopped broadcasting and the location after it starts

broadcasting again. In most situations this is undesirable

as it limits the availability of the services being provided,

which could potentially lead to safety issues. It would also

be unacceptable to users to cut off certain services whilst

they are in use (e.g., during a call). However, there are some

situations where staying silent does not lead to a significant

safety decrease. For example, CAM pseudonym schemes

rely on a silent period after changing pseudonyms in a

large group to prevent linkability between the old and new

pseudonyms [62]. Without the silent period a threat actor
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Class Name Privacy Protection Feasibility Cost

PA Jam Signal
Denies access to GNSS sensor,
or a communication link.

Low feasibility. Jamming is
illegal in many places. Users
will still want services.

Denies availability to services that are
jammed.

PB

Encrypt Unique
Identifier

Prevent identity leakage.
Useful in specific
circumstances, but infeasible
in general.

Computational and communication
overhead.

Temporary
Pseudonyms

Decorrelates identity of
vehicle at specific time and
location

High. Useful to many different
privacy threats.

Computation and communication in
obtaining pseudonyms and handling
identity change. Safety costs in some
applications (due to required silent period).

k-anonymity

Group k data of individuals
into a range to make each
individual indistinguishable
from k − 1 others.

High. Can be used to group
LBS users

Challenges when data has
high-dimensionality, plus vulnerabilities to
composition and background knowledge
attacks.

PC

Differential
Privacy

Ensures the outcome of any
analysis is not significantly
affected by the removal or
addition of a single record by
perturbing data in a controlled
manner.

Useful for providing a strong
privacy guarantee but can be
difficult to apply to real-life
applications.

Introduces a trade off between privacy and
efficacy (e.g. Privacy and Safety, Privacy
and Efficiency).

Generative
Adversarial
Networks

Generates new datasets with
similar patterns based on large
anonymised datasets.

High in general.
Computationally expensive
and still relies on a large
quantity of real-world data.

Generated data is not real-world data and
may not share all its detail and properties,
meaning applications or models using it
may be less successful. Privacy is not
guaranteed and synthetic data may disclose
information about participants in the
training set.

PD

Vary Transmit
Time

Decorrelate the time at which
a message was sent.

High in general. Low for
applications where low latency
is important.

Increase in delivery latency.

Vary Transmit
Power

Decorrelate the location and
direction from which a
message is sent.

High.
Decreased range in which other vehicles
can receive messages.

Cease
Broadcasting

By not broadcasting a signal is
not available for a threat actor
to track.

Low in general, as this denies
availability to the services
provided. In specific use cases
this may applicable.

Denies service availability.

PE
Change route
taken

Instantaneous position leaked,
obfuscation over long-term
history.

Limited by opportunities to
drive in different ways (e.g.,
by road network layout and
network degree).

Increased cost to driver (fuel, mental effort
- thinking of new routes).

Table 4: Privacy Provision Techniques Summary

would be able to link the CAM pseudonyms.

Another approach to providing privacy in vehicular ad-

hoc networks (VANETs) is to perturb packet routing. To

protected the location privacy of a receiver, in [88] a packet is

sent to a social spot which vehicles frequently visit instead of

being forwarded directly to the target. When the target arrives

at the social spot they are then able to collect the message

without the sender knowing where the target was.

The Received Signal Strength Indicator (RSSI) indicates

how strong a wireless signal is while a message is being

received. Based on this value the distance of the vehicle can

be estimated [89]. By varying the transmit power of DSRC

the accuracy of the localisation of the vehicle can be reduced.

To resolve the issues with the way Bluetooth devices leak

identity information that facilitate tracking, in the Bluetooth

4.2 standard a new feature called Bluetooth LE Privacy was

introduced. The aim of this technology is to randomise the

MAC address used to advertise the device [90, 91]. Once

devices are paired they will both possess an Identity Resol-

ution Key (IRK) which allows translation of the randomised

MAC address into the real MAC address. This way devices

can connect to each other and know if identity of the connec-

ted device, but observers see MAC addresses that appear to

randomly change at a rate set by the manufacturers.

It is important that manufacturers provide a way to disable

backwards compatibility with the old advertising technique,

because if it and Bluetooth LE Privacy are both enabled then

no privacy is provided. For example, in 2016 a report into

fitness tracker privacy found that all devices except one of

those investigated leaked persistent MAC addresses by not

using Bluetooth LE Privacy [92].

For WiFi additional perturbations need to be made as it can

be insufficient to just change pseudonyms [41]. Additional

aspects of using WiFi also need to be varied, including:
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network destinations, SSID probes, broadcast packet sizes

and MAC protocol fields.

In order to track vehicles a correlation often needs to be

made between where and when the vehicle was detected. In

order to prevent correlation, messages can be delayed and

reordered [93]. However, this has limited uses in a vehicular

context, as many message will be safety critical and therefore

need to have minimal delay.

Rather than delaying and reordering messages, if possible

the messages could cease broadcasting. This technique would

only be feasible to be used to protect certain types of privacy

threats. For example, in PRKE systems, the key does not need

to inform the car to unlock the doors when the driver is still in

the car or while the car is moving. The key could detect these

and similar scenarios and cease broadcasting the beacon [94]

to provide privacy.

E. BEHAVIOUR CHANGE

A vehicle can be tracked more easily if it takes the same route

each day, compared to when its route varies. In particular,

it is possible to use the same static sensors and cameras to

track the vehicle when the same route is taken. One way

to increase privacy, therefore, is to vary the route taken by

a vehicle each day. Ideally, this would mean changing the

end destination and the roads taken to get there. However,

commuters typically travel to a single destination, meaning

the vehicle is only able to vary the route taken. In this way,

the vehicle is seen by different trackers and some uncertainty

is introduced to its whereabouts and/or destination. However,

with networked or centralised identification and tracking over

a sufficiently large area, altering routes taken each day will

likely be ineffective in providing privacy.

F. OPTIONS AVAILABLE TO A BENIGN THREAT ACTOR

To a threat actor that has gathered location information data

for a non-malicious purpose there are additional techniques

to protect privacy that those organisations can take. It may

be important for them to provide this protection as there may

be financial (e.g., fines) or reputation repercussions that the

organisation wishes to avoid.

One of the simplest techniques to protect privacy is to

delete the gathered information. For example, Transport for

London is only authorised to keep ANPR tracking data for up

to 28 days and the London Police are allowed to keep it for a

maximum of 2 years [11]. By deleting the data it will not be

a resource that another threat actor could attempt to obtain.

An alternate to differential privacy may be to use Generat-

ive Adversarial Networks (GANs) [95]. GANs can be trained

on the anonymised location traces stored in a database, and

then be used to generate a new dataset with similar patterns to

the datasets it was trained on. This could potentially allow a

dataset to be released to the public (or sold to another entity)

whilst protecting the privacy of the users whose location data

was used to generate the new dataset. This technique would

only be applicable to benign threat actors.

G. SUMMARY

There are many options to protect location privacy threats

which are summarised in Table 4. However, to protect loca-

tion privacy a trade-off often needs to be made. For example,

when changing pseudonyms used in CAM a silent period

is needed to decorrelate the previous identity of a vehicle

from the subsequent identity. This silent period means that

some safety is traded for the proper functioning of the privacy

preserving technique. It is important to understand what users

are giving up in order for privacy to be provided. In some

cases the cost may be too high compared to the privacy

gained.

V. ANALYSIS

The techniques presented in Section IV mostly focus on

individual issues, with the exception being MAC slots and

pseudonyms in [87]. Therefore, in the next section we ana-

lyse the interactions between privacy preserving techniques.

The focus of this analysis is on the impact of applying a

new privacy preserving technique while another technique

is already being used to protect against a different privacy

threat. Furthermore, when determining how to preserve pri-

vacy it is useful to understand how difficult it is for a threat

actor to exploit a privacy threat. So, in Subsection V-B we

classify the threats in two dimensions, namely directness

and timeliness. This classification is used to understand what

kinds of threats will be carried out by different threat actors

and the feasibility of them exploiting these privacy threats

due to their resources and capabilities.

A. IMPACT OF TECHNIQUE INTERACTION

Considering privacy preserving solutions independently

without considering their interactions leads to ways in which

live location privacy is not protected. For example, when

a vehicle changes its pseudonym in broadcasted CAMs,

unless all the other techniques that also include a broadcasted

identity change that identity simultaneously no privacy will

be provided. This is because an adversary will be capable of

linking the old CAM identity to the new CAM identity via

the other sources of identity within the vehicle. An example

of this is shown in Figure 6 with a time period in the centre

where an attacker can link pseudonyms. This is problematic

for vehicles because there are many devices present in the

vehicle that it may not have authority over to manage which

pseudonyms are used to certain points, or how other privacy

preservation techniques work. For example, techniques such

as [96] which provides location privacy in cellular networks

using pseudonyms would need to collaborate with a vehicle

to schedule pseudonym changes. Such scheduling may be

impossible, as [96] requires a cell phone be in the process

of switching towers, which may not occur when a vehicle in-

tends to change pseudonym (such as at an intersection [24]).

To understand how threats and techniques relate, Figure 7

shows a mapping between the class of threats and class of

solutions that can be used to provide location privacy for that

threat. This mapping has been created by first classifying
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Figure 7: Mapping of Location Privacy Threat Classes to

Privacy Preserving Technique Classes

privacy threats in Section II, classifying privacy techniques

in Section IV, and then observing the class of techniques that

can be used to protect against threats in a specific class.

Using this mapping between threats and techniques, a

matrix of privacy threat interactions is presented in Figure 8

which is generated from Methodology 11. It shows how the

privacy preserving technique for the threat on the left may

need to be changed when the privacy threat on the top is

being considered. For some threats multiple aspects of the

privacy techniques need to be considered (two triangles of

different colours), but for others the entry is empty because

the solution interaction either does not interact or there are no

overlapping ways to protect privacy, and therefore changes

do not need to be made to the privacy preserving technique.

This interaction matrix is intended to be updated as new tech-

niques are developed, or new privacy threats are identified.

The interaction matrix in Figure 8 highlights that privacy

preserving techniques that previously used only one kind

1Figure 8 generation code available at: https://github.com/MBradbury/
vehicle-privacy-analysis

Methodology 1 Technique Interaction

⊲ What changes in the provision of privacy against

threat1 might need to be made when also protecting

against threat2?

1: function COMBINE(threat1, threat2)

⊲ Get the set of techniques used to protect against these

two specific threats

2: technique
1
← TECHNIQUE(threat1)

3: technique
2
← TECHNIQUE(threat2)

4: if threat1 = threat2 then

5: return technique
1

⊲ Which techniques are used by both threats?

6: comb← technique
1
∪ technique

2

⊲ The threat class the specific threats are in

7: threatcls1 ← THREATCLASS(threat1)
8: threatcls2 ← THREATCLASS(threat2)

⊲ The techniques used to protect a threat class

9: threattech1 ← THREATTECHNIQUES(threatcls1)
10: threattech2 ← THREATTECHNIQUES(threatcls2)

⊲ Which techniques are used by threattech2?

11: comb← comb ∪ threattech2
⊲ Only consider techniques able to protect against

threat1
12: comb← comb ∩ threattech1
13: return comb

of protection may need to use new kinds of techniques

when considering new threat combinations. For example,

when broadcasting over WiFi, Bluetooth or DSRC (e.g.,

IEEE 802.11p) the device’s identity needs to periodically be

changed. But when considering threat actors who are ana-

lysing the directional context of signals, the transmit power

or transmit time needs to also be varied to protect location

privacy.

Similar considerations are need when privacy preserving

techniques of different kinds of threats interact. For example

in LBSs when moving from one area to another the vehicle’s

LBS queries will be mixed with a different set of vehicles,
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Figure 8: Threat interaction matrix showing possible ways in which privacy preserving techniques for privacy threats on the

left may need to be adjusted to consider privacy threats on top.

because of this the vehicle should change its identity (which

should lead to other devices in the vehicle changing their

identities) to prevent linking between the two different areas.

Alternatively as indicated by Figure 8 the contents of V2X

messages may need to change to protect privacy (such as the

included location). However, due to the functional constraints

on the accuracy of these messages (i.e., to ensure safety),

protecting privacy in this manner may be infeasible. This is

because the broadcasted location needs to be highly accurate

in order for other vehicles to make reliable decisions about

actions to maintain safety.

Therefore, there is a need to understand how multiple

privacy threats and the techniques to protect against those

threats will interact in order to design privacy preserving

techniques which continue to provide privacy under this

interaction. It is also necessary to understand the impact of

functional requirements and how there may be a trade-off

between these requirements and the level of privacy that can

be provided.

B. THREATS CLASSIFICATION

Thus far threats have been allocated to classes based on

how identifying information is revealed to an adversary.

However, we can classify these threats differently based on

the directness of how this information is revealed and the

timeliness which represents the age of the information.

Direct access to the location means that a threat actor can

see where the vehicle currently is over time, without any

further processing. For example, coordinates from a GNSS

sensor provides the location over time with high fidelity and

can be immediately viewed on a map. Indirect access requires

some processing in order to extract or interpolate detailed

trajectories. ANPR systems are able to view a vehicle driving

through a road network, but the data is sparse and must be

interpolated estimate where the vehicle is over time.

• Directness: What data does the threat actor obtain and

how does it reveal the location of the vehicle?

-- Direct: The data specifies the location of vehicle.

-- Indirect: The data needs to be analysed to obtain

the location of the vehicle.

• Timeliness: When is the data from?
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Figure 9: Difficulty Table

-- Current: The threat actor has access to the live

stream of data.

-- Historical: The threat actor has access to old data.

In Figure 9 the difficulty of different classes of threat actors

violating different classes of privacy threats is shown. Note

that violating real-time privacy is typically harder than viol-

ating historical location privacy [21]. A real-time violation

requires an attacker to either set up their own network of

sensors, or gain access to an existing system. In either case,

they must have the capabilities to process the data in real-

time, and they may be thrown off a breached system at any

time. A historical violation requires only access to a database,

or database leak. This allows the attacker to proceed in their

own time, and reduces the computational requirements.

The impact of violating different classes of privacy can

be different based on the historical data present. A real-time

attack allows the vehicle’s current location to be revealed

and significant information may be inferred from historical

data depending on its age and time period. For example, if

a historical violation grants access to old and out of date

information, it may be less relevant to the vehicle and its user.

However, historical data from a recent time period, or over a

long duration can have a greater impact because it can be

used to infer additional information about the vehicle’s user.

For example, by pattern of life analysis an adversary could

predict where the vehicle will be in the future. This means

both historical and real-time privacy threats can have high

impact.

VI. DISCUSSION

This paper has examined many privacy threats, threat actors

interested in violating privacy, and privacy preserving tech-

niques. However, there are many additional considerations

when considering vehicular location privacy, especially as

there are instances where tracking of vehicles is necessary,

and other cases where violating privacy leads to a greater

utility than protecting privacy. This section will discuss some

of these additional issues around vehicular location privacy.

A. WHO SHOULD WE EXPECT TO BE ABLE TO TRACK

VEHICLES?

This work has focused on the protection of vehicular location

privacy, but there are many examples where users gain utility

from revealing their location. Users will want to provide

locations to LBS in order to get recommendations that are

targeted to their journey. Autonomous vehicles will want to

inform nearby vehicles of their location, velocity, identity

and the time at which this data was recorded to ensure that

other vehicles collaborate to ensure that no safety properties

are violated. Toll Roads and Car Parks will track vehicles

to ensure the owners are correctly billed for using those

services. It is also the case that Governments will want to

understand the behaviour of their citizens to better design

services in a cost effective manner based on where demand

is. The police force of a country will need to be able to track

vehicles to ensure that criminals can be apprehended. For

example, the EU Cross-Border Enforcement Directive [97]

aims to track users who commit traffic offences in an EU

member state different to the one the vehicle is registered in.

Part of this directive involved sharing databases on drivers,

which may contain sensitive location information.

These are just a subset of examples where vehicle tracking

is required. There are many use cases where a user desires

location information to be shared, where there is a contrac-

tual requirement to share location information, and where

there is a legal requirement to share location information.

It is important to consider these cases and their interactions

with location privacy threats and techniques, as they add

additional considerations when location privacy needs to be

provided. However, they potentially allow privacy provision

to be ignored and the cost of providing privacy protection to

be avoided under certain use cases.

B. ACCEPTABLE PRIVACY VIOLATIONS

In certain cases the desire to remain private may be exceeded

by the utility gained by a user revealing their location. One

example of this is the eCall system, where upon a serious

collision authorities will be automatically notified. The data

sent to them may include “the triggering mode (automatic

or manual), the vehicle identification number, vehicle type

and propulsion, timestamp, vehicle direction, current and

previous positions, and number of passengers” [98]. The key

aspect of eCall is that it does not broadcast continuously, but

only in case of an emergency. This means that no privacy

is leaked during the normal use of the vehicle. However, in
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rare circumstances where lives are at risk the vehicle will

intentionally leak privacy with the intent to speed up life

saving responses. It is likely most users would be willing to

give up privacy in these scenarios in order to obtain a higher

chance of survival.

C. LIMITATIONS

Many social media sites and messaging apps allow a user

to provide their location to the LBS which is then shared

with other users of the service. In some cases the user will

share with a select few people, but in other cases the user

may not have set up their privacy settings and will broadcast

their location publicly on the internet. In this scenario, the

user has wilfully chosen to opt-out of location privacy and

therefore it is unnecessary to attempt to consider the privacy

protection interactions from other privacy threats.

For some scenarios it may be desirable to provide short-

term linkability, but long-term unlinkability. This means that

in one event each vehicle should be aware of who is present,

but in subsequent events it should not be possible to link

vehicles between participating in these events. This long-

term unlinkability will only be protected again certain threat

agents, such as other vehicles on the road or malicious

eavesdroppers. There may be the need to unpack the long-

term unlinkability of a vehicle by a trusted authority. For

example, in the case of a car crash the investigators and

insurance companies may need to violate privacy in order

to determine the events that occurred. Such a scheme could

be provided by group signatures in [99]. An issue with this

approach is that the trusted authority who issues the group

signing keys and maintains a database of how to reveal the

identities becomes a new privacy threat.

D. EFFECT OF AUTONOMY

As autonomous vehicles are going to become increasingly

common on roads, they will lead to new privacy threats,

but will also reduce the risk of existing privacy threats. For

example, currently it is possible to use vehicle sensor data to

identify different driving styles and drivers from their driving

signatures [100, 101]. Once a driver’s identity is disclosed,

it allows linking other trajectories to that driver. However,

the driving signatures will become less useful with fully

autonomous vehicles because a human driver will not be

in control of the vehicle. Any analysis of the driving beha-

viour will leak information about the systems controlling the

vehicle, but the driving behaviour is unlikely to leak privacy

of the passengers. To resolve other issues the movement of

vehicles may be adjusted to arrive at a hub at the same time

in order to synchronise the time at which pseudonyms are

changed. Autonomy also facilitates cooperative driving of

multiple vehicles. Within this context, the autonomy might

remove some of the identifying behavioural information

leaked while driving and enhance the location privacy [102].

E. LOCATION SHARING IN A MILITARY SCENARIO

Sharing location information among collaborating parties

may be necessary in many cases. In an operation with mul-

tiple parties, each party might need to conduct computation

based on the other’s location information; however, none

of them may be willing to give up their privacy. One of

the most appropriate examples for this case are military

operations consisting of allies who benefit from cooperation

but do not wish to fully trust each other. For example, when

multiple allies are proceeding to the same target they would

like to know about each other’s location to prevent friendly

fire. Another scenario might be, where country A decides

to attack a target x, however, A does not want to damage

its relationship with its allies who have interests around x.

None of the countries would like to disclose sensitive location

information to each other and A would not like to disclose the

exact location of x [103]. A vehicular scenario could involve

allies needing to coordinate military vehicles, but also be

unwilling to disclose their precise location. The question

here is, how should a computation on the data from multiple

owners be performed without disclosing information (such

as location) intended to be private? One option is to use

an external trusted third-party aggregator. Alternately, secure

multi-party computation [104] can be used if a trusted third-

party is unsuitable.

F. COST OF PRIVACY PRESERVING TECHNIQUES

In order to provide privacy there will be a cost associated

with the technique used. This cost could occur in a num-

ber of ways, such as financial, temporal (such as delays in

service), energy, efficacy (such as an approximate result),

additional computation and communication overheads, and

others. Furthermore, preserving privacy is likely to increase

the complexity of the system making it harder to understand

and thus leading to harder to uncover privacy issues.

When choosing which privacy preserving technique to

apply, it is important to understand what the costs are. This

is because there may be a variety of different techniques

that could be applied, but only some will be suitable due to

the costs. For example, in a vehicular system it is vital to

ensure that that the system remains safe, therefore, a temporal

privacy cost may be undesirable if it decreases safety due

to an increased response time. It is important to consider

when these costs are applied. For example, [62] introduces

a silent period for CAMs after changing identity to prevent

an adversary being able to link the old and new identities.

As CAMs are used to provide safety context information,

the technique only allows identity to change followed by a

silent period when a vehicle is below a specific speed. Other

techniques have restricted this further and apply identity

change at stationary social spots such as intersections [24].

Therefore, a trade-off needs to be made between privacy and

safety when choosing between techniques in this example.

To reduce the cost of privacy preserving techniques, it

may be useful to consider applying other techniques to the

problem. For example, in [63] a privacy preserving revoc-
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ation system called SmartRevoc was presented which used

parked vehicles to aid in the dissemination of certificate re-

vocation lists. This technique could potentially apply [105] to

reduce SmartRevoc’s energy cost which proposed a VANET

routing protocol also using parked vehicles. The benefit of

this scheme is that the parked vehicles selected for routing

takes the limited energy of these vehicles into account, en-

suring they have sufficient power for later use. These parked

vehicles are also only selected when there is insufficient

traffic density to relay messages. However, the use of [105]

to reduce the energy cost of the scheme must be analysed to

understand the impact its use will have on vehicle privacy.

In summary, it is important to understand (i) the cost

of applying a privacy preserving technique, (ii) cost differ-

ences between different techniques, and (iii) how non-privacy

preserving techniques can be applied to privacy preserving

techniques to reduce their costs.

VII. FUTURE WORK

In this section we discuss possible future work in protecting

vehicle location privacy.

A. LOCATION PRIVACY AGAINST MULTIPLE

SIMULTANEOUS THREATS

This work has argued that it is insufficient to consider pro-

tecting location privacy threats against vehicle in isolation. It

is necessary to consider the wider privacy threat landscape,

because the way privacy preserving techniques interact can

lead to no privacy actually being provided. So when design-

ing privacy preserving techniques, multiple threats need to be

simultaneously considered.

As privacy provision must consider other privacy threats

concurrently, another issue is how to coordinate the privacy

provision between multiple devices. This could involve a

central authority (such as the vehicle) being in control of how

privacy techniques synchronise. Alternatively a consensus

based protocol could be developed where multiple devices

agree to synchronise privacy provision at specific times. A

third alternative might be a reactive protocol where devices

respond to changes in privacy techniques. Such techniques

need to be carefully designed to ensure a threat actor cannot

alter how privacy is provided. For future work, we plan to

investigate protocols that allow a vehicle to negotiate aligning

identity change (such as for V2X, WiFi and Bluetooth) with

internal devices whilst continuing to preserve privacy.

This means it will no longer be sufficient to look at

privacy in a single domain, but necessary to provide cross-

domain privacy. Here, multiple sources of privacy leakages

from different domains will need to collaborate to protect

privacy. This may be difficult as technologies can evolve

in unexpected ways (such as vehicles hosting WiFi access

points). This collaboration will also need to occur in a way

that does not leak privacy.

B. IMPACT ANALYSIS OF PRIVACY THREATS

When considering a privacy threat it is important to clearly

understand which threat actor is being protected against.

This includes understanding their motivations, resources, and

capabilities. For each threat actor a risk assessment can then

be performed to analyse the likelihood and impact of a threat

actor violating privacy. The risk analysis can then be used

to (i) identify changes that need to be made to the system

to preserve privacy, (ii) identify which changes need to be

focused on with a higher priority, and (iii) which privacy

leakages to specific threat actors are acceptable (and do not

necessarily need a privacy preserving technique implemented

— e.g., eCall). When changes to the system are made the risk

analysis can be re-performed to ensure that the likelihood of

privacy loss and its impact have decreased. However, privacy

provision is difficult to identify, as the interactions between

privacy techniques can lead to unexpected privacy loss. The

possibility for privacy preserving techniques failing to protect

privacy needs to be addressed in a risk assessment.

VIII. CONCLUSION

There exists many ways in which a vehicle can be tracked,

and much work has been done on individually addressing

some issues. However, an issue with existing work is that it

typically focuses on a specific problem and do not consider

attempting to protect context information leakages from other

sources. The conclusion from this work is that it is important

to not consider vehicular location privacy in isolation, as

location privacy schemes can be circumvented by simply

using an alternate tracking method. As existing work mostly

does not consider the impact of their privacy schemes on

other privacy techniques, future techniques should investigate

the interaction between multiple privacy-preserving tech-

niques. For example, [87] is the only example known to the

authors where two sources of privacy leakage are addressed

simultaneously. One of the key points of the work, was the

need to synchronise pseudonym and MAC slot changes. Such

synchronisation will be needed across the privacy preserving

techniques that use pseudonyms to prevent vehicle tracking.
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