Privacy-Enhanced Searches Using Encrypted Bloom Filters

Steven M. Bellovin William R. Cheswick
snb@s. col unbi a. edu ches@hesw ck. com
Columbia University AT&T

Technical Report CUCS-034-07

Abstract

It is often necessary for two or more or more parties that ddully trust each other to share data
selectively. For example, one intelligence agency mightbkng to turn over certain documents to
another such agency, but only if the second agency requestspecific documents. The problem, of
course, is finding out that such documents exist when acodks tlatabase is restricted.

We propose a search scheme based on Bloom filters and growgrsipuch as Pohlig-Hellman
encryption. A semi-trusted third party can transform ongymsearch queries to a form suitable for
querying the other party’s database, in such a way thatereitte third party nor the database owner
can see the original query. Furthermore, the encryptios kegd to construct the Bloom filters are not
shared with this third party. Multiple providers and quesiare supported; provision can be made for
third-party “warrant servers”, as well as “censorship ‘stitat limit the data to be shared.

1 Introduction

It is often necessary for two or more or more parties that do not fully trash other to selectively share
data. For example, two intelligence agencies may wish to let each other geéargdtabases, while only
disclosing clearly relevant documents to the other party. Even then, thgrberize restrictions that must
be observed.

Assume there are two principals, a querier and an information provideallydwe would like the
following properties to hold:

a. The querier gains no knowledge of the contents of the provider'bakstaexcept for documents that
are matched by valid queries.

b. The provider gains no knowledge of the contents of the queries;silgesthat should include infer-
ences based on the documents retrieved.

c. An independent party may restrict the set of legitimate queries.
d. No third parties may gain any knowledge of the queries or the documents.

Conventional search techniques do not have these properties. \Wespra new scheme that does satisfy
our requirements, based on encrypted Bloom filters [1].

We will often speak of some party’s “filter”, in the singular. While that will sdimes be the case, in
general each party will have very many filters, one per document. liti@adhere may be “union filters”

*Work partially performed while at AT&T
tWork partially performed while at Lumeta



for distinct collections of documents, or for optimization in searching. Foneataally, little of that matters
for our purposes, though we do discuss some aspects of this. Wheaywsearch Bob'’s filter”, we really
mean “search all of the Bloom filters owned by Bob and protected by his keyome situations, such a
search can be optimized; in other cases, it cannot.

There are at least two different problems in retrieving documents withaking information: figuring
out which documents are desired, and actually retrieving them. We arerceacwith the first problem:
providing a controlled way for one party to learn something about docunoewed by others, without
disclosing the query. The second problem, sometimes knowrivage information retrieva(PIR), is well-
studied in the literature (see, for example, [2, 3, 4, 5]), and is not diecuere in its full generality; we
do outline a few possibilities that take advantage of other properties otbhene, but we emphasize that
there are many more ways matters can proceed.

It should be emphasized that none of these ideas is a total solution to therprabinformation shar-
ing. Just knowing that someone has some information on a topic is usef@edndn absence of public
discussion has been useful; in 1940, the lack of American publicationsidear physics persuaded the
Soviets that atomic bomb research was under way [6].

1.1 System Structure

Our system is based on a querier, Alicé)(and a provider, BobR). (In practice, there will be many
different queriers and many different providers.) There is also &etubird party, Ted®).

In a preparation phase, Alice, Bob, and Ted engage in a three-patyiateon that will provision Ted
with the cryptographic information necessary to transform queries. (fiaisgue must be carried out for
every pair(A, B).)

At any point, Bob prepares his database index as an encrypted Bloaniffilbe optionalindex servers
are used, Bob sends the index to them via Ted.

To search for adocument, Alice prepares a query using her key add ¢ Ted. Ted cryptographically
transforms it to another key; the result is sent to either Bob or the indegrs@ptionally, avarrant server
can be consulted by Ted before the query is forwarded.

The result of a successful query is some sort of handle for a dodudegending on the precise system
design, the document can be retrieved directly by Alice, or via Ted.

1.2 Organization of the Paper

Section 2 reviews the basics of Bloom filters. Section 3 explains encrypoedHilters, and shows how to
use Pohlig-Hellman encryption to satisfy one of our requirements. Funtivacp-protecting enhancements
are discussed in Section 4.

From there, we move to more practical concerns. Section 5 shows howi-érasted third party can be
provided with certain special keys, while never having any keys to peeuilgtion of messages. Section 6
discusses system design considerations for this work. We conclude digicwssion of related work and
some final thoughts.

2 Bloom Filters

A Bloom filter is a very efficient way to store information about the existerd@erecord in a database. It is
susceptible to false positives, but the probability of a false positive camdole as small as desired.

A Bloom filter is an arrayB of m bits, initialized to zero. It requires a set afindependent hash
functionsH; that produce uniformly distributed output in the rarigen — 1] over all possible inputs.



To add an entry¥’ to the filter, calculate

by = Hy(W)
by = Hy(W)
by = HLW)

Vi, 1 <i<n,setB[b] =1

To check if W is in the database, the sarieare calculated and bit8[b;] are examined. If any of the
bits are 0, the entry does not exist; if all are 1, the record probablyeldists

The values form andn are dependent on the number of records to be indexed and on theddesire
upper bound on the false positive rate; see [1] for details. If, asestgd there, we pickn andn so
that approximately half the array is populated, the false positive rat& isBut these parameters are not
particularly important to this work, and will not be discussed further hgeme considerations relating to
the density of 1 bits are discussed in Appendix B.)

3 Querieswith Encrypted Bloom Filters

3.1 Group CiphersasHash Functions

To produce an encrypted Bloom filter, we use an encryption algorithmuiohash functions. For example,
we could define
Hi(W) ={Wh,

or
Hi(W) = {W||i}r

where { X}, denotes the encryption of plaintext X using kiey This would be expected to work well,
as modern cryptosystems are designed to produce uniformly distributedgeeendom output across the
range of input space. In fact, a usual criterion (besides unpredigtaba sin qua non for encryption!)
is that changing one input bit should change approximately half of the obijgutA Bloom filter scheme
using encryption for hash functions has been described by Goh [7].

But that requires distribution of the; to all parties, which does not meet one of our original goals.
Instead, we use a specialized form of encryption function where tipesacan be done on encrypted data.
In particular, we will employ a cipher that forms an Abelian group over itskelyen encrypting any given
element. More formally, we employ a cipher such that for all encryption inplueslV, the set of all keys
k forms a group under the operation composition of encryptiolvof

Groups are closed, so

{X e} = {X ok
for all j andk and some operater. Such encryption algorithms are not common; indeed, for at least one
purpose—enhancing security via iterated encryption—they are undiesiiut at least one such algorithm
exists.

Suppose that Alice wishes to query Bob’s Bloom filter (or Bloom filter collegtior some wordiV .
Using her Bloom filter key: 4, she calculate$y,, = {WW};,. She then sendgy,, to a semi-trusted third
party Ted. Ted does not know any kéys however, for each pairandj, he knows the ratio key

AR |
Ti,j = kj Oki

Note thatk;l must exist if the cipher is indeed a group.

3



Ted then usesy g to transformVyy, into Viy,,:

{W}KB = {VWA}TA,B
= {{W}kA}TA,B

and returns that to Alice. Alice then sends this value to Bob, and receivesum a bit vector with the
answer. Thus, Alice can query Bob’s database without disclosing #my and without knowing Bob's key.

3.2 Using Pohlig-Hellman Encryption for Bloom Filters

In Pohlig-Hellman encryption [8], we encrypt under Kepy raising the message to thth power modulo
some large prime:
{X}r = X" mod p.

The keyk must be relatively prime tp — 1; we achieve that by choosingto be a prime of the form
2p' + 1 wherep’ is also prime, and mandating that all keys be odd and not equél 1a addition, given
thatzP~' = 1 mod p (see, for example, [9]), we restrict keys to be less than1, and do all exponent
arithmetic modulgqp — 1).

The decryption keyl is chosen such th&td = 1 mod (p—1); d can be calculated efficiently by Euclid’s
Algorithm.

The set of valid keys and the operation of composition of Pohlig-Hellmaryption form an Abelian
group; a proof is sketched in Appendix A.

Suppose that we haveX }. and wish to producéX };. Letr = j - k~! mod (p — 1), wherek~1 is the
is the decryption key correspondingioi.e., the multiplicative inverse df mod (p — 1). Then

{X0d = (X0 mod p

X* mod p
XF* mod P
XFE M mod P
({X}e)¥ 7 mod p

({{X}x}g-1)? mod p
= X’ modp

= {X}

Pohlig-Hellman encryption is expensive, since it requires exponentiaticlulma large prime. But
such encryption naturally produces a large output value. We can use femnerate our entire family of hash
values. IfB is m bits long, we use successive chunks of lendtl, m | bits for our different hash values.
For securityp will be at least 1024 bits long. If we want a false positive rate of less tihafi ~ 22—
much higher than is commonly necessary—we need 20 hash functions, mweats that our bit array can
be 250 bits long—far more than enough.

There is an obvious flaw here: Bob knows and can decryptyy,, to learnW. We can prevent that
easily enough by first calculating’ = G(W), where G is a cryptographic hash function. That has the
added benefit of expanding the query word, thus turning it into a betserfoathe exponentiation.

3.3 Encrypted Valuesand Hash Sets

A set of hash valuel can be represented in two different ways: as the result of the Pohligi&teencryp-
tion (which will will designate as PH form), in which case it is a single, large nenndr as a set of Bloom
filter indices. Both representations can be used; however, they aeguivtlent.

4



polonium 0,1,2,10,13,47
oralloy 10, 15, 16, 26, 35, 43
beryllium 4,6, 10, 18, 18, 20
neutron 0,2,11, 25,41, 43

1

Goldschmidt , 16, 19, 28, 42, 44
Kistiakowsky 4, 4,10, 14, 36, 44

Meitner 12, 13, 22, 25, 27, 36
Szilard 11, 16, 33, 38,43, 43

Figure 1. A sample Bloom filter of 48 elements; each search word has sixebit§Be collisions within
some search terms are an artifact of the small size of this filter.

As shown above, it is easy to transform an encryption value into a sedio&s the inverse transforma-
tion is not possible, because information, and in particular the orderinggstis lo

Note also that the values and the ordering of the diffebgfur a giveniV will differ for different values
of k. We illustrate this by a toy Pohlig-Hellman cipher using modulus 65267, anccéirtyat-bit chunks as
our indices.

If we encrypt 42 withk = 537, we get 19648, or 4CGg, yielding an index set of0, 4, 12}. (Since
these values are indices, we've sorted the set and suppressed tégpliéncrypting 42 with a key of 17
yields 6362, or 18DAy, for a key set of 1, 8, 10, 13}.

Consider again the ciphertext 4C0 If we re-encrypt that withk = 31 — which is equivalent to
encrypting42 with £ = 537 - 31 mod 65266 = 9129 — we get 385B¢. But if we change even a single
bit of the input value — say, to 4CGd— and encrypt withk = 31, we get the very ciphertext different
F9595.

This is not surprising for an encryption algorithm, of course, but it uso@es an important point: the
individual segments of a PH number cannot be manipulated individually.aRldés can only be manipulated
arithmetically and as a whole, such as by transformation into the correspdPdinglue for another key.
When in set form, the usual set operations of union and intersectioreqaerformed, but one cannot switch
back to the arithmetic domain. As is discussed in the following section, we will esditfierent forms in
different places.

4 Enhancing Security
4.1 Salts

The scheme as presented has a number of deficiencies. If nothing elseaB do a dictionary attack on
W’ to learn what Alice is looking for. This is especially easy for successfatigs, since by definition Bob
has already created entries 16’ in his Bloom filter. We solve this by “salting” the query. We can do this
in two ways, by modifying the Bloom filter-specific query or by including dumnoras.

The first is superficially the most appealing. As before, Alice sends fieterypted query, in PH form.
Ted performs the transformation to Bob’s key, and converts the transtbralue to set form. This set is
modified by deleting some entries, leavingvalid ones, and add in some other set of random values. Ted
knows which the random values are, and can ignore the responss f@ltleem. While deleting some valid
indices will increase the false positive ratepifs large enough that issue can be minimized.

The problem is that there is still information leakage. A successful quérynatch »n’ of the n bits
belonging to the target word; if Bob has an inverted index of the Bloom fliieigan see what the query



0  polonium, neutron 20 Dberyllium
1  polonium, Goldschmidt 22 Meitner
2  polonium, neutron 25 neutron, Meitner
4 beryllium, Kistiakowsky 26 oralloy
6  beryllium 27 Meitner
10 polonium, oralloy, beryllium, Kisti- 28 Goldschmidt
akowsky 33 Szilard
11 neutron, Szilard 35 oralloy
12 Meitner 36 Kistiakowsky, Meitner
13 polonium, Meitner 38 Szilard
14 Kistiakowsky 41 neutron
15 oralloy 42 Goldschmidt
16 oralloy, Goldschmidt, Szilard 43 oralloy, neutron, Szilard
18 Dberyllium 44  Goldschmidt, Kistiakowsky

19 Goldschmidt

Figure 2: An inverse filter, showing the words that map to each bit.

word is, because it will be the only one with a high hit count. Alice’s defesise ensure that some other
word or words have similarly high hit counts.

If we use random values for our extra indices, we need to calculate how ex#ra indices must be used
to ensure a reasonable probability of other words matching. Intuitively;gaisonably clear that a signficant
number of extras are necessary, since each word is associated with bitty andn <« m. In fact, the
scheme probably will not work in practice. A more detailed quantitative aisalysesented in Appendix B,
shows why it fails.

The second technique is simpler: salt the query by selecting other, usimgrevords that are likely
to be in Bob’s database. The danger would be in correlations unknowtide; Ahe dummy words may
select the same documents as the target words. Furthermore, overseo$sggeral searches, the dummy
words should fit some recognizable pattern: given two query satgroskirt, poodle, uranium, houndfish
andplutonium, privacy, cotton, snakiewould be pretty clear what the topic of interest was.

Both problems are illustrated by the sample Bloom filters shown in Figure 1. & doe say, “polo-
nium” would generate a vector of 0, 1, 2, 10, 13, 47; if we used a queeyo$ four elements, all four entries
would, of course, select 1 bits in the filter.

Suppose, though, that we sent the random entries 8, 12, 17, 277,3@®,3and 47 as well. Looking at
the inverse map (Figure 2), we see that “Meitner” has a hit count of twWd@nldschmidt” a count of one;
“polonium”, at four, would stand out as the real query.

On the other hand, a real use of this technique would be looking for celt@umments in a large set;
someone unaware of the history of fission weapon design [6] might abzeghat most documents con-
taining the word “polonium” would also contain the word “beryllium”. Bob might koow which term
was really of interest; it almost doesn’t matter, since either might revealuestigner’s real intent. Still,
this is the best option, especially because the connection between the tweysmaetric: in this particular
example, there are likely to be many documents with the word “beryllium” butpabhium”.

The remaining question here is who should generate the dummy query terthsari®t; he does not
have a Pohlig-Hellman key that can be transformed to Bob’s key. Bolotasince he could easily detect
use of his own dummy words. That leaves Alice, which imposes a knowledgdrement on her: she needs
to know enough about Bob’s database to generate plausible dummy words.

Note that if Alice issues many queries, the dummy elements must be consistetineacPut another



way, telling a consistent set of lies is hard.

4.2 Index Servers

A better approach to protecting queries is to us#ex servers Bob sends his Bloom filters to an index
server; each document is tagged with an opaque name. As before, Atlids ker queries to Ted; Ted
transforms them to Bob’s key. Instead of being routed to Bob, thougfiréleent to the index server. The
index server performs the Bloom filter matches and sends back the docnareas. Alice (or Ted) can
then ask Bob for these documents.

The advantage of this scheme is that Bob never sees the queries, aedchenot perform any sort
of guessing attack. The index server doesn’t know Bob’s key, andércan't build a dictionary. Dummy
gueries may still be necessary if Alice wants to prevent Bob from evewikigahe topic of the investigation.

Note that the filters stored on an index server are much less sensitive thhagh documents. This
allows for easy replication and distribution, whether for load-sharirdymdancy, or conservation of band-
width over slow links.

4.3 Warrant Serversand Censorship Sets

Under certain circumstances, it may be desirable to restrict the scopmefigeeries. For example, a police
officer pursuing an investigation may be restricted to query terms listed inrantaBimilarly, there may be
some queries that Bob will answer for, say, Carol but not Alice. Wescdwe these problems with warrant
servers and censorship sets.

A warrant server is another party to the dial@gtransforms all queries to the warrant server's key. The
warrant server also needs to have some authoritative knowledge ofitméspible terms, stored in a sepa-
rate Bloom filter generated by its own Pohlig-Hellman key; there are many abways to accomplish this,
including digitally signed warrant messages and local copies of authogittababases. Regardless, the war-
rant server deletes from the query all impermissible terms and sends tiftdoaask toT” for transformation
to B’s key.

Note that the warrant server never sees the plaintext of any query. t€hase are agreed upon offline,
and are encrypted by the warrant authorizer (e.g., a judge). Thanta@rver performs its operations on
the encrypted form of the query.

B'’s censorship set—yet another Bloom filter—is now applied. Any terms tbbawill not permit Alice
to query are now deleted. The resulting query is then sent aloBg to

Note that both warrant servers and censorship sets are specific tthbatburce and the destination of
the query. Alice may be allowed to ask different questions of Bob than odlCsimilarly, Bob may be
willing to disclose more to one than to the other.

5 Provisioning Pohlig-Hellman Encryption Transfor mation Keys

We must now consider how to store the necessawmalues in7T. The exact mechanisms will vary for
different encryption algorithms; here, we take advantage of the isonsondhetween the encryption group
and a group over multiplication modul@ — 1) and the set of legal keys for Pohlig-Hellman encryption.
(Proof of the isomorphism is straight-forward and is omitted here.)

We have a set of queriers/publishe¢s, While not everyone will publish data and not everyone will
query for data, both types need some kgyaccordingly, we treat them the same way. A party who fills
both roles will generally use separate keys for each role.

As noted, the ratio between the keys needs to be known. While this coulcheebgidhaving ally €
send their keys to the trusted paffy this would create a security risk T were not fully trustworthy. A



simple, but not altogether satisfactory, alternative is to have a seconddnparty,7”, which calculates
ther; ; and sends the t@. If 7" is not part of subsequent conversations betweery thed T—this can
be ensured by conventional cryptography—there is no ongoing risls stheme will work for all group
ciphers. But the presence of many keys in one place is worrisome. dngteaise a blinding mechanism.

To calculate the ratioy, , between two keys,, k;, a,b € @Q, both A and B set up a secure channelfo
They each generate random blinding factbys F},; additionally,T” generateg}, andFy,, 1 < F, <p— 1.
The following messages are sent over pairwise encrypted channelslirtiithmetic being done modulo
(p—1). (For simplicity, we writea /b or ¢ to mean - b—! whereb~! is the inverse ob in the group formed
by the set of valid keys.)

A — T:ky-F, Q)
B — T:kp-F (2)
T — A:F, 3)
T — B:Fy 4)
A — B:F, Fy, ®)
B — A:F,-Fy (6)
A — T:(F, Fu)/(Fy- Fy) @)
B — T:(Fy Fy)/(F,- Fia) (8)

From messages 1 and2,can calculatég—?’;. From that and message’B,can calculate

ka-Fa Iy -Fy
kB'Fb Fa'thz
kB Fta

But T" knows Fy, and Fy,, and can therefore calculatg p = K4/Kp. A similar calculation can be done
using message 7; the results will matckliind B are honest.

We thus see thdl’ never knows any party’s encryption keys. But can they be recdvieoen the ratio
values? Fortunately, that appears to be impossible, too.

Assume that we have three parties, Alice, Bob, and Carol, possessiagike Kp, and K. T
therefore knows

rap = Ka/Kp
rB,C Kp/Kc
rca = Kco/Ka

We wish to solve fork 4 in terms of the ratios.
Simplifying these equations, we get

Ky = Kp-rag
Kp = K¢-rpco
Ke = Ka-rca

Substituting the second and third equations into the first, we get

Ka= ((Ka-rcA) TB,C) TAB



which yields the rather unsatisfatory insight that

l=rca-rBC-TAB

We are thus left with a situation whefécan transform encrypted queries from one key to another, but
cannot generate queries or decrypt them.

If some partyD were to collude withl", T' could read queries by transforming themiis key. To de-
fend against this, a querigrcan blind messages foby superencrypting with some nonce kiy, and then
decrypting the transformed query. Because Pohlig-Hellman encryptabdesryption are commutative—
the cipher is, as noted earlier, an Abelian group over the keys—the neessiadpe successfully unblinded.
Let V/ = (V)4 mod p, whereV is the query encrypted witA’s key that is sent td@ to be transformed to
a query encrypted faoB.

(v7)fias

This value can be decrypted using the decryption key correspondiNg;t¢V'} i, can be used to generate
a query toB as described earlier.

The remaining roles are the generation of the primand the certificate authority used for the initial
setup withT. Neither of these is particularly critical. Any party can verify that prime, that it's of the
form 2p’ 4 1, and that it's long enough to protect against solutions to the discrete Ibtepronodulop.

The certificate authority is almost as simple. WHleB, andT’ want some assurance that they’re talking
to the right parties, the result of a failure does not leak any informatioatahgeries. The most likely result
of an impersonation is a failed query, which is undesirable. Thus, somble{aA should be used. But
there is one further danger. In a real-world implementation of this schenuecasful query for a desired
document would likely result in a request for retrieval of that documeat tids is more or less inherent in
the problem statement. While the documents could, presumably, be storetiezisémvencrypted form, the
problem of finding the key would remain. We thus reject this solution.

At first glance, the number of transformation keys thanust have appears to be a problem; it is, after
all, quadratic in the number of parties. That may not matter too much — for realsgi, the number of
parties is likely to no more than a few thousand, and calculating and storing miféon keys is not a
challenge with modern hardware. More importantly, most parties do not fhl fedes; the number of ratio
keys is actually the product of the number of queriers and the numbeowtiers. The latter value is likely
to be small. Beyond that, our preferred solution — index servers — willaedibe number even more;
everyone, queriers and providers, will need a ratio key for the indesess, but will not need a key for any
other party. The number of index servers can be very small.

Still, if it becomes an issue, there is a solutidfis role can be partitioned, with eadh serving some
set of parties. For each party served by &4, there would be a transformation key 7, ; a routing key
r7,,15 Would link the trusted parties. A query sent frofrto 7'4 would be transformed three times:Tqa’s
key, toTs's key, and then td3’s key.

To be sure, this does require that each trusted party have a Pohlig-Hédéparhich violates one of
our design principles. But this key only needs to be retained long enougftd engage in the provisioning
dialog with the othefl;; after that, it can be discarded, thus preserving security.

The set of trusted parties does not need to be fully connected. Inthegdian be linked in any sort of
network; standard routing techniques can be used to direct the querypoaper party.



6 System Design Considerations

6.1 Roles

We can now look at some systems-level issues. We begin by considerothe/different parties are, and
what their trust properties are.

First, of course, there are sets of queriers and information owneese Hne also a a variety of neutral
parties: Ted, the warrant servers, and the index servers.

The trust relationship between queriers and providers is complex. Cldailydo not trust each other
unreservedly. This lack of trust may be due to legal strictures, org#mzh “turf battles”, or simply the
need for compartmentalization of sensitive data. But within certain bourelsatie willing to share certain
classes of information if suitable need is demonstrated. In other wordsethischere are political, not
technical; nevertheless, these details are likely to be the major driver aicngl implementation of this
scheme.

Information providers have a complex internal problem. Except for gemgll agencies, building the
index is difficult: it is undesirable for large numbers of sensitive documtenexist in one place at one
time. There are two easy solutions. First, each group can be given thePsdntig-Hellman key to use in
generating its own bit array; the collection of bit arrays can then be treatacdocument collection by the
outside world’s contact. More likely, each group would have its own Pdhétiman key, and send a set of
PH-form values to the central contact point; it would use a specializeaf s@insformation keys to convert
these values to a common Pohlig-Hellman key, and build the bit map from them.gTinieffect, a special
case of the distributed role discussed earlier.)

Another role is that of the warrant server. This role can be split, as Istigeaintermediary has authori-
tative knowledge of which server handles requests from which qseared for which providers. Note that
T does not need a full set of transformation keys for the warrant sersagher, it only needs keys to map
requests from each querier and to each provider associated with thahwserver.

The most complex role is that of the trusted third party. While Ted never sgegugries or any data,
he is the ultimate arbiter of who does get to see what. The set of transforrkatisrstored by Ted is the
functional discriminator of what providers any given querier canhigdigo transformation key exists, no
gueries can be made. In the simplest design, Ted is also responsiblatfogrgueries to the proper warrant
servers, though there are clearly alternative topologies that would eethawresponsibility: queriers could
sent their requests to the warrant servers directly; they in turn wouldniathe filtered requests to Ted.

In some designs, Ted must also send responses and even encrygpietedts back to queriers. This
imposes some bandwidth constraints; in some cases, one must trust Teithmehtdkeys that it can use to
decrypt documents; see Section 6.2 for details.

In small networks, we may be able to eliminate Ted’s run-time function. Afteutatiog the ratio keys,
he just distributes them to all of the queriers, who do the transformations ¢heyas

Index servers, if used, have some of the same properties as Tedndvmysee any confidential infor-
mation; however, they're responsible for routing requests accurdtedy also need to be more trustworthy;
a subverted index server could select documents that don’t match Aliseres, thus betraying Bob. On the
other hand, they presumably don’t know the actual names or contents dbtuments they might betray.
If queries are not sent via Ted, an index server could contact amtasserver itself.

6.2 Protecting Document Retrieval

The actual document retrieval can be a crucial feature of total systeigrd by seeing which documents are
actually retrieved, Bob can learn soemthing of the query terms. Here wigylshketch a retrieval protocol
layered on top of our encrypted Bloom filter mechanism. Again, we note tisdietd, PIR, is well-studied

10



in the literature.

As we noted earlier, there are many possible ways to proceed at this pbetonfstraints will be both
technical and policy-oriented. For example, the scheme we are aboutlitee@pecifies that all actual
document retrieval be done via This would require thai’ have high-bandwidth links to all servers. If
that were not the case, a different solution would be needed.

From a policy perspective, Bob may not wish to transmit documents to Ted, iBvencrypted form.
Instead, Alice may be allowed to present a request for a set of docutoeamtsompetent human arbiter;
he or she would decide if they were relevant, and would then provide thekfic® only under carefully
controlled conditions.

Again, there are endless possibilities. Here we describe one possiblaschith a few variants thrown
in for good measure.

We first describe the notion akaling A sealed message is one created by some party, and encrypted
and authenticated in such a way that only that party can read or verify th&age Initialization vectors or
random padding are used to prevent dictionary attacks on sealed m&sEhgre are many obvious ways to
do sealing; similar schemes are often used with Web cookies [10]. Sealisgdshere as an optimization
to permit stateless operation by servers; an obvious alternative is l@tahgaof such messages.

Initially, Alice prepares a query list. The query list is a set of hashed eR¢typted search terms;
each query is flagged as real or dummy. The list is sent to Ted (all messatigs protocol are pairwise
encrypted), along with a newly-generated public key embedded in a cdiiigned by Alice. Alice can
either remember the corresponding private key or send along a sealedfdt

Ted sends the query list, including the flags, to the warrant server. @hmnt server compares the
query list with the warrant; for any unauthorized terms, the flag is set tafayi’. The warrant server also
signs the certificate sent by Alice; Alice’s own signature is deleted anddmemever appears in the new
certificate, thus preserving her anonymity. (Having the warrant seerdly and then sign the certificate
prevents Ted from substituting his own public key for Alice’s.) The altere¢ddiseturned to Ted.

Next, Ted applies Bob’s censorship constraints. Again, invalid querees@t deleted from the list;
rather, their flags are reset. Ted prepares a sealed copy of this listimgthe flags.

Bob now matches the set of indices against his document collection. Amyraot matched by all
of the indices is flagged as eligible for retrieval. Bob sends back to Ted af ltsese documents; each
document is associated with the set of indices that selected it. Note thatefdndex is paired with Ted'’s
sealed pointer. Bob’s reply message is accompanied by a sealed copyjoktly; this will later permit Bob
to verify that a valid query was made for some documents.

Ted now filters Bob’s results, according to its own list of what Alice is entitledde. Note that this
filtering can include an enforceable minimum number of hits on any word, tooutléalse positives from
the Bloom filter. We thus can enforce a quantitative notion of “probableeau

Ted then asks Bob for those documents, as well as a few others to difigeiiaetual topic of inter-
est. Bob encrypts these documents with Alice’s public key, thus denyingig&nowledge of what they
actually contain. As final step, only the authorized documents are sentdAtice.

Clearly, many other variants are possible for this phase. Ted could blgethty several separate
queriers’ requests, each querier could send along many differbefit prays, etc.

The remaining issue is security against traffic analysis. Standard teelsnsuch as Mixnets [11], can
be used as a defense.

We get a different set of tradeoffs if we use index servers. Exppttia filters should not pose a security
risk, because of the cryptographic mechanisms used to generate therme @hehhand, there is the issue
of greater trust in some outside party. The decision on using index sarugst be based on the relative
trust parties have in such a third party versus their confidence thatriafmm providers will not go to great
lengths to ascertain the subject of queries.

11



6.3 Performance | ssues

The performance of a system based on this design is limited by two factorspeleel of Pohlig-Hellman
encryption, and the ability of a site to rapidly search many Bloom filters.

In general, encryption speed is not likely to be a major issue. Querierdidgemerate that much
traffic; software solutions could easily handle the loddis doing many more large exponentiations; one
can either use special-purpose hardware — there are off-the-s$figdf that can perform 25,000 modular
exponentiations per second —Bis role could be replicated. Information providers do not need to do any
Pohlig-Hellman operations after the database is created.

Beyond that, there will be some overhead to set up secure pairwiseatimmse While this may not be a
trivial issue, these connections can be amortized over many queriesspahses. In addition, off-the-shelf
Web SSL accelerators and load balancers can be used as needed.

A linear search of a large collection of Bloom filters—say, one per doctisnlikely to be more
expensive. A better solution is to use hierarchical filters, where eachtanhigher level is composed of the
logical union of its child filters. There are obvious optimizations at this pointyudiag letting each group
of documents be hosted on a separate departmental search server.

There is a more subtle optimization that we can do if the queries arrive in RRl fér single PH-
form query can be split into different size pieces, to accomodate diff@&eom filter sizes. Thus, we can
separate documents by size (more precisely, by the number of indexel s&ans), and use different sizes
of Bloom filters for each size range. This may achieve a consideralitermemnce improvement; recall that
Bloom filters give optimal performance for a 1's density of .5 [1], and sa@tiuments will not achieve that
density. [1] also provides a performance analysis of Bloom filters, thdlugaccess patterns here are more
complex than are considered in that paper.

Alice is likely to incur considerable expense generating many private/pulfip&irs for query retrieval.
Each document retrieved may require a separate pair; at the least, .@ghaguld require one in some
scenarios, as was discussed above.

7 Related Work

Song, Wagner, and Perrig described a scheme for searching feersses of words in encrypted files [12].
However, their scheme is aimed at remote storage by Alice of her own dotsinidaere is no provision for
multiple queriers to access indices belonging to many different providers.

Boneh et al's Searchable Public Key Encryption [13] is a mechanistagging messages with a few
keywords that can be searched for. It doesn’t scale to searghethe entire document.

Goh’s scheme [7] is the closest to ours, in that it employs Bloom filters wittyption used for the hash
functions. However, it requires that all parties share all keys. Themgives several elegant mechanisms
for executing more powerful searches; most of those schemes apply teethod as well. In particular, he
described using binary searches on collections of documents to speettieyal. He also described how to
use Boolean combinations of terms in queries; while those will work for cugree, they pose compliance
checking problems for warrant servers. The suggestion of deleting ebthe indices (Section 4.1), as well
as the problems with that scheme, were also noted by Goh.

As noted earlier, the field of private information retrieval [2, 3, 4, 5] isselg linked. That literature
concentrates on information-theoretic bounds on leakage. The practafaditgh schemes is unclear.

The encryption property we need was dubbed/ersal re-encryptiotry Golle et al. in [14]. A similar
scheme was calleatomic proxy encryptioty Blaze, Bleumer, and Strauss [15]. Both of these use public
key cryptosystems, rather than symmetric ones. While public key schemébswarnk for encrypted Bloom
filters, we do not need the other properties of public key cryptogrgahythe other hand, Pohlig-Hellman
encryption is comparable in cost to many public key schemes.)

12



8 Conclusions

We have described a scheme for protected searches among mutuallyosisspérties, without the need for
a trusted intermediary. The current design uses Pohlig-Hellman encrypfiich is rather expensive, but
this is not a requirement. Most of the design and analysis would apply tothay cipher where the keys
form an Abelian group. If we omit the blinding of queries, we can drop degiirement for commutativity.
Unfortunately, we do not know of any other suitable ciphers. (Thereather obvious property we demand
of such ciphers: multiple encryption of this sort must be secure. A simpleavercipher indeed forms a
group; it is obviously unsuitable for our purposes here.)

Although we are only using the encryption operation of our cipher, a simgdéd function will not
suffice. A group requires an inverse operation; thus, the “hashiddmireversible and the function would,
in fact, be an encryption function. It is tempting to use RSA encryption withraneon modulus as for
encryption; that would permit use of efficient public exponents suc%as- 1. Unfortunately, that runs
afoul of Simmons’ attack [16, 17] on common modulus RSA.

There is one aspect that is tightly tied to other properties of Pohlig-Hellmaggian: the scheme for
(and analysis of) provisionin@'. This aspect would have to be rethought if a different cipher were to be
used where the keys did not form a group isomorphic to the encryptiarpgi&e note again, though, that
the provisioning role and the query transform role are separable.

There are a number of applications for this scheme beyond what we resenped here. One intriguing
one is for use in discovery proceedings in civil lawsuits. During disgopeoceedings, each party is entitled
to some of the other side’s documents, but only if they’re demonstrablyargle@ur technology provides
an efficient scheme for performing such searches.

Other applications are feasible if the retrieval enhancements from Secli@mebused. One is a secure
peer-to-peer file-sharing network. By broadcasting a salted quenyrteerous servers, Ted can find who
has a certain file — song? — without knowing what is being requested. Simitoty, Carol, et al. do not
know who is requesting things, nor even what is actually being requested.

PH-encrypted Bloom filters can also be used to implement part of AndsrEternity Service [18].
Anderson suggests that an index is necessary, but doesn'’t shggew provide one.

There is a large body of literature on secure or anonymous documeimtgsigich as Publius [19]; itis
likely that most of those schemes could be integrated with our secure seactfanism. How to do that is
not the focus of this work. We do note, though, that security is a totalmgspeoperty; some such layer is
likely a necessary component.

Acknowledgments

Jeff Lagarias performed the analysis of query index padding, and wothde observations that form the
core of Appendix B. Rebecca Bellovin corrected a number of errorssietjuations. The referees made a
number of very valuable comments.

References

[1] B.H. Bloom, “Space/time trade-offs in hash coding with allowable efrd€ammunications of ACM
vol. 13, no. 7, pp. 422-426, July 1970.

[2] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu SudBrivate information retrieval,” in
IEEE Symposium on Foundations of Computer Scieth@@5, pp. 41-50.

13



[3] Christian Cachin, Silvio Micali, and Markus Stadler, “Computationally gtévinformation retrieval
with polylogarithmic communication,Lecture Notes in Computer Sciengel. 1592, 1999.

[4] B. Chor, N. Gilboa, and M. Naor, “Private information retrieval gykvords,” Tech. Rep. TR CS0917,
Department of Computer Science, Technion, 1997.

[5] Eyal Kushilevitz and Rafail Ostrovsky, “Replication is NOT needediINGLE database,
computationally-private information retrieval,” IEEE Symposium on Foundations of Computer Sci-
ence 1997, pp. 364-373.

[6] Richard RhodesThe Making of the Atomic BomBimon & Schuster, Inc., 1987.

[7] Eu-Jin Goh, “Secure indexes,” Cryptology ePrint Archive, Be®003/216, 2004, http://
eprint.iacr.org/ 2003/ 216/ .

[8] Stephen C. Pohlig and Martin Hellman, “An improved algorithm for computiggrithms overz F'(p)
and its cryptographic significancelEEE Transactions on Information Theomwyol. IT-24, pp. 106—
110, 1978.

[9] Ivan Niven, Herbert S. Zuckerman, and Hugh L. Montgome@Am Introduction to the Theory of
Numbers John Wiley & Sons, 1991.

[10] D. Kristol and L. Montulli, “HTTP state management mechanism,” RFCX®¥ternet Engineering
Task Force, Oct. 2000.

[11] David L. Chaum, “Untraceable electronic mail, return addressekdmital pseudonyms,Commun.
ACM, vol. 24, no. 2, pp. 84-90, 1981.

[12] Dawn Song, David Wagner, and Adrian Perrig, “Practical tealscfor searches on encrypted data,”
in Proceedings of IEEE Symposium on Security and Privisiay 2000, pp. 44-45.

[13] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, ands&ipe Persiano, “Searchable public key
encryption,” Cryptology ePrint Archive, Report 2003/195, 2008,t p: // eprint.i acr. or g/
2003/ 195/ .

[14] P. Golle, M. Jakobsson, A. Juels, and P. Syverson, “Un@leesencryption for mixnets,” 2002.

[15] Matt Blaze, G. Bleumer, and Martin Strauss, “Divertible protocold atomic proxy cryptography,”
in Proceedings of Eurocrypt '98998, Lecture Notes in Computer Science.

[16] Gustavus J. Simmons, “A “weak” privacy protocol using the RSyptw algorithm,”Cryptologig vol.
7, no. 2, pp. 180-182, 1983.

[17] Steven M. Bellovin and Michael Merritt, “Augmented encrypted kegtenge,” inProceedings of the
First ACM Conference on Computer and Communications Sectdiyfax, VA, November 1993, pp.
244-250.

[18] R. Anderson, “The eternity service,” Proceedings of Pragocrypt '98.996.

[19] Aviel D. Rubin Marc Waldman and Lorrie Faith Cranor, “Publius: Abust, tamper-evident,
censorship-resistant, web publishing systemPtiac. 9th USENIX Security Symposiuwugust 2000,
pp. 59-72.

14



A Proof that Pohlig-Hellman Encryption isa Group

We sketch a proof that Pohlig-Hellman encryption is indeed a group, aratticyar an Abelian group, for
the operation of composition. We assume that the modulss large prime of the forrgp’ + 1, wherep’
is also prime.

The requirements for a group are the existence of an identity element, ttenexi®f an inverse for all
set members, closure, and associativity.

Fairly obviously, the identity element is encryption with the key 1. The existefiteerses for all keys
is shown in [8].

To show that the set is closed, we must show that encryption with any tveoykelgs another valid key.
A Pohlig-Hellman key is an integdrrelatively prime top — 1 andl < k < p — 2.

{{z}1}; = (") modp
= (27%) mod p

We thus have closure jfk yields a suitable integer.

For j andk to be relatively prime tp — 1, they must be odd. Sinceandk are odd, their product is
odd. Per [8], we reduce the product modple- 1, an even number. The result of that operation is always
odd, and by definition of modulus will yield a value less than 1.

We must also show that is relatively prime tg— 1. Sincep = 2p’ + 1, this reduces to showing that
is relatively prime t@2p’; sincejk is odd, we merely need to show thytis relatively prime tq'. Assume
it isn’t. By definition of a prime number, this implies thabr & is a multiple ofp’. However, members of
the set are all relatively prime &', and hence t@’'.

The remaining criterion is associativity.

{ehihi = {(@% mod p)};
= (z")" mod p
27" mod p
(xk)ji mod p
({z}x)’* mod p
= {({z}r)}si
Finally, for encryption to be an Abelian group, we must show that it is commetati

{{zhi}; = {o" modp};
(2*)? mod p

2% mod p

(27)* mod p

{27 mod p}
= {{z};}s
B Disguising Search Termsvia Partial Queries
As noted, it is tempting to try to disguise queries by converting them to set fatetjmg some indices, and
inserting some random values. Unfortunately, the approach does noteny well.

This is reasonably clear intuititively: the size of the bit array is quite larg¢ivelto the number of hash
functions that would be used. This implies that for any search word, ths&tgef “productive” bits is low.

15



For a false positive, the random indices would have to hit a significant aupflof these widely-scattered
bits; this is improbable.

Jeff Lagarias of AT&T Labs Research has analyzed it in more detail, amed quantitatively. Most of
the following discussion, and in particular the formula, is due to his insightslandations.

First, remember that the ultimate goal of most queries is to find some partimdamenthat matches
the specified criteria. If the target document is short, its Bloom filter will g 8parse; accordingly, there
will be very few words that can be matched, and virtually none that will bathdtl by random indices.

Even for the nominal 1's density of .5, the odds are low. Suppose wetewgrad a query in set form
with random indices. To achieve a 50% probability of hitting a single word, @idwund on the number
of pad entries we would need is .

1

S mlh - hlogh
n

wherec is a constant betweey3 and1 andh is the number of bits we think we need to hit.

It is clear from the equation that the fundamental problem is the relationgivpebn the size of the
filter and the number of hash functions used. If weffiat 2, thus minimizing then! % term, the equation
reduces ta’/n - /m. While this is sublinear inn, even,/m is likely to be sufficiently larger than that
this scheme is impractical.

Thus, we cannot even ameliorate the problem by choosing an unrealistoaly/. Apart from the
fact thath has to be at least as great as the number of hits we need for legitimate goeriedal filter size
would have to be extremely small. In other words, this scheme can only wokkafrevwilling to tolerate a
large number of false positives over a very small population of terms.

We summarize this in Table 1. Bear in mind that for false positives to be effettiere would need to
be several for each query, thus increasing these values everrfurthe

Table 1: The number of dummy indices for a 50% probability of a single falsdip®, as a function of the
Bloom filter size () and the number of hits we need to be persuasive. All calculations waeeadsuming
n =20 andc = 1.

m
h | 10,000 100,000 1,000,000 10,000,000
6| 1,158 7,889 53,752 366,213
8| 2,630 19,724 147,913 1,109,191

10 | 4,583 36,407 289,191 2,297,130

12| 6,920 57,120 471,477 3,891,598

16



