
Privacy-Enhanced Searches Using Encrypted Bloom Filters

Steven M. Bellovin∗

smb@cs.columbia.edu
Columbia University

William R. Cheswick†

ches@cheswick.com
AT&T

Technical Report CUCS-034-07

Abstract

It is often necessary for two or more or more parties that do not fully trust each other to share data
selectively. For example, one intelligence agency might bewilling to turn over certain documents to
another such agency, but only if the second agency requests the specific documents. The problem, of
course, is finding out that such documents exist when access to the database is restricted.

We propose a search scheme based on Bloom filters and group ciphers such as Pohlig-Hellman
encryption. A semi-trusted third party can transform one party’s search queries to a form suitable for
querying the other party’s database, in such a way that neither the third party nor the database owner
can see the original query. Furthermore, the encryption keys used to construct the Bloom filters are not
shared with this third party. Multiple providers and queriers are supported; provision can be made for
third-party “warrant servers”, as well as “censorship sets” that limit the data to be shared.

1 Introduction

It is often necessary for two or more or more parties that do not fully trusteach other to selectively share
data. For example, two intelligence agencies may wish to let each other query their databases, while only
disclosing clearly relevant documents to the other party. Even then, there may be be restrictions that must
be observed.

Assume there are two principals, a querier and an information provider. Ideally, we would like the
following properties to hold:

a. The querier gains no knowledge of the contents of the provider’s database, except for documents that
are matched by valid queries.

b. The provider gains no knowledge of the contents of the queries; if possible, that should include infer-
ences based on the documents retrieved.

c. An independent party may restrict the set of legitimate queries.

d. No third parties may gain any knowledge of the queries or the documents.

Conventional search techniques do not have these properties. We propose a new scheme that does satisfy
our requirements, based on encrypted Bloom filters [1].

We will often speak of some party’s “filter”, in the singular. While that will sometimes be the case, in
general each party will have very many filters, one per document. In addition, there may be “union filters”

∗Work partially performed while at AT&T
†Work partially performed while at Lumeta

1



for distinct collections of documents, or for optimization in searching. Fundamentally, little of that matters
for our purposes, though we do discuss some aspects of this. When we say “search Bob’s filter”, we really
mean “search all of the Bloom filters owned by Bob and protected by his key”. In some situations, such a
search can be optimized; in other cases, it cannot.

There are at least two different problems in retrieving documents without leaking information: figuring
out which documents are desired, and actually retrieving them. We are concerned with the first problem:
providing a controlled way for one party to learn something about documentsowned by others, without
disclosing the query. The second problem, sometimes known asprivate information retrieval(PIR), is well-
studied in the literature (see, for example, [2, 3, 4, 5]), and is not discussed here in its full generality; we
do outline a few possibilities that take advantage of other properties of our scheme, but we emphasize that
there are many more ways matters can proceed.

It should be emphasized that none of these ideas is a total solution to the problem of information shar-
ing. Just knowing that someone has some information on a topic is useful. Indeed, an absence of public
discussion has been useful; in 1940, the lack of American publications on nuclear physics persuaded the
Soviets that atomic bomb research was under way [6].

1.1 System Structure

Our system is based on a querier, Alice (A), and a provider, Bob (B). (In practice, there will be many
different queriers and many different providers.) There is also a trusted third party, Ted (T ).

In a preparation phase, Alice, Bob, and Ted engage in a three-party negotiation that will provision Ted
with the cryptographic information necessary to transform queries. (Thistrialogue must be carried out for
every pair〈A, B〉.)

At any point, Bob prepares his database index as an encrypted Bloom filter; if the optionalindex servers
are used, Bob sends the index to them via Ted.

To search for a document, Alice prepares a query using her key and sends it to Ted. Ted cryptographically
transforms it to another key; the result is sent to either Bob or the index server. Optionally, awarrant server
can be consulted by Ted before the query is forwarded.

The result of a successful query is some sort of handle for a document; depending on the precise system
design, the document can be retrieved directly by Alice, or via Ted.

1.2 Organization of the Paper

Section 2 reviews the basics of Bloom filters. Section 3 explains encrypted Bloom filters, and shows how to
use Pohlig-Hellman encryption to satisfy one of our requirements. Further privacy-protecting enhancements
are discussed in Section 4.

From there, we move to more practical concerns. Section 5 shows how a semi-trusted third party can be
provided with certain special keys, while never having any keys to permit decryption of messages. Section 6
discusses system design considerations for this work. We conclude with adiscussion of related work and
some final thoughts.

2 Bloom Filters

A Bloom filter is a very efficient way to store information about the existence of a record in a database. It is
susceptible to false positives, but the probability of a false positive can bemade as small as desired.

A Bloom filter is an arrayB of m bits, initialized to zero. It requires a set ofn independent hash
functionsHi that produce uniformly distributed output in the range[0, m − 1] over all possible inputs.

2



To add an entryW to the filter, calculate

b1 = H1(W )

b2 = H2(W )

. . .

bn = Hn(W )

∀i, 1 ≤ i ≤ n, setB[bi] = 1

To check ifW is in the database, the samebi are calculated and bitsB[bi] are examined. If any of the
bits are 0, the entry does not exist; if all are 1, the record probably doesexist.

The values form and n are dependent on the number of records to be indexed and on the desired
upper bound on the false positive rate; see [1] for details. If, as suggested there, we pickm and n so
that approximately half the array is populated, the false positive rate is.5n. But these parameters are not
particularly important to this work, and will not be discussed further here.(Some considerations relating to
the density of 1 bits are discussed in Appendix B.)

3 Queries with Encrypted Bloom Filters

3.1 Group Ciphers as Hash Functions

To produce an encrypted Bloom filter, we use an encryption algorithm forour hash functions. For example,
we could define

Hi(W ) = {W}ki

or
Hi(W ) = {W‖i}k

where{X}k denotes the encryption of plaintext X using keyk. This would be expected to work well,
as modern cryptosystems are designed to produce uniformly distributed pseudo-random output across the
range of input space. In fact, a usual criterion (besides unpredictability – a sin qua non for encryption!)
is that changing one input bit should change approximately half of the outputbits. A Bloom filter scheme
using encryption for hash functions has been described by Goh [7].

But that requires distribution of theki to all parties, which does not meet one of our original goals.
Instead, we use a specialized form of encryption function where operations can be done on encrypted data.
In particular, we will employ a cipher that forms an Abelian group over its keys when encrypting any given
element. More formally, we employ a cipher such that for all encryption input valuesW , the set of all keys
k forms a group under the operation composition of encryption ofW .

Groups are closed, so
{{X}k}j = {X}j◦k

for all j andk and some operator◦. Such encryption algorithms are not common; indeed, for at least one
purpose—enhancing security via iterated encryption—they are undesirable. But at least one such algorithm
exists.

Suppose that Alice wishes to query Bob’s Bloom filter (or Bloom filter collection) for some wordW .
Using her Bloom filter keykA, she calculatesVWA

= {W}kA
. She then sendsVWA

to a semi-trusted third
party Ted. Ted does not know any keyski; however, for each pairi andj, he knows the ratio key

ri,j = kj ◦ k−1

i

Note thatk−1

i must exist if the cipher is indeed a group.

3



Ted then usesrA,B to transformVWA
into VWB

:

{W}KB
= {VWA

}rA,B

= {{W}kA
}rA,B

and returns that to Alice. Alice then sends this value to Bob, and receives inreturn a bit vector with the
answer. Thus, Alice can query Bob’s database without disclosing the query and without knowing Bob’s key.

3.2 Using Pohlig-Hellman Encryption for Bloom Filters

In Pohlig-Hellman encryption [8], we encrypt under keyk by raising the message to thekth power modulo
some large primep:

{X}k = Xk mod p.

The keyk must be relatively prime top − 1; we achieve that by choosingp to be a prime of the form
2p′ + 1 wherep′ is also prime, and mandating that all keys be odd and not equal top′. In addition, given
that xp−1 = 1 mod p (see, for example, [9]), we restrict keys to be less thanp − 1, and do all exponent
arithmetic modulo(p − 1).

The decryption keyd is chosen such thatkd ≡ 1 mod (p−1); d can be calculated efficiently by Euclid’s
Algorithm.

The set of valid keys and the operation of composition of Pohlig-Hellman encryption form an Abelian
group; a proof is sketched in Appendix A.

Suppose that we have{X}k and wish to produce{X}j . Let r = j · k−1 mod (p− 1), wherek−1 is the
is the decryption key corresponding tok, i.e., the multiplicative inverse ofk mod (p − 1). Then

{{X}k}r = (Xk)r mod p

= Xkr mod p

= Xk·j·k−1

mod p

= Xk·k−1·j mod p

= ({X}k)
k−1·j mod p

= ({{X}k}k−1)j mod p

= Xj mod p

= {X}j

Pohlig-Hellman encryption is expensive, since it requires exponentiation modulo a large primep. But
such encryption naturally produces a large output value. We can use that to generate our entire family of hash
values. IfB is m bits long, we use successive chunks of length⌈log2 m⌉ bits for our different hash values.
For security,p will be at least 1024 bits long. If we want a false positive rate of less than10−6 ≈ 2−20—
much higher than is commonly necessary—we need 20 hash functions, whichmeans that our bit array can
be250 bits long—far more than enough.

There is an obvious flaw here: Bob knowskB and can decryptVWB
to learnW . We can prevent that

easily enough by first calculatingW ′ = G(W ), where G is a cryptographic hash function. That has the
added benefit of expanding the query word, thus turning it into a better base for the exponentiation.

3.3 Encrypted Values and Hash Sets

A set of hash valuesbi can be represented in two different ways: as the result of the Pohlig-Hellman encryp-
tion (which will will designate as PH form), in which case it is a single, large number, or as a set of Bloom
filter indices. Both representations can be used; however, they are notequivalent.

4



polonium 0, 1, 2, 10, 13, 47
oralloy 10, 15, 16, 26, 35, 43
beryllium 4, 6, 10, 18, 18, 20
neutron 0, 2, 11, 25, 41, 43
Goldschmidt 1, 16, 19, 28, 42, 44
Kistiakowsky 4, 4, 10, 14, 36, 44
Meitner 12, 13, 22, 25, 27, 36
Szilard 11, 16, 33, 38, 43, 43

Figure 1: A sample Bloom filter of 48 elements; each search word has six bits set. The collisions within
some search terms are an artifact of the small size of this filter.

As shown above, it is easy to transform an encryption value into a set of indices; the inverse transforma-
tion is not possible, because information, and in particular the ordering, is lost.

Note also that the values and the ordering of the differentbi for a givenW will differ for different values
of k. We illustrate this by a toy Pohlig-Hellman cipher using modulus 65267, and extracting 4-bit chunks as
our indices.

If we encrypt 42 withk = 537, we get 19648, or 4CC016, yielding an index set of{0, 4, 12}. (Since
these values are indices, we’ve sorted the set and suppressed duplicates.) Encrypting 42 with a key of 17
yields 6362, or 18DA16, for a key set of{1, 8, 10, 13}.

Consider again the ciphertext 4CC016. If we re-encrypt that withk = 31 — which is equivalent to
encrypting42 with k = 537 · 31 mod 65266 = 9129 — we get 385B16. But if we change even a single
bit of the input value — say, to 4CC116 — and encrypt withk = 31, we get the very ciphertext different
F95916.

This is not surprising for an encryption algorithm, of course, but it underscores an important point: the
individual segments of a PH number cannot be manipulated individually. PH values can only be manipulated
arithmetically and as a whole, such as by transformation into the correspondingPH value for another key.
When in set form, the usual set operations of union and intersection can be performed, but one cannot switch
back to the arithmetic domain. As is discussed in the following section, we will use the different forms in
different places.

4 Enhancing Security

4.1 Salts

The scheme as presented has a number of deficiencies. If nothing else, Bob can do a dictionary attack on
W ′ to learn what Alice is looking for. This is especially easy for successful queries, since by definition Bob
has already created entries forW ′ in his Bloom filter. We solve this by “salting” the query. We can do this
in two ways, by modifying the Bloom filter-specific query or by including dummy words.

The first is superficially the most appealing. As before, Alice sends Ted an encrypted query, in PH form.
Ted performs the transformation to Bob’s key, and converts the transformed value to set form. This set is
modified by deleting some entries, leavingn′ valid ones, and add in some other set of random values. Ted
knows which the random values are, and can ignore the response values for them. While deleting some valid
indices will increase the false positive rate, ifn is large enough that issue can be minimized.

The problem is that there is still information leakage. A successful query will match n′ of the n bits
belonging to the target word; if Bob has an inverted index of the Bloom filter,he can see what the query

5



0 polonium, neutron
1 polonium, Goldschmidt
2 polonium, neutron
4 beryllium, Kistiakowsky
6 beryllium
10 polonium, oralloy, beryllium, Kisti-

akowsky
11 neutron, Szilard
12 Meitner
13 polonium, Meitner
14 Kistiakowsky
15 oralloy
16 oralloy, Goldschmidt, Szilard
18 beryllium
19 Goldschmidt

20 beryllium
22 Meitner
25 neutron, Meitner
26 oralloy
27 Meitner
28 Goldschmidt
33 Szilard
35 oralloy
36 Kistiakowsky, Meitner
38 Szilard
41 neutron
42 Goldschmidt
43 oralloy, neutron, Szilard
44 Goldschmidt, Kistiakowsky

Figure 2: An inverse filter, showing the words that map to each bit.

word is, because it will be the only one with a high hit count. Alice’s defenseis to ensure that some other
word or words have similarly high hit counts.

If we use random values for our extra indices, we need to calculate how many extra indices must be used
to ensure a reasonable probability of other words matching. Intuitively, it isreasonably clear that a signficant
number of extras are necessary, since each word is associated with onlyn bits, andn ≪ m. In fact, the
scheme probably will not work in practice. A more detailed quantitative analysis, presented in Appendix B,
shows why it fails.

The second technique is simpler: salt the query by selecting other, uninteresting words that are likely
to be in Bob’s database. The danger would be in correlations unknown to Alice; the dummy words may
select the same documents as the target words. Furthermore, over a series of several searches, the dummy
words should fit some recognizable pattern: given two query sets ofminiskirt, poodle, uranium, houndfish
andplutonium, privacy, cotton, snakeit would be pretty clear what the topic of interest was.

Both problems are illustrated by the sample Bloom filters shown in Figure 1. A query for, say, “polo-
nium” would generate a vector of 0, 1, 2, 10, 13, 47; if we used a query size of four elements, all four entries
would, of course, select 1 bits in the filter.

Suppose, though, that we sent the random entries 8, 12, 17, 27, 30, 37, 42, and 47 as well. Looking at
the inverse map (Figure 2), we see that “Meitner” has a hit count of two and “Goldschmidt” a count of one;
“polonium”, at four, would stand out as the real query.

On the other hand, a real use of this technique would be looking for certaindocuments in a large set;
someone unaware of the history of fission weapon design [6] might not realize that most documents con-
taining the word “polonium” would also contain the word “beryllium”. Bob might not know which term
was really of interest; it almost doesn’t matter, since either might reveal the questioner’s real intent. Still,
this is the best option, especially because the connection between the two is not symmetric: in this particular
example, there are likely to be many documents with the word “beryllium” but not “polonium”.

The remaining question here is who should generate the dummy query terms. Ted cannot; he does not
have a Pohlig-Hellman key that can be transformed to Bob’s key. Bob cannot, since he could easily detect
use of his own dummy words. That leaves Alice, which imposes a knowledge requirement on her: she needs
to know enough about Bob’s database to generate plausible dummy words.

Note that if Alice issues many queries, the dummy elements must be consistent each time. Put another

6



way, telling a consistent set of lies is hard.

4.2 Index Servers

A better approach to protecting queries is to useindex servers. Bob sends his Bloom filters to an index
server; each document is tagged with an opaque name. As before, Alice sends her queries to Ted; Ted
transforms them to Bob’s key. Instead of being routed to Bob, though, they’re sent to the index server. The
index server performs the Bloom filter matches and sends back the document names. Alice (or Ted) can
then ask Bob for these documents.

The advantage of this scheme is that Bob never sees the queries, and hence cannot perform any sort
of guessing attack. The index server doesn’t know Bob’s key, and hence can’t build a dictionary. Dummy
queries may still be necessary if Alice wants to prevent Bob from even knowing the topic of the investigation.

Note that the filters stored on an index server are much less sensitive than the base documents. This
allows for easy replication and distribution, whether for load-sharing, redundancy, or conservation of band-
width over slow links.

4.3 Warrant Servers and Censorship Sets

Under certain circumstances, it may be desirable to restrict the scope of some queries. For example, a police
officer pursuing an investigation may be restricted to query terms listed in a warrant. Similarly, there may be
some queries that Bob will answer for, say, Carol but not Alice. We cansolve these problems with warrant
servers and censorship sets.

A warrant server is another party to the dialog.T transforms all queries to the warrant server’s key. The
warrant server also needs to have some authoritative knowledge of the permissible terms, stored in a sepa-
rate Bloom filter generated by its own Pohlig-Hellman key; there are many obvious ways to accomplish this,
including digitally signed warrant messages and local copies of authoritative databases. Regardless, the war-
rant server deletes from the query all impermissible terms and sends the result back toT for transformation
to B’s key.

Note that the warrant server never sees the plaintext of any query terms. These are agreed upon offline,
and are encrypted by the warrant authorizer (e.g., a judge). The warrant server performs its operations on
the encrypted form of the query.

B’s censorship set—yet another Bloom filter—is now applied. Any terms that Bob will not permit Alice
to query are now deleted. The resulting query is then sent along toB.

Note that both warrant servers and censorship sets are specific to boththe source and the destination of
the query. Alice may be allowed to ask different questions of Bob than of Carol; similarly, Bob may be
willing to disclose more to one than to the other.

5 Provisioning Pohlig-Hellman Encryption Transformation Keys

We must now consider how to store the necessaryr values inT . The exact mechanisms will vary for
different encryption algorithms; here, we take advantage of the isomorphism between the encryption group
and a group over multiplication modulo(p − 1) and the set of legal keys for Pohlig-Hellman encryption.
(Proof of the isomorphism is straight-forward and is omitted here.)

We have a set of queriers/publishers,Q. While not everyone will publish data and not everyone will
query for data, both types need some keykq; accordingly, we treat them the same way. A party who fills
both roles will generally use separate keys for each role.

As noted, the ratio between the keys needs to be known. While this could be done by having allq ∈ Q
send their keys to the trusted partyT , this would create a security risk ifT were not fully trustworthy. A

7



simple, but not altogether satisfactory, alternative is to have a second trusted party,T ′, which calculates
the ri,j and sends the toT . If T ′ is not part of subsequent conversations between theq andT—this can
be ensured by conventional cryptography—there is no ongoing risk. This scheme will work for all group
ciphers. But the presence of many keys in one place is worrisome. Instead, we use a blinding mechanism.

To calculate the ratiorb,a between two keyska, kb, a, b ∈ Q, bothA andB set up a secure channel toT .
They each generate random blinding factorsFa, Fb; additionally,T generatesFta andFtb, 1 ≤ Fx < p− 1.
The following messages are sent over pairwise encrypted channels, withall arithmetic being done modulo
(p− 1). (For simplicity, we writea/b or a

b
to meana · b−1 whereb−1 is the inverse ofb in the group formed

by the set of valid keys.)

A → T : kA · Fa (1)

B → T : kB · Fb (2)

T → A : Fta (3)

T → B : Ftb (4)

A → B : Fa · Fta (5)

B → A : Fb · Ftb (6)

A → T : (Fa · Fta)/(Fb · Ftb) (7)

B → T : (Fb · Ftb)/(Fa · Fta) (8)

From messages 1 and 2,T can calculatekA·Fa

kB ·Fb
. From that and message 8,T can calculate

kA · Fa

kB · Fb

· Fb · Ftb

Fa · Fta

=
kA

kB

· Ftb

Fta

But T knowsFta andFtb, and can therefore calculaterA,B = KA/KB. A similar calculation can be done
using message 7; the results will match ifA andB are honest.

We thus see thatT never knows any party’s encryption keys. But can they be recovered from the ratio
values? Fortunately, that appears to be impossible, too.

Assume that we have three parties, Alice, Bob, and Carol, possessing keys KA, KB, andKC . T
therefore knows

rA,B = KA/KB

rB,C = KB/KC

rC,A = KC/KA

We wish to solve forKA in terms of the ratios.
Simplifying these equations, we get

KA = KB · rA,B

KB = KC · rB,C

KC = KA · rC,A

Substituting the second and third equations into the first, we get

KA = ((KA · rC,A) · rB,C) · rA,B

8



which yields the rather unsatisfatory insight that

1 = rC,A · rB,C · rA,B

We are thus left with a situation whereT can transform encrypted queries from one key to another, but
cannot generate queries or decrypt them.

If some partyD were to collude withT , T could read queries by transforming them toD’s key. To de-
fend against this, a querierA can blind messages toT by superencrypting with some nonce keyNA, and then
decrypting the transformed query. Because Pohlig-Hellman encryption and decryption are commutative—
the cipher is, as noted earlier, an Abelian group over the keys—the message can be successfully unblinded.
Let V ′ = (V )NA mod p, whereV is the query encrypted withA’s key that is sent toT to be transformed to
a query encrypted forB.

(V ′)RA,B = ((V )NA)RA,B mod p

= (V )NA·RA,B mod p

= ((V )RA,B)NA mod p

= ({V }KB
)NA mod p

This value can be decrypted using the decryption key corresponding toNA; {V }KB
can be used to generate

a query toB as described earlier.
The remaining roles are the generation of the primep and the certificate authority used for the initial

setup withT . Neither of these is particularly critical. Any party can verify thatp is prime, that it’s of the
form 2p′ + 1, and that it’s long enough to protect against solutions to the discrete log problem modulop.

The certificate authority is almost as simple. WhileA, B, andT want some assurance that they’re talking
to the right parties, the result of a failure does not leak any information about queries. The most likely result
of an impersonation is a failed query, which is undesirable. Thus, some reliable CA should be used. But
there is one further danger. In a real-world implementation of this scheme, a succesful query for a desired
document would likely result in a request for retrieval of that document. But this is more or less inherent in
the problem statement. While the documents could, presumably, be stored elsewhere in encrypted form, the
problem of finding the key would remain. We thus reject this solution.

At first glance, the number of transformation keys thatT must have appears to be a problem; it is, after
all, quadratic in the number of parties. That may not matter too much — for realisticuses, the number of
parties is likely to no more than a few thousand, and calculating and storing a few million keys is not a
challenge with modern hardware. More importantly, most parties do not fill both roles; the number of ratio
keys is actually the product of the number of queriers and the number of providers. The latter value is likely
to be small. Beyond that, our preferred solution — index servers — will reduce the number even more;
everyone, queriers and providers, will need a ratio key for the index servers, but will not need a key for any
other party. The number of index servers can be very small.

Still, if it becomes an issue, there is a solution.T ’s role can be partitioned, with eachTi serving some
set of parties. For each partyA served by aTA, there would be a transformation keyrA,TA

; a routing key
rTA,TB

would link the trusted parties. A query sent fromA to TA would be transformed three times: toTA’s
key, toTB ’s key, and then toB’s key.

To be sure, this does require that each trusted party have a Pohlig-Hellmankey, which violates one of
our design principles. But this key only needs to be retained long enough for it to engage in the provisioning
dialog with the otherTi; after that, it can be discarded, thus preserving security.

The set of trusted parties does not need to be fully connected. Instead,they can be linked in any sort of
network; standard routing techniques can be used to direct the query to the proper party.

9



6 System Design Considerations

6.1 Roles

We can now look at some systems-level issues. We begin by considering who the different parties are, and
what their trust properties are.

First, of course, there are sets of queriers and information owners. There are also a a variety of neutral
parties: Ted, the warrant servers, and the index servers.

The trust relationship between queriers and providers is complex. Clearly, they do not trust each other
unreservedly. This lack of trust may be due to legal strictures, organizational “turf battles”, or simply the
need for compartmentalization of sensitive data. But within certain bounds, they are willing to share certain
classes of information if suitable need is demonstrated. In other words, the details here are political, not
technical; nevertheless, these details are likely to be the major driver of anyactual implementation of this
scheme.

Information providers have a complex internal problem. Except for verysmall agencies, building the
index is difficult: it is undesirable for large numbers of sensitive documentsto exist in one place at one
time. There are two easy solutions. First, each group can be given the samePohlig-Hellman key to use in
generating its own bit array; the collection of bit arrays can then be treatedas a document collection by the
outside world’s contact. More likely, each group would have its own Pohlig-Hellman key, and send a set of
PH-form values to the central contact point; it would use a specialized setof transformation keys to convert
these values to a common Pohlig-Hellman key, and build the bit map from them. (Thisis, in effect, a special
case of the distributedT role discussed earlier.)

Another role is that of the warrant server. This role can be split, as long as the intermediary has authori-
tative knowledge of which server handles requests from which queriers and for which providers. Note that
T does not need a full set of transformation keys for the warrant servers; rather, it only needs keys to map
requests from each querier and to each provider associated with that warrant server.

The most complex role is that of the trusted third party. While Ted never sees any queries or any data,
he is the ultimate arbiter of who does get to see what. The set of transformationkeys stored by Ted is the
functional discriminator of what providers any given querier can reach; if no transformation key exists, no
queries can be made. In the simplest design, Ted is also responsible for routing queries to the proper warrant
servers, though there are clearly alternative topologies that would remove that responsibility: queriers could
sent their requests to the warrant servers directly; they in turn would transmit the filtered requests to Ted.

In some designs, Ted must also send responses and even encrypted documents back to queriers. This
imposes some bandwidth constraints; in some cases, one must trust Ted not toinvent keys that it can use to
decrypt documents; see Section 6.2 for details.

In small networks, we may be able to eliminate Ted’s run-time function. After calculating the ratio keys,
he just distributes them to all of the queriers, who do the transformations themselves.

Index servers, if used, have some of the same properties as Ted. Theynever see any confidential infor-
mation; however, they’re responsible for routing requests accurately.They also need to be more trustworthy;
a subverted index server could select documents that don’t match Alice’squeries, thus betraying Bob. On the
other hand, they presumably don’t know the actual names or contents of the documents they might betray.
If queries are not sent via Ted, an index server could contact a warrant server itself.

6.2 Protecting Document Retrieval

The actual document retrieval can be a crucial feature of total system design: by seeing which documents are
actually retrieved, Bob can learn soemthing of the query terms. Here we briefly sketch a retrieval protocol
layered on top of our encrypted Bloom filter mechanism. Again, we note that this field, PIR, is well-studied

10



in the literature.
As we noted earlier, there are many possible ways to proceed at this point. The constraints will be both

technical and policy-oriented. For example, the scheme we are about to outline specifies that all actual
document retrieval be done viaT . This would require thatT have high-bandwidth links to all servers. If
that were not the case, a different solution would be needed.

From a policy perspective, Bob may not wish to transmit documents to Ted, even in encrypted form.
Instead, Alice may be allowed to present a request for a set of documentsto a competent human arbiter;
he or she would decide if they were relevant, and would then provide them toAlice only under carefully
controlled conditions.

Again, there are endless possibilities. Here we describe one possible scheme, with a few variants thrown
in for good measure.

We first describe the notion ofsealing. A sealed message is one created by some party, and encrypted
and authenticated in such a way that only that party can read or verify the message. Initialization vectors or
random padding are used to prevent dictionary attacks on sealed messages. There are many obvious ways to
do sealing; similar schemes are often used with Web cookies [10]. Sealing is used here as an optimization
to permit stateless operation by servers; an obvious alternative is local caching of such messages.

Initially, Alice prepares a query list. The query list is a set of hashed, PH-encrypted search terms;
each query is flagged as real or dummy. The list is sent to Ted (all messages in this protocol are pairwise
encrypted), along with a newly-generated public key embedded in a certificate signed by Alice. Alice can
either remember the corresponding private key or send along a sealed copy of it.

Ted sends the query list, including the flags, to the warrant server. The warrant server compares the
query list with the warrant; for any unauthorized terms, the flag is set to “dummy”. The warrant server also
signs the certificate sent by Alice; Alice’s own signature is deleted and her name never appears in the new
certificate, thus preserving her anonymity. (Having the warrant serververify and then sign the certificate
prevents Ted from substituting his own public key for Alice’s.) The altered list is returned to Ted.

Next, Ted applies Bob’s censorship constraints. Again, invalid queries are not deleted from the list;
rather, their flags are reset. Ted prepares a sealed copy of this list, including the flags.

Bob now matches the set of indices against his document collection. Any document matched by all
of the indices is flagged as eligible for retrieval. Bob sends back to Ted a listof these documents; each
document is associated with the set of indices that selected it. Note that each such index is paired with Ted’s
sealed pointer. Bob’s reply message is accompanied by a sealed copy of the query; this will later permit Bob
to verify that a valid query was made for some documents.

Ted now filters Bob’s results, according to its own list of what Alice is entitled tosee. Note that this
filtering can include an enforceable minimum number of hits on any word, to ruleout false positives from
the Bloom filter. We thus can enforce a quantitative notion of “probable cause”.

Ted then asks Bob for those documents, as well as a few others to disguisethe actual topic of inter-
est. Bob encrypts these documents with Alice’s public key, thus denying Tedany knowledge of what they
actually contain. As final step, only the authorized documents are sent back to Alice.

Clearly, many other variants are possible for this phase. Ted could blend together several separate
queriers’ requests, each querier could send along many different public keys, etc.

The remaining issue is security against traffic analysis. Standard techniques, such as Mixnets [11], can
be used as a defense.

We get a different set of tradeoffs if we use index servers. Exporting the filters should not pose a security
risk, because of the cryptographic mechanisms used to generate them. On the other hand, there is the issue
of greater trust in some outside party. The decision on using index servers must be based on the relative
trust parties have in such a third party versus their confidence that information providers will not go to great
lengths to ascertain the subject of queries.

11



6.3 Performance Issues

The performance of a system based on this design is limited by two factors: thespeed of Pohlig-Hellman
encryption, and the ability of a site to rapidly search many Bloom filters.

In general, encryption speed is not likely to be a major issue. Queriers do not generate that much
traffic; software solutions could easily handle the load.T is doing many more large exponentiations; one
can either use special-purpose hardware — there are off-the-shelf chips that can perform 25,000 modular
exponentiations per second — orT ’s role could be replicated. Information providers do not need to do any
Pohlig-Hellman operations after the database is created.

Beyond that, there will be some overhead to set up secure pairwise connections. While this may not be a
trivial issue, these connections can be amortized over many queries and responses. In addition, off-the-shelf
Web SSL accelerators and load balancers can be used as needed.

A linear search of a large collection of Bloom filters—say, one per document—is likely to be more
expensive. A better solution is to use hierarchical filters, where each one at a higher level is composed of the
logical union of its child filters. There are obvious optimizations at this point, including letting each group
of documents be hosted on a separate departmental search server.

There is a more subtle optimization that we can do if the queries arrive in PH form. A single PH-
form query can be split into different size pieces, to accomodate different Bloom filter sizes. Thus, we can
separate documents by size (more precisely, by the number of indexed search terms), and use different sizes
of Bloom filters for each size range. This may achieve a considerable performance improvement; recall that
Bloom filters give optimal performance for a 1’s density of .5 [1], and smalldocuments will not achieve that
density. [1] also provides a performance analysis of Bloom filters, though the access patterns here are more
complex than are considered in that paper.

Alice is likely to incur considerable expense generating many private/public key pairs for query retrieval.
Each document retrieved may require a separate pair; at the least, each query would require one in some
scenarios, as was discussed above.

7 Related Work

Song, Wagner, and Perrig described a scheme for searching for sequences of words in encrypted files [12].
However, their scheme is aimed at remote storage by Alice of her own documents. There is no provision for
multiple queriers to access indices belonging to many different providers.

Boneh et al.’s Searchable Public Key Encryption [13] is a mechanism fortagging messages with a few
keywords that can be searched for. It doesn’t scale to searches over the entire document.

Goh’s scheme [7] is the closest to ours, in that it employs Bloom filters with encryption used for the hash
functions. However, it requires that all parties share all keys. The paper gives several elegant mechanisms
for executing more powerful searches; most of those schemes apply to our method as well. In particular, he
described using binary searches on collections of documents to speed upretrieval. He also described how to
use Boolean combinations of terms in queries; while those will work for our scheme, they pose compliance
checking problems for warrant servers. The suggestion of deleting some of the indices (Section 4.1), as well
as the problems with that scheme, were also noted by Goh.

As noted earlier, the field of private information retrieval [2, 3, 4, 5] is closely linked. That literature
concentrates on information-theoretic bounds on leakage. The practicalityof such schemes is unclear.

The encryption property we need was dubbeduniversal re-encryptionby Golle et al. in [14]. A similar
scheme was calledatomic proxy encryptionby Blaze, Bleumer, and Strauss [15]. Both of these use public
key cryptosystems, rather than symmetric ones. While public key schemes would work for encrypted Bloom
filters, we do not need the other properties of public key cryptography.(On the other hand, Pohlig-Hellman
encryption is comparable in cost to many public key schemes.)

12



8 Conclusions

We have described a scheme for protected searches among mutually suspicious parties, without the need for
a trusted intermediary. The current design uses Pohlig-Hellman encryption, which is rather expensive, but
this is not a requirement. Most of the design and analysis would apply to any other cipher where the keys
form an Abelian group. If we omit the blinding of queries, we can drop the requirement for commutativity.
Unfortunately, we do not know of any other suitable ciphers. (There is another obvious property we demand
of such ciphers: multiple encryption of this sort must be secure. A simple Vernam cipher indeed forms a
group; it is obviously unsuitable for our purposes here.)

Although we are only using the encryption operation of our cipher, a simple hash function will not
suffice. A group requires an inverse operation; thus, the “hash” would be reversible and the function would,
in fact, be an encryption function. It is tempting to use RSA encryption with a common modulus as for
encryption; that would permit use of efficient public exponents such as232 + 1. Unfortunately, that runs
afoul of Simmons’ attack [16, 17] on common modulus RSA.

There is one aspect that is tightly tied to other properties of Pohlig-Hellman encryption: the scheme for
(and analysis of) provisioningT . This aspect would have to be rethought if a different cipher were to be
used where the keys did not form a group isomorphic to the encryption group. We note again, though, that
the provisioning role and the query transform role are separable.

There are a number of applications for this scheme beyond what we have presented here. One intriguing
one is for use in discovery proceedings in civil lawsuits. During discovery proceedings, each party is entitled
to some of the other side’s documents, but only if they’re demonstrably relevant. Our technology provides
an efficient scheme for performing such searches.

Other applications are feasible if the retrieval enhancements from Section 6.2 are used. One is a secure
peer-to-peer file-sharing network. By broadcasting a salted query to numerous servers, Ted can find who
has a certain file — song? — without knowing what is being requested. Similarly, Bob, Carol, et al. do not
know who is requesting things, nor even what is actually being requested.

PH-encrypted Bloom filters can also be used to implement part of Anderson’s Eternity Service [18].
Anderson suggests that an index is necessary, but doesn’t suggest how to provide one.

There is a large body of literature on secure or anonymous document sharing, such as Publius [19]; it is
likely that most of those schemes could be integrated with our secure searchmechanism. How to do that is
not the focus of this work. We do note, though, that security is a total systems property; some such layer is
likely a necessary component.

Acknowledgments

Jeff Lagarias performed the analysis of query index padding, and madeother observations that form the
core of Appendix B. Rebecca Bellovin corrected a number of errors in the equations. The referees made a
number of very valuable comments.

References

[1] B.H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Communications of ACM,
vol. 13, no. 7, pp. 422–426, July 1970.

[2] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan,“Private information retrieval,” in
IEEE Symposium on Foundations of Computer Science, 1995, pp. 41–50.

13



[3] Christian Cachin, Silvio Micali, and Markus Stadler, “Computationally private information retrieval
with polylogarithmic communication,”Lecture Notes in Computer Science, vol. 1592, 1999.

[4] B. Chor, N. Gilboa, and M. Naor, “Private information retrieval by keywords,” Tech. Rep. TR CS0917,
Department of Computer Science, Technion, 1997.

[5] Eyal Kushilevitz and Rafail Ostrovsky, “Replication is NOT needed: SINGLE database,
computationally-private information retrieval,” inIEEE Symposium on Foundations of Computer Sci-
ence, 1997, pp. 364–373.

[6] Richard Rhodes,The Making of the Atomic Bomb, Simon & Schuster, Inc., 1987.

[7] Eu-Jin Goh, “Secure indexes,” Cryptology ePrint Archive, Report 2003/216, 2004, http://
eprint.iacr.org/2003/216/.

[8] Stephen C. Pohlig and Martin Hellman, “An improved algorithm for computinglogarithms overGF (p)
and its cryptographic significance,”IEEE Transactions on Information Theory, vol. IT-24, pp. 106–
110, 1978.

[9] Ivan Niven, Herbert S. Zuckerman, and Hugh L. Montgomery,An Introduction to the Theory of
Numbers, John Wiley & Sons, 1991.

[10] D. Kristol and L. Montulli, “HTTP state management mechanism,” RFC 2965, Internet Engineering
Task Force, Oct. 2000.

[11] David L. Chaum, “Untraceable electronic mail, return addresses, and digital pseudonyms,”Commun.
ACM, vol. 24, no. 2, pp. 84–90, 1981.

[12] Dawn Song, David Wagner, and Adrian Perrig, “Practical techniques for searches on encrypted data,”
in Proceedings of IEEE Symposium on Security and Privacy, May 2000, pp. 44–45.

[13] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano, “Searchable public key
encryption,” Cryptology ePrint Archive, Report 2003/195, 2003,http://eprint.iacr.org/
2003/195/.

[14] P. Golle, M. Jakobsson, A. Juels, and P. Syverson, “Universal re-encryption for mixnets,” 2002.

[15] Matt Blaze, G. Bleumer, and Martin Strauss, “Divertible protocols and atomic proxy cryptography,”
in Proceedings of Eurocrypt ’98, 1998, Lecture Notes in Computer Science.

[16] Gustavus J. Simmons, “A “weak” privacy protocol using the RSA crypto algorithm,”Cryptologia, vol.
7, no. 2, pp. 180–182, 1983.

[17] Steven M. Bellovin and Michael Merritt, “Augmented encrypted key exchange,” inProceedings of the
First ACM Conference on Computer and Communications Security, Fairfax, VA, November 1993, pp.
244–250.

[18] R. Anderson, “The eternity service,” inProceedings of Pragocrypt ’96, 1996.

[19] Aviel D. Rubin Marc Waldman and Lorrie Faith Cranor, “Publius: A robust, tamper-evident,
censorship-resistant, web publishing system,” inProc. 9th USENIX Security Symposium, August 2000,
pp. 59–72.

14



A Proof that Pohlig-Hellman Encryption is a Group

We sketch a proof that Pohlig-Hellman encryption is indeed a group, and in particular an Abelian group, for
the operation of composition. We assume that the modulusp is a large prime of the form2p′ + 1, wherep′

is also prime.
The requirements for a group are the existence of an identity element, the existence of an inverse for all

set members, closure, and associativity.
Fairly obviously, the identity element is encryption with the key 1. The existenceof inverses for all keys

is shown in [8].
To show that the set is closed, we must show that encryption with any two keys yields another valid key.

A Pohlig-Hellman key is an integerk relatively prime top − 1 and1 ≤ k ≤ p − 2.

{{x}k}j = (xk)j mod p

= (xjk) mod p

We thus have closure ifjk yields a suitable integer.
For j andk to be relatively prime top − 1, they must be odd. Sincej andk are odd, their product is

odd. Per [8], we reduce the product modulop − 1, an even number. The result of that operation is always
odd, and by definition of modulus will yield a value less thanp − 1.

We must also show thatjk is relatively prime top−1. Sincep = 2p′+1, this reduces to showing thatjk
is relatively prime to2p′; sincejk is odd, we merely need to show thatjk is relatively prime top′. Assume
it isn’t. By definition of a prime number, this implies thatj or k is a multiple ofp′. However, members of
the set are all relatively prime to2p′, and hence top′.

The remaining criterion is associativity.

{{x}kj}i = {(xkj mod p)}i

= (xkj)i mod p

= xkji mod p

= (xk)ji mod p

= ({x}k)
ji mod p

= {({x}k)}ji

Finally, for encryption to be an Abelian group, we must show that it is commutative.

{{x}k}j = {xk mod p}j

= (xk)j mod p

= xkj mod p

= (xj)k mod p

= {xj mod p}k

= {{x}j}k

B Disguising Search Terms via Partial Queries

As noted, it is tempting to try to disguise queries by converting them to set form, deleting some indices, and
inserting some random values. Unfortunately, the approach does not work very well.

This is reasonably clear intuititively: the size of the bit array is quite large relative to the number of hash
functions that would be used. This implies that for any search word, the density of “productive” bits is low.

15



For a false positive, the random indices would have to hit a significant number of of these widely-scattered
bits; this is improbable.

Jeff Lagarias of AT&T Labs Research has analyzed it in more detail, and more quantitatively. Most of
the following discussion, and in particular the formula, is due to his insights andderivations.

First, remember that the ultimate goal of most queries is to find some particulardocumentthat matches
the specified criteria. If the target document is short, its Bloom filter will be very sparse; accordingly, there
will be very few words that can be matched, and virtually none that will be hitat all by random indices.

Even for the nominal 1’s density of .5, the odds are low. Suppose we wantto pad a query in set form
with random indices. To achieve a 50% probability of hitting a single word, a lower bound on the number
of pad entries we would need is

c

n
· m1− 1

h · h log h

wherec is a constant between2/3 and1 andh is the number of bits we think we need to hit.
It is clear from the equation that the fundamental problem is the relationship between the size of the

filter and the number of hash functions used. If we fixh at 2, thus minimizing them1− 1

h term, the equation
reduces toc′/n · √m. While this is sublinear inm, even

√
m is likely to be sufficiently larger thann that

this scheme is impractical.
Thus, we cannot even ameliorate the problem by choosing an unrealisticallysmallh. Apart from the

fact thath has to be at least as great as the number of hits we need for legitimate queries, our total filter size
would have to be extremely small. In other words, this scheme can only work if we are willing to tolerate a
large number of false positives over a very small population of terms.

We summarize this in Table 1. Bear in mind that for false positives to be effective, there would need to
be several for each query, thus increasing these values even further.

Table 1: The number of dummy indices for a 50% probability of a single false positive, as a function of the
Bloom filter size (m) and the number of hits we need to be persuasive. All calculations were done assuming
n = 20 andc = 1.

m
h 10, 000 100,000 1,000,000 10,000,000
6 1,158 7,889 53,752 366,213
8 2,630 19,724 147,913 1,109,191

10 4,583 36,407 289,191 2,297,130
12 6,920 57,120 471,477 3,891,598

16


