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Abstract 

Privacy protection is paramount in conducting health research. However, studies often rely on data stored 
in a centralized repository, where analysis is done with full access to the sensitive underlying content. 
Recent advances in federated learning enable building complex machine-learned models that are trained 
in a distributed fashion. These techniques facilitate the calculation of research study endpoints such that 
private data never leaves a given device or healthcare system. We show on a diverse set of health studies 
that federated models can achieve the same level of accuracy, precision, and generalizability, and result in 
the same interpretation as standard centralized statistical models whilst achieving significantly stronger 
privacy protections. This work is the first to apply modern and general federated learning methods to 
clinical and epidemiological research -- across a spectrum of units of federation and model architectures. 
As a result, it enables health research participants to remain in control of their data and still contribute to 
advancing science -- aspects that used to be at odds with each other. 

1.  Introduction 
Protecting privacy is crucial in designing, running, and interpreting health studies. However, most health 
research to date uses data stored in a centralized database, where analysis and model fitting is done with 
full access to the sensitive underlying data. Recent advances in distributed learning enable building 
complex machine-learned models that are trained in a purely distributed fashion. Federated learning is a 
subfield of machine learning where multiple participants -- sometimes referred to as devices or clients -- 
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collaborate in learning a joint mode (Kairouz et al. 2019). Federated learning techniques enable 
calculation of research study endpoints in a privacy-preserving fashion such that private data never leaves 
a given device (e.g., a research participant’s smartphone, wearable or implanted device) or system (e.g., 
academic research center, clinical trial site or medical data repository). Each client’s raw data is stored 
locally and remains under control of and private to that participant. Only focused model updates leave the 
clients (Kairouz et al. 2019), enabling the aggregation of learned patterns into a single global model 
without raw data disclosure. The communication between clients can be peer-to-peer but typically 
involves a central orchestrator that receives and aggregates clients’ updates.  
 
The federated learning approach enables two types of benefits. First, a higher quality model can be 
learned by leveraging a broader set of data points, beyond what could be done with the data held by any 
one participant or data silo. This is particularly important for modern machine learning models that often 
involve large numbers of parameters and by extension require large amounts of data for training. The 
second benefit is privacy -- everyone involved keeps their raw and -- in general -- sensitive data local and 
private. Differential privacy is directly incorporated into the approach to protect individuals’ privacy. 
 
These characteristics make federated learning particularly appealing for scalable health research, where a 
large fraction of the population may want to contribute to novel health findings, but have reservations 
about sharing raw data and digital signals. While federated learning has generated significant interest in 
the machine learning community in recent years, with a specific focus on smartphone-based analytics and 
learning (Hanzely et al. 2020) and learning across data silos of various healthcare systems (Harmon et al. 
2020, Rieke et al. 2020,   Sheller et al. 2020, Vaid et al. 2020, Choudhury et al. 2020, Brisimi et al. 2018, 
Sheller et al., 2018), its applications to clinical and epidemiological studies over individuals’ data are only 
beginning to emerge -- for example in a new study on respiratory infections (ClinicalTrials.gov Identifier: 
NCT04663776). At this point, however, only specific large homogenous units of federation, such as at the 
level of a healthcare system, have been studied in detail in prior work, and the focus has been on 
traditional classification tasks.  
 
As a result, considerable challenges and open questions remain that to our knowledge have not been 
systematically studied to date. In particular, health research often involves a relatively small number of 
participants (small N) in each study, limited number of “rows” of data per participant, a large number of 
multifactorial variables, and potentially unequal levels of patients’ participation. Specifically, health study 
data is typically non-IID -- not independent and identically distributed -- which is compounded by the fact 
that in the federated regime, individual data points are distributed across many devices that participate 
asynchronously. Since many machine learning methods work under the assumption of IID, it is important 
to empirically examine its effects in a federated setting as well. Further, in a large number of clinical 
studies, the focus is not on prediction, but correlational analysis to understand the associations between 
different factors, and hypothesis testing. Prior methods are often ad-hoc, which can be a problem in 
generalizing to a new dataset with a potentially different level of federation. Here we examine the broader 
spectrum of units of federation -- from the extreme of each subject being one unit to large units on a 
per-country basis -- and a spectrum of machine learning tasks. Finally, prior studies have not fully 
considered privacy, which is not guaranteed by default in an arbitrary federated learning setup, and needs 
to be treated, implemented, and studied explicitly. 
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Our work demonstrates the successful use of federated learning in the presence of these challenges in 
homogeneous data silo settings (i.e., where the output of federated computation from one data silo is 
composable with the output from another silo). Specifically, in this work we reproduce eight diverse 
health studies spanning the past several decades in a purely federated setting, where each unit of 
federation keeps their data private but still contributes to the aggregate model. We randomly sample eight 
studies that generated new knowledge on various clinical and epidemiological problems, and made the 
underlying raw data publicly available. The focus of these studies ranges from diabetes to heart disease to 
SARS-CoV-2 and MERS-CoV to patient mortality prediction based on electronic medical records. 

2. Results 
In all reproduced studies (Table 1), we compare -- side by side -- the results of the originally published 
model with its federated counterpart, and with/without central and local differential privacy. The 
comparison is done across several key dimensions: in terms of robustness of the model -- how well does it 
generalize and capture unseen data; model interpretation -- are optimal model parameters found in all 
cases and do they have the same values; and finally scalability -- can federated learning support studies 
with a wide range of the number of participants and the amount of data each subject generates (both small 
and large). We find that the results from federated learning are on par with centralized models, both in 
terms of performance and interpretation (Table 2). Unlike prior work, which is typically tailored to a 
specific fixed setting, we use TensorFlow for all our analyses, which provides a systematic and unified 
methodology for federated learning.  
 
Furthermore, we contrast privacy properties and utility of these new distributed methods with traditional 
central differential privacy methods (see Methods) used in classical settings. As there are growing 
concerns about the ability to maintain privacy of research participants’ data as it becomes increasingly 
feasible to re-identify individuals through combining multiple sources of electronic health data (de 
Montjoye et al. 2013, Sweeney et al. 2013, Health Data Exploration Project 2014) we show that new 
methods involving federated learning and differential privacy can provide very strong privacy protections 
with minimal reduction in utility. 
 
This work’s primary focus is on cross-device (cross-patient) settings, where the unit of federation is a 
single individual. We also show the same approach generalizes to the cross-silo setting, where the unit of 
federation is larger, such as a hospital unit, a healthcare system, or even a country (see A1 for a formal 
problem definition). To do so, we concentrate on two broad classes of models commonly used in medical 
research: logistic regression (LR) and deep neural network (DNN) (Appendix A3). While logistic 
regression is a special instance of a broader class of neural models, we treat it separately as it still 
underpins a large fraction of health studies done to date, due to its relative simplicity and interpretability. 
To quantify differences in performance and interpretation of models trained in a centralized fashion to 
those trained in a distributed way, we use the same mathematical formulation of the core model (e.g., 
model formula, loss function) and apply it to the same data. The key difference is in how the training data 
is stored and accessed (centralized vs. federated) and how the model optimization is implemented. 
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Since in general in the federated setting not all participants may be available at any one time, we explore 
model quality as function of client participation rate. Across the datasets, we find that only a minority of 
clients need to participate in any one round of federated learning (Figure 1 and Appendix Figure 4). These 
sub-populations are sampled at random with replacement for each round. We see that just a 2% 
randomized participation rate achieves almost the same model quality as with full participation. This 
makes the federated setup quite robust to platform-independent bias caused by device dropout described 
in Appendix A5. 
 
We now turn to briefly describe all datasets used in this study (Table 1) along with prior work we 
reproduce here in a federated setting. The datasets and models reproduced here vary along many axes, 
namely the number of examples, class balance/imbalance, number of independent variables, the amount 
and nature of the signals leveraged (e.g., continuous, discrete, categorical, textual, embedded, time series), 
focus on various metrics (e.g., ROC AUC, hypothesis testing, odds ratio, coefficient interpretation, test of 
statistical significance), and model architectures (e.g., regression models, neural networks of various 
depth, sequential models). We discuss general challenges in reproducing statistical models in Appendix 
A6. In this section we focus on a sample of diverse results and report the remainder in Appendix A4. We 
highlight that in all datasets tested and across all axes considered, the federated method reaches the same 
conclusion as the original work. 

2.1. Heart failure 
The Heart Failure Clinical Records Dataset from the UCI machine learning data repository is a 
multi-classification database involving 299 individuals with left ventricular systolic dysfunction and New 
York Heart Association (NYHA) class III or class IV heart failure ranging from 40 to 95 years of age 
(Chicco & Jurman 2020). The dataset was collected in 2015 from the Faisalabad Institute of Cardiology 
and the Allied Hospital in Faisalabad in Pakistan. The dataset is used to predict survival, based on 13 
attributes including age, sex, blood pressure, left ventricular ejection fraction, diabetes, anemia and 
creatinine levels. 
 
The original work presents two logistic regression models -- one with all variables and one with only 
three independent variables (ejection fraction, serum creatinine, and time of followup in months). Our 
federated setting achieves 0.85 AUC in the full model formulation (cf. 0.82 in the original work) and 0.83 
AUC in the latter setup with variable selection (cf. 0.82 in the original work). The higher AUC score in 
our setting is due to the addition of regularization while optimizing model parameters, which also allows 
the new method to subsume the semi-manual variable selection done in the original work. Mirroring the 
original study, all metrics are reported as means over 100 executions with randomized training-testing 
data splits. Adding a central differential privacy layer reduces AUC to 0.83 for the full model (cf. 0.82 in 
the original work which doesn’t consider any DP protections), but provides strong guarantees (𝜖=0.165 
and 𝛿=10-5). With local DP, the federated architecture achieves also 0.83 AUC with local 𝜖=1.36 and local 
𝛿=10-9 per round. We note this is a very small dataset containing only 299 examples and this experiment 
demonstrates our methods apply also in situations where data is limited.  
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2.2. Electronic medical records (MIMIC-III) 
MIMIC-III is a freely available critical care electronic health records (EHR) database involving 
comprehensive data from approximately 40,000 distinct patients age 16 and older, spanning over 53,000 
hospital admissions to Beth Israel Deaconess Medical Center between 2001 and 2012 (Johnson et al., 
2016). The dataset contains 4,579 charted observations and 380 laboratory measurements associated with 
hospital admissions. Each patient in the dataset has a time series of fairly complex medical encounters 
involving procedures, medications, diagnoses and other factors. This allows us to test federated learning 
in a setting where each patient is represented by a large amount of diverse and multi-modal data points on 
a timeline. 
 
We build a deep neural network to predict inpatient mortality with data up to 24 hours after admission, 
using patient age, gender, CCS diagnosis codes, RxNorm medication codes, CPT procedure codes, and 
free-text notes as input variables. The model architecture contains an input layer, three hidden layers with 
512, 256, and 128 neurons respectively, and an output layer with a sigmoid activation function (Appendix 
A3, Appendix Figure 2). We use L1 regularization with magnitude 0.0001 and L2 with 0.01. 
 
To explore different levels of federation, we partition the dataset on a per-patient basis (unit of federation 
is a single patient) and in groups of patients (per-silo basis). In particular, the per-patient federation 
follows the cross-device federated learning setting, where each client holds data of a single patient, while 
the per-silo federation setting splits patients into multiple groups (silos) using a Dirichlet distribution, 
which simulates the case each hospital or organization holds their patients' data.  
 
To demonstrate the efficacy of federated learning on this dataset, we compare the ROC curve of three 
different experiments: (1) TF centralized model: A traditional server-side trained model assumes all data 
is available on a centralized server. (2) TF federated cross-device model: A model trained on clients on a 
per-patient basis. Each training round has 16 participating patients, and we trained the model for 500 
rounds. (3) TF federated cross-silo model: A model training on clients on a per-silo basis. We use a 
Dirichlet distribution with parameter alpha of 10 to randomly group all patents to 20 groups of various 
sizes according to the distribution, and select 5 groups to participate in each federated training round. 
 
We measure the performance of three models using the AUC metric and find all three models achieve 
comparable performance with statistically insignificant differences (p values ranging from 0.47 to 0.72) 
(Figure 2). 

2.3. SARS-CoV-2 and cancer 
The Malignancy in SARS-CoV-2 Infection database is a large community-based registry of over 84,000 
people who were tested between February 22 and April 1, 2020 for SARS-CoV-2 in the Veneto region of 
Italy (Rugge et al. 2020). The dataset has been used to understand the risk of SARS-CoV-2 infection and 
health outcomes, based on age, sex, and cancer history. 
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Based on the prevalence odd ratio (pOR), Rugge et al. (2020) presented the following observations: 
1. The risk of hospitalization is lower among females. 
2. Compared to young people, Covid-19 positive patients aged 70 years or more were at greatest 

risk of hospitalization. 
3. Individuals who had been diagnosed with cancer within the 2 years before acquiring the infection 

showed the highest risk of hospitalization. 
 
As in Rugge et al. (2020), we split our experiments into six sections and apply both centralized and 
federated learning models to compare the performance of the models. To test various units of federation, 
we experiment with the extreme case of each patient being its own unit (Appendix Figures 5&6), and with 
groups of patients (Appendix Figure 7). Appendix Figure 5 shows the ability of the federated approach to 
learn coefficients equivalent with the original work. Appendix Figure 6 shows an agreement in odds ratios 
across the models. The full remainder of the experiments are reported in Appendix A4 and key results 
summarized in Table 2, Figure 3 and Figure 4. Each of our models reproduces the results of the original 
study. 

3. Discussion 

3.1. Related Work 
This paper focuses on federated learning across individual patients’ data that can be stored independently 
of each other. By contrast, most existing applications of federated learning to health research involve 
several bulk data holders (for example, academic research centers, pharmaceutical companies, or 
hospitals) collaboratively training models on their entire joint datasets, containing data about many 
individuals, all at once (Rieke et al. 2020). The two approaches are termed “cross-device” and 
“cross-silo” federated learning respectively, and are described in-depth in Kairouz et al. (2019).  
 
Cross-silo federated learning has already been applied in the healthcare arena to power clinical research 
among participating hospitals or pharmaceutical companies (Lee et al. 2018, Huang et al. 2019).  In these 
applications, each participant holds a significant amount of data, sufficient for independent analysis; 
federated learning improves the quality of this analysis by leveraging data held by multiple participants. 
By contrast, in this work, we focus on those scenarios commonly found in epidemiological health studies, 
specifically studies with many participants, each of whom has relatively small amounts of non-IID, 
labeled data. The approach described here can be appropriate for health studies involving 
smartphone/wearable data and virtual clinical studies (also called decentralized clinical studies) that 
directly recruit individual research participants without relying on clinical sites for recruitment. 
 
Applications of cross-device federated learning for medical research include: (1) training models on data 
that is held directly by individuals - for example, health or behavioral data collected on their phones - 
without requiring a trusted centralized collector, and (2) making use of data signals that are too sensitive 
or resource-intensive to transmit to a central location. There exists significant prior work evaluating 
federated learning in the cross-device setting, where many clients each hold their own training examples 
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(Li et al. 2020, Hsu et al. 2020, Gong et al. 2016). Especially when combined with differential privacy, 
the literature demonstrates privacy gains in these scenarios (Geyer et al. 2017, Rieke et al. 2020). 
 
While this paper focuses on model training via federated learning (FL), federated analytics (FA) -- the 
application of data science techniques to data that is stored locally on client devices (Ramage & 
Mazzocchi 2020) -- holds similar promise for health research. Within the scope of federated analytics lie 
averages, histograms, heavy-hitter identification, quantiles, set cardinality, covariance matrix estimation, 
clustering, dimensionality reduction, graph connectivity, and more. 
 
In FL as discussed in this paper, the fundamental training procedure is the same no matter the model, 
supporting the generality of the experimental results, but FA algorithms vary widely. As a result, 
comparisons between FA algorithms and their classical, centralized counterparts do not necessarily 
generalize. Some state-of-the-art FA algorithms are highly interactive, like FL, with individual clients 
able to contribute many times to iteratively refine the results (Zhu et al. 2020), while others, like federated 
averaging, can be completed in a single, trivial pass over the clients. For the former, the non-IID nature of 
the federated data can be significant; for the latter, imperfect client sampling is the only source of 
divergence from the centralized computation. 
 
Indeed, the major common thread among FA algorithms as compared to their central counterparts is the 
effect of client sampling on the results. However, because sampling effects depend entirely on the 
reliability and availability of clients, and these in turn depend on the implementation details of the 
federated system, we do not attempt to characterize their impact here. Doing so in a general way is an area 
for further research. 

3.2. Conclusion 
This work demonstrates on a broad portfolio of health studies that models learned in a decentralized 
privacy-first fashion using federated learning achieve comparable quality to the traditional, 
centrally-trained models. Furthermore, we show that the clinical insights gained from each model are 
equivalent across these two regimes. These results hold even when local and central differential privacy 
protections are added, which is typically not captured in prior work.  
 
The methodology introduced here is quite general as it captures a spectrum of units of federation 
(individual patients/subjects → hospital units → healthcare systems → … → countries), and in terms of 
model architectures it supports. Rather than developing a custom technique to federate learning of one 
specific class of models as done in prior work, we demonstrate the methods on different model 
architectures expressed in TensorFlow (Bonawitz et al. 2020). A broad range of models can be 
implemented in this framework, including generalized linear models, risk prediction models, deep neural 
models, sequence models, and time-to-event models. By contrast, prior work heavily focused on a single 
point on this spectrum -- learning across silos at the level of healthcare systems and often for a fixed 
model architecture without differential privacy. As a result, this work is the first to apply modern and 
general federated learning methods to clinical studies and demonstrates how research can be done with 
significantly stronger privacy protection guarantees and without reducing its power or validity. Finally, 
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we find that application of federated techniques to modeling health data introduces new open questions 
and challenges in terms of more complex computational framework, limits on arbitrary data exploration, 
training requirements for analysis and the introduction of platform-dependent bias. These issues require 
careful consideration at the experimental design stage and are further discussed in Appendix A5. 

4.  Methods 

4.1. Overview 
A typical health study records each participant or patient as a row of data values. These represent 
outcomes of measurements on the subject, demographic variables, and other data fields the study tracks. 
The row also contains an outcome (dependent) variable the study is aiming to explain in terms of the 
other data fields. The vast majority of studies to date have been run in a “classical” fashion, where such 
rows of data -- each for one subject -- are concatenated together and stored in a centralized database table 
or a spreadsheet accessible to the researchers. Here, we explore an alternative setup where the rows are 
not concatenated, but instead remain decentralized, simulating a setting where the data is generated or 
stored on the subjects’ devices such as smartphones or wearables. Using federated learning, these private 
rows contribute to learning the global salient associations between the independent and dependent 
variables just like in the centralized setting, while keeping the raw and potentially very sensitive data local 
and under control of each individual participant. 
 
The regime just described sets the unit of federation at a very fine-grained level of individual subjects. As 
we will see, the approach presented here generalizes without modifications to cover the entire spectrum of 
federation units: from subject-level single rows, to multiple rows per subject, all the way to patients 
grouped at a healthcare system level. 
 
To make use of the existing datasets but lift them to a federated setting, we partition the original 
centralized dataset to simulate the data being physically distributed across research participants, each of 
which is treated as an individual client and contributing with various participation rates to jointly learn a 
model. That is merely an artifact of available data for prior studies we reproduce here. With the exception 
of MIMIC-III, the existing datasets have already been collapsed to one row of data per participant. 
However, this approach works more generally in a setting where each participant captures multiple data 
examples, and the aggregation happens as part of the local computation. In that setting, each participant 
may contribute multiple data rows to the computation, loosening the constraints that early aggregation 
imposes. This is shown in our experiments on electronic health records, which consist of complex 
sequential data spanning a period of hospitalization (see appendix A4). 

4.2. Privacy technologies 
Protecting the privacy of epidemiological study participants is a key motivation of our work. Because 
privacy is not a binary or scalar quality, reasoning about the privacy properties of any system requires a 
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careful evaluation of its threat model, broken down by the actors/participants. A thorough treatment of the 
privacy threat model for federated learning and related technologies is given in Kairouz et al. (2019). 
Here, we concentrate our discussion on three core technologies and their compositions: federated 
learning, differential privacy and secure aggregation. 

4.2.1. Federated Learning (FL) 
In a federated learning setting, the data held by clients can only be accessed by the clients themselves. A 
global computation may involve many clients participating; however, each client keeps its data local, 
performs local computations over it, and only allows a focused update or summary of what has been 
computed to be shared with the central orchestrator. The use of focused updates embodies the principle of 
data minimization: the updates that leave the client are maximally focused on the task at hand, as opposed 
to the raw data which can be used for a variety of different tasks if it were shared directly. The updates 
provided by clients only need to be ephemerally held by the recipient server until aggregation can be 
performed. 
 
As noted in Kairouz et al. (2019), the baseline federated learning setting offers a number of practical 
privacy improvements over centralizing all the training data, but there is currently no formal guarantee of 
privacy in the baseline federated learning model. Attacks focusing on reversing training data from the 
updates have been described in the literature (Zhu et al. 2019). Additionally, the issue of model data 
memorization may manifest itself in the process of federated learning (Thakkar et al. 2020), just as it does 
with traditional, centralized machine learning (Carlini et al. 2020). Where it is important to address these 
concerns, additional privacy technologies may be used together with federated learning. 
 

4.2.2. Secure Aggregation 
Another accompanying technology is Secure Aggregation -- a secure multi-party computation (SMPC) 
protocol (Bonawitz et al. 2017) that enables a centralized server to compute the sum of values submitted 
by several clients, without learning the values themselves. In the context of federated learning, each 
client’s update can be represented as a tensor of values, and secure aggregation enables the federated 
learning orchestration server to compute the sum of many client’s update, without accessing the values 
themselves (which are encrypted with keys that the server does not have).  
 
Secure Aggregation provides two important privacy enhancements atop of baseline federated learning: it 
prevents the reversing of private data from individual clients’ updates (since only a sum of many clients’ 
updates is ever accessible, and not the updates themselves), and it can provide a measure of dissociation 
between clients and their updates (from the sum, it is impossible to determine which client contributed 
what components to it). Further, failure to execute the secure aggregation protocol results in the server 
learning no new information at all about clients, and the use of secure aggregation does not result in any 
quality/utility penalty to the learning process. Secure aggregation can also be used for variable 
standardization (e.g., z-score transformation). First, the required population-level statistics such as mean 
and standard deviation on a per-variable basis are computed. Then they can be distributed to participating 
devices which transform their local data before proceeding with the federated updates. 
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4.2.3. Differential privacy (DP) 
Differential privacy (DP) is a rigorous mathematical notion of information disclosure about individuals 
participating in computations over centralized or distributed dataset (Dwork 2006, Dwork et al. 2006) In 
order for a computation to be differentially private, no single entity can affect the results of the 
computation too much by joining or leaving the dataset. This definition implies that any one entity’s 
contribution--no matter what it is--cannot be inferred from the differentially private result.  
 
More formally, a computation is said to be differentially private if and only if, for any two datasets D1 and 
D2 that differ in only one element, the probability of any result S is almost the same. This difference can 
be at a participant-level (i.e., device user-level DP) where two adjacent datasets differ by all the training 
examples of a single study participant, or record-level DP where two adjacent datasets differ by 1 record 
(i.e. 1 training example). This work examines both levels of DP as we vary the units of federation (data 
silos) in a single unified framework. On one end of the spectrum we have exactly 1 training example per 
participant, in which case participant-level DP is equivalent to record-level DP. As we increase the silo 
size to groups of participants, we concentrate on participant-level DP as that is a stricter privacy guarantee 
notion. 
  
One commonly used technical definition for a differentially private mechanism M is as follows: 
 

r[M (D ) ] P r[M (D ) ]P 1 = S ≤ eε
2 = S + δ  

 
Under this formulation, known as (𝜖, 𝛿)-differential privacy, 𝜖 characterizes the level of privacy for 
contributors, while 𝛿 can be thought of as bounding the probability of the privacy guarantee not holding. 
Smaller values of 𝜖 and 𝛿 imply better privacy guarantees. 
 
Crucially, differential privacy composes : if two (𝜖, 𝛿)-DP mechanisms are executed over the same data, 
the combined results are at worst (2𝜖, 2𝛿)-DP. This compositional property gives rise to the notion of a 
privacy “budget” which can be split across, for example, the iterative rounds of ML training algorithms 
like SGD, if each is individually differentially private. 
 
Differential privacy can be used to mitigate the risk of model data memorization in machine learning 
(Shokri et al. 2017). By using training algorithms with known differential privacy properties, it is possible 
to compute the worst-case bound of having the private input data inferred from the model, regardless of 
the level of side-channel information available to the attacker.  
 
Mechanisms for achieving differential privacy include adding uncertainty (strategically chosen noise) into 
the computation, bounding the contribution of any one entity and/or provably shuffling these entities’ 
contributions. Most commonly, two models of differential privacy have been investigated: the central and 
local models. In central DP, the computation is done on full-fidelity data submitted by many entities, and 
then the differential privacy mechanism is applied. In contrast, in the local model each entity applies the 
differential privacy mechanism on its own data and the results are consequently aggregated. In a federated 
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learning setting, these two models might be implemented by each client sending its update to the 
orchestrator as-is, and trusting it to apply the appropriate mechanism on the sum of many updated (the 
central model), or by each client applying the DP mechanism to its update locally, before sending it along 
(the local model). Much health research to date does not incorporate DP mechanisms, but in this work we 
implement and run experiments with both central and local models of DP in combination with federated 
learning. 
 
To obtain local differential privacy, we clip the gradients and then add Gaussian noise. We use the 
analytical calibration method for the Gaussian mechanism, derived in Balle & Wang (2018), to calculate 
how much noise needs to be added locally to achieve a target local 𝜖 and 𝛿. We choose a cryptographically 
small 𝛿 to ensure that the per-round local privacy loss random variable is almost always bounded. We 
leverage the fact that the addition of independent zero-mean Gaussian random variables is a Gaussian 
random variable and use moments accounting for the subsampled Gaussian mechanism (Mironov et al. 
2019) to derive the central 𝜖 for a target central 𝛿= 10-5. We apply this methodology to all experiments 
involving DP in this work. 
 
A recent advance in privacy research is a third “distributed” DP model that is well suited to federated 
learning applications. It combines features of the local model (each participating entity applies differential 
privacy locally) and the central model (the orchestrator post-processes encoded data to obtain accurate 
results (Bittau et al. 2017). However, instead of trusting the centralized orchestrator in adding noise, as 
the central model requires, the distributed DP model decentralizes the noise addition process and relaxes 
the trust requirements by using secure computations. The secure aggregation protocol described above is 
one example of this functionality. By combining secure aggregation with differential privacy, we can 
obtain a privacy guarantee almost the same as local DP while obtaining a utility almost the same as 
central DP (Kairouz et al. 2019, Cheu et al. 2019, Goryczka & Xiong 2017). 
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Figures 

 

 

 
 Figure 1: Area under the ROC curve (AUC) as a function of fraction of participants in each federated 
(server) round of learning for replicated model from Pima Indians Diabetes Dataset. Shown in log scale to 
highlight details at the low participation levels. Even at 2% participation, the model still achieves 99% of 
the maximum attainable AUC. 
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Figure 2: Receiver operating characteristic curves for the three learning setups on MIMIC-III data 
predicting inpatient mortality. 
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Figure 3: The odds ratio other than red color are generated using our models. The odds ratio generated by 
our models are consistent with the odds ratio of the original study. The vertical bar along with each 
coefficient shows 95% confidence level of corresponding ratio. 
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Figure 4: The estimated coefficients of Statsmodels (GLM), TF-Centralized (Tensorflow Probability) and 
TF-Fed-Patient (Tensorflow Probability with Federated Learning, using patient as the unit). The plots 
show the coefficients and their 95 %confidence intervals of 9 variables of different univariate logistic 
regression models. The significance of all models and variables is almost consistent with the original 
study: 8 over 9 variables have the same conclusions and only one (Acquisition status) does not 
(TF-Centralized and TF-Fed-Patient both show it is significant, while GLM and the original study state 
otherwise). In the original study, the variable has p-value of 0.06 which lies near the borderline of 
significance (p≤0.05).  
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Tables 

Table 1. Summary of datasets and methods reproduced in this work.  

20 

Study Topic 
Manuscrip

t 
Study 
Design 

Unit of 
Analysis N 

Statistical 
Model 

Additional 
Methods Measure Covariates 

Heart Failure 

Chicco & 
Jurman, 

2020 
Cohort 
Study Individual 299 

Logistic 
Regression N/A AUC 12 

Diabetes 
Smith, et al, 

1988 Cohort Individual 768 

Neural network 
with 1 hidden 

layer N/A AUC 8 

MIMIC-III 
Johnson et 
al., 2016 Database Individual 53,423 

Deep neural 
network N/A N/A N/A 

SARS-CoV-
2 

Rugge et 
al., 2020 

Cohort 
Study 

Individual 
& random 

size 
grouping 9,275 

Logistic 
Regression N/A 

Odds 
Ratio 3 

Avian 
Influenza 

Fiebig et 
al., 2011 Case Series 

Individual 
& country 
grouping 294 

Logistic 
Regression 

Forward/Bac
kward 

Selection 
Odds 
Ratio 4 

Bacteraemia 
Harris et 
al., 2017 Case Control Individual 159 

Logistic 
Regression 

Forward/Bac
kward 

Selection 
Odds 
Ratio 12 

Azithromyci
n 

Oldenburg 
et al., 2018 

Cluster 
Randomized 

Trial Individual 1,712 
GLM with Log 

Link 

Standard 
Errors 

Clustered 
Risk 
Ratio 0 

Tuberculosis 
Ohene et 
al., 2019 Case Series 

Individual 
& 

multi-center 
grouping 3,342 

Logistic 
Regression N/A 

Odds 
Ratio 3 
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Table 2. Summary of original and federated results reproduced in this work. Odds ratios shown as point 
estimates (95% confidence intervals). Model beta coefficients shown as estimate (standard error). 
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Study Topic Sample Results 
Compariso

n Metric 

Traditional 
Centralized 

Model* 

Federated Replications 

Per-Patient Per-Silo† 

Heart Failure 

1. Survival Prediction (full 
model) 
2. Survival Prediction (with 
variable selection) 

AUC 
0.82 
0.82 

0.85 
0.83 

N/A 

Diabetes 
1. Diabetes prediction at 
5-years 

AUC 0.84 0.875 N/A 

MIMIC-III 
1. Inpatient mortality 
prediction 

AUC 0.770 0.780 0.771 

SARS-CoV-2 
1. CV2+ve in Female vs. Male 
2. CV2+ve in Recent vs. Never 
Cancer 

OR 
0.35 (0.32-0.38) 
1.88 (1.36-2.60) 

0.35 (0.32-0.38) 
1.99 (1.45-2.68) 

0.35 (0.32-0.38) 
2.07 (1.50-2.86) 

Avian 
Influenza 

1. Fatality with each day 
before hospitalization 
2. Fatality in Indonesia vs. 
group of countries 

OR 
1.33 (1.11-1.60) 
0.23 (0.04-1.27) 

1.34 (1.12-1.61) 
0.25 (0.05-1.37) 

1.33 (1.11-1.60) 
0.24 (0.04-1.33) 

Bacteraemia 

1. Relapse with line-associated 
infection source 
2. Relapse with presence of 
immunosuppression 

Coefficient 
1.57 (SE: 0.45) 
1.07 (SE: 0.41) 

1.59 (SE: 0.23) 
1.12 (SE: 0.30) 

N/A 

Azithromycin 
1. Adverse events in 
azithromycin treated 

Coefficient -0.11 (SE: 0.09) -0.29 (SE: 0.19) N/A 

Tuberculosis 
1. Extrapulmonary TB in 
individuals with HIV 

Coefficient 1.16 (SE: 0.09) 1.35 (SE: 0.08) 0.15 (SE: 0.07)‡ 

*As reported in original study or replicated in centralized fashion with statsmodel 

†Example silos include hospital level, patient groups, and country level. Not all existing datasets allow meaningful grouping at 
various levels. 

‡ Problem under-specification issue -- see additional details in Appendix A4 (extrapulmonary tuberculosis). 
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Appendix 

A1. Problem Specification 
 
We are given n clients a_1, a_2, ..., a_n in which each client a_i has in its own control local data D_i. There is 
a central coordinator C (the server). Our goal is to design a learning algorithm A that serves as a 
gradient-based learning algorithm to produce a machine learning model across all participating clients 
(Bonawitz et al. 2017). The clients only send (differentially private) gradients back to the central coordinator. 
The method requires that D_i not be revealed to C. 
 

A2. Convergence, scalability, and participation 
In this work we benchmark more precise but computationally expensive and centralized methods (such as 
linear solvers, Newton’s method, etc.) with more general approaches that scale to larger datasets and can 
be readily run in a distributed fashion but may be approximate (e.g., stochastic gradient descent -- SGD). 
We find the best performance with SDG optimizer on the client side and Nadam optimizer for server 
gradient averaging (Dozat 2016). The latter leverages gradient update momentum, together with binary 
cross-entropy loss function. We note a general challenge in stochastic statistical modeling, namely 
stopping criterion for the learning process. This is not specific to federated setups but comes into play 
here as well. The approach taken in this work is to track progress of the loss function over 
epoch/federated rounds and stop training when the loss converges to a stable value (see Appendix A2). 
 
In general, not all participants may be available at any one time in the federated setting. We therefore 
explore model quality as a function of client participation rate. Across the datasets, we find that only a 
minority of clients need to participate in any one round of federated learning (Figure 1 and Appendix 
Figure 4). These sub-populations are sampled at random with replacement for each round. We see that 
just a 2% randomized participation rate achieves almost the same model quality as with full participation. 
This makes the federated setup quite robust to platform-independent bias caused by device dropout 
described in Appendix A5. 
 
Another dimension to consider is scalability of this approach in terms of total runtime of the federated 
experiment. Appendix Figures 1, 17 and 19 show a relationship between the number of clients (again one 
client per example which is the most communication-intensive scenario), and the number of features 
(independent variables) captured in each training example. Across the domains, we see a linear 
relationship between the number of examples/clients and runtime. Furthermore, the dimensionality of the 
examples has no significant effect on runtime. This is because each client’s data is of relatively small size 
and therefore communication and computation overhead dominates the runtime. If high-bandwidth 
variables were used, such as video, the runtime would further increase by the transmission time on the 
network.  
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Since we have seen that example dimensionality has no significant effect on runtime within the datasets 
considered, we turn our attention to runtime until convergence as a function of the number of participants, 
using a synthetic dataset of size ranging from 1,000 to 10,000 clients (Appendix Figures 1) and observe a 
strong linear relationship (R2 of 0.997). 
 

 
Appendix Figure 1: Runtime until convergence as a function of the number of participants, ranging from 
1,000 to a pool of 10,000. We observe a strong linear relationship (R2 of 0.997). 
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A3. Models 

[A3.1] Logistic regression (LR) 
Logistic regression is a generalized linear model with a logit link function given by 
 

 z =  1

1 + exp(−(β + x ))0 ∑
 

i
βi i

 

 
or equivalently 
 

ogit(z) xl = β0 + ∑
 

i
βi i  

 
where z is the dependent variable, 𝛃s are model coefficients to be learned, and in vector x are the 
predictor (independent) variables. 
 
Commonly used implementations of LR are GLM in R, Statsmodels.api and sklearn in python, and SAS’s 
PROC LOGISTIC. For parameter optimization, they use various techniques often optimized for the 
specific case of LR, such as iteratively reweighted least squares (IWLS, also called Fisher scoring) and 
coordinate-descent linear solver. We use GLM implemented in statsmodels (version 0.12.1) library as a 
"classical" centralized baseline for comparison. 
 
To capture uncertainty in the fitted weights, rather than just point estimates, we use Tensorflow 
Probability layers . This is important because model stability and interpretability are often more important 1

in health research than raw prediction accuracy. For example, in a plain regression model, we may learn 
that an H5N1 infection is six times more likely to be fatal in patients in their twenties compared to those 
under 10 years old (controlling for all other variables) (Fiebig et al. 2011). However, if this statistic has a 
large variance across participants or time horizons, its utility and resulting decisions may differ 
significantly. In the H5N1 example, the 95% confidence interval is quite broad: 2.05–18.53. Besides 
prediction, many health studies are interested in quantifying the association between exposure and 
outcome variables, adjusting for potential confounders. Therefore we also evaluate the validity of 
federated learning methods in terms of producing risk estimates comparable to those observed in 
centralized analysis. For each domain/dataset, we report fitted models, discuss uncertainty inherent in 
them, and analyze convergence (Appendix A4). 

[A3.2] Deep neural network (DNN) 
Deep neural network (DNN) is a type of machine learning model architecture that uses multiple layers to 
progressively extract higher-level features from the raw input (LeCun et al. 2015). Over the last decade, 
DNN has shown its superior performance in fields including computer vision (Russakovsky et al 2015), 
1 https://www.tensorflow.org/probability/api_docs/python/tfp/layers/DistributionLambda 
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speech recognition (Hinton et al 2012), natural and language processing (Hirschberg & Manning, 2015), 
among other areas. Health data such as medical images and complex medical records (e.g. those in the 
MIMIC dataset) can largely benefit from this deep architecture for latent feature extraction (Esteva et al. 
2019). However, compared to logistic regression that has a convex loss function, DNNs are in general 
non-convex and optimization algorithms are therefore not guaranteed to find the global minimum. 
Similarly to the logistic regression models described above, here we focus on the reproducibility of 
centralized DNN-based health research in a federated learning setup. 
 
We note that many common models, including logistic regression described above can be implemented in 
TensorFlow (TF) as a one-layer neural network with sigmoid activation. As we will see below, TF can 
express a broad spectrum of models and can be deployed in a variety of settings including on-device. We 
leverage this to bridge the classical and federated worlds. Specifically, we keep the TF model definition 
constant and only vary the training algorithm. This setup will allow us to test other model architectures in 
the future using the same infrastructure -- starting with LR as a special case but enabling general model 
specification within the TF language. 
 

 
Appendix Figure 2: Deep neural network model architecture for predicting inpatient mortality (Output) 
from sequence EHR data up to 24 hours after admission. 
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A4. Further Results on Open Datasets  

[A4.1] SARS-CoV-2 and Cancer 
 
Based on the original work, the dataset contains three types of patients: a) Hospitalized, b) ICU admitted, and 
c) Deceased. For each type of patient, the analysis is divided into two parts based on: i) cancer interval and ii) 
cancer type. Cancer interval is the number of years a patient suffers from cancer before getting infected by 
Covid-19. There are different types of cancer reported in the dataset (see Appendix Table 1). 
 
Appendix Table 1: Hyperparameter settings used for reproduction of the SARS-CoV-2 and Cancer 
experiments. In all of our experiments the hyperparameters of Logistic regression model are: a) 
Solver=lbfgs and b) C=1e7, and the hyperparameters of centralized tensorflow model are: a) Regularizer 
L2=1e-6 and Nadam optimizer with learning rate 0.15. 
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Features TF+DP TFF TFF+DP 

Input features:  
Age,Sex,Interval 
 
Target: Hospital 

Noise multiplier=69.3 
Learning rate=0.7 
Regularizer L2=1e-6 
epsilon=0.25 
delta=1e-5 

 
 
 
 
Server optimizer (Nadam, 
LR=0.15), 
Regularizer L2=1e-6 

Noise multiplier=1.3, 
Regularizer L2=1e-6, 
Adaptive clip LR=0.2, 
Server optimizer NADAM 
with LR=0.15 

Input features::  
Age,Sex,Interval 
 
Target: ICU 

Noise multiplier=50.3 
Learning rate=20.0 
Regularizer L2=1e-6 
epsilon=0.335 
delta=1e-5 

Noise multiplier=1.3, 
Regularizer l2=1e-7, 
Adaptive clip LR=0.3, 
Server optimizer NADAM 
with LR=0.12 

Input features::  
Age,Sex,Interval 
 
Target: Death 

Noise multiplier=50.3 
Learning rate=1.7 
Regularizer L2=1e-6 
epsilon=0.335 
delta=1e-5 

Server optimizer (Nadam, 
LR=0.2), 
Regularizer L2=1e-6 

Noise multiplier=1.3, 
Regularizer l2=1e-7, 
Adaptive clip LR=0.3, 
Server optimizer NADAM 
with LR=0.4 

Input features::  
Age,Sex, Cancer 
type 
 
Target: Hospital 

Noise multiplier=50.3 
Learning rate=1.5 
Regularizer L2=1e-6 
epsilon=0.335 
delta=1e-5 

 
 
 
 
 
 
 
Server optimizer (Nadam, 

Noise multiplier=1.3, 
Regularizer l2=1e-6, 
Adaptive clip LR=0.1, 
Server optimizer Nadam 
with LR=0.1 

Input features::  
Age,Sex, Cancer 
type 

Noise multiplier=50.3 
Learning rate=32.0 
Regularizer L2=1e-6 

Noise multiplier=1.3, 
Regularizer l2=1e-7, 
Adaptive clip LR=0.1, 
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Target: ICU 

epsilon=0.335 
delta=1e-5 

LR=0.15), 
Regularizer L2=1e-6 

Server optimizer Nadam 
with LR=0.12 

Input features::  
Age,Sex, Cancer 
type 
 
Target: Death 

Noise multiplier=50.3 
Learning rate=20.0 
Regularizer L2=1e-6 
epsilon=0.335 
delta=1e-5 

Noise multiplier=1.3, 
Regularizer l2=1e-7, 
Adaptive clip LR=0.1, 
Server optimizer Nadam 
with LR=0.3 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 24, 2020. ; https://doi.org/10.1101/2020.12.22.20245407doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.22.20245407
http://creativecommons.org/licenses/by-nd/4.0/


 

Uncertainty of AUC in TF model with DP 

 
Appendix Figure 3:  The distribution of model performance (AUC) after 100 times run. The distribution 
is left skewed. This model was trained on the SARS-CoV-2 and Cancer dataset. 
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Appendix Figure 4:  Area under the ROC curve (AUC) as a function of fraction of participants in each 
federated (server) round of learning for replicated model of SARS-CoV-2 and Cancer. Shown in log scale 
to highlight details at the low participation levels. Similarly to the diabetes result, even at approximately 
2% participation, the model still achieves 99% of the maximum attainable AUC. 80% of the whole 
dataset was used to train the model and the rest 20% used for validation. 

 

29 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 24, 2020. ; https://doi.org/10.1101/2020.12.22.20245407doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.22.20245407
http://creativecommons.org/licenses/by-nd/4.0/


 

 
Appendix Figure 5:  Model coefficients and corresponding 95% confidence interval (CI) for hospitalized 
patients considering cancer interval. The coefficients reported in Rugge et al. (2020) are colored red and 
labeled ‘Original’. All of our models (centralized and federated) can estimate the coefficient that is very close 
to the ‘Original’ coefficient.  The list of hyperparameters for this study is shown in Appendix Table 1. 
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Appendix Figure 6: The odds ratio and corresponding 95% confidence interval (CI) for hospitalized patients 
considering cancer interval. The odds ratio reported in Rugge et al. (2020) is colored red and labeled 
‘Original’. All of our models (centralized and federated) can estimate the odds ratio that is very close to the 
‘Original’ odds ratio.  The list of hyperparameters for this study is shown in Appendix Table1. 
 

31 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 24, 2020. ; https://doi.org/10.1101/2020.12.22.20245407doi: medRxiv preprint 

https://www.nature.com/articles/s43018-020-0104-9
https://doi.org/10.1101/2020.12.22.20245407
http://creativecommons.org/licenses/by-nd/4.0/


 

 
Appendix Figure 7: The odds ratio is very close to the original study even when we created 100 random 
sized groups of patients (unit of federation) as shown here. 
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Appendix Figure 8: The odds ratio and corresponding 95% confidence interval (CI) for ICU patients 
considering cancer interval. The odds ratio reported in Rugge et al. (2020) is colored red and labeled 
‘Original’. All of our models (centralized and federated) can estimate the odds ratio that is very close to the 
‘Original’ odds ratio.  The list of hyperparameters for this study is shown in Appendix Table 1. 
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Appendix Figure 9: The odds ratio and corresponding 95% confidence interval (CI) for dead patients 
considering cancer interval. The odds ratio reported in Rugge et al. (2020) is colored red and labeled 
‘Original’. All of our models (centralized and federated) can estimate the odds ratio that is very close to the 
‘Original’ odds ratio.  The list of hyperparameters for this study is shown in Appendix Table 1. 
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Appendix Figure 10: The odds ratio and corresponding 95% confidence interval (CI) for hospitalized 
patients considering cancer type. The odds ratio reported in Rugge et al. (2020) is colored red and labeled 
‘Original’. All of our models (centralized and federated) can estimate the odds ratio that is very close to the 
‘Original’ odds ratio.  The list of hyperparameters for this study is shown in Appendix Table 1. 
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Appendix Figure 11: The odds ratio and corresponding 95% confidence interval (CI) for ICU patients 
considering cancer type. The odds ratio reported in Rugge et al. (2020) is colored red and labeled ‘Original’. 
All of our models (centralized and federated) can estimate the odds ratio that is very close to the ‘Original’ 
odds ratio.  The list of hyperparameters for this study is shown in Appendix Table 1. 
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Appendix Figure 12: The odds ratio and corresponding 95% confidence interval (CI) for dead patients 
considering cancer type. The odds ratio reported in Rugge et al. (2020) is colored red and labeled ‘Original’. 
All of our models (centralized and federated) can estimate the odds ratio that is very close to the ‘Original’ 
odds ratio.  The list of hyperparameters for this study is shown in Appendix Table 1. 
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[A4.2] Avian influenza A (H5N1)  
The Robert Koch Institute (RKI) avian influenza monitoring system is a publicly available 
epidemiological database established to track avian influenza infections in humans and animals around 
the world. This database includes 294 human cases from 12 different countries from 2006-2010, and it is 
used to predict risk of infection and mortality based on country, age, sex, time from symptom onset to 
hospitalization and exposure to poultry (Fiebig et al. 2011). 
 
Based on the prevalence odd ratio (pOR), Fiebig et al. (2011) presented the following observations and the 
federated approach presented here reproduces all of them (Figure 3): 

1. Odds of fatal outcome increased by 33% with each day that passed from symptom onset until 
hospitalisation (OR: 1.33, 95% CI: 1.11–1.60). 

2. The fatal outcome of both 10–19 year-olds and 20–29 year-olds is six times higher compared to 0-9 
year-old children. The odds ratio of 10-19 years old vs 0-9 year-old children is 6.06 with CI: 
1.89–19.48, whereas, the odds ratio of 20-29 years old vs 0-9 year-old children is 6.16 with CI: 
2.05–18.53. On the other hand, the odds of fatal outcome is nearly five times higher in patients 30 
years and older (OR: 4.71, 95% CI: 1.56–14.27) compared to 0-9 year-old children. 

3. Using Indonesia as a reference, odds of dying were lower elsewhere, namely by 92% in Egypt (OR: 
0.08, 95% CI: 0.03–0.22, p<0.001), by 81% in China (OR: 0.19, 95% CI: 0.04–0.90, p=0.036), and by 
79% in Vietnam (OR: 0.21, 95% CI: 0.06–0.75, p=0.016), but not in the grouped remaining countries 
(OR: 0.23, 95% CI: 0.04–1.27, p=0.091). 
 

Unlike for prediction tasks, in experiments on this data, we did not split the data for training and 
validation. All the observations were used to train the model as in the original study (Fiebig et al. 2011). 
 
To test various units of federation, we experiment with the extreme case of each patient being its own unit 
(Figure 3, Appendix Figure 15), and with groups of patients (Appendix Figure 16). Appendix Figure 15 
shows the ability of the federated approach to learn coefficients equivalent with the original work. Figure 
3 shows an agreement in odds ratios across the models. 
 
Appendix Table 2: Hyperparameter setting for H5N1 experiments. 
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Feature GLM TF TF+DP TFF TFF+DP 

 
Hospitalization
, Sex_female, 
Age_group, 
China, Egypt, 
Vietnam, and 
Other countries 

Solver: 
lbfgs, 
C=1000 

Regularizer 
L2=1e-7, 
Nadam with 
LR=0.26, 
epocs=300 
with early stop 

Noise 
multiplier=69.5 
Learning 
rate=0.7 
epocs=1300 
epsilon=0.25 
delta=1e-5 

Server 
optimizer(nada
m, LR=0.15), 
Regularizer 
L2=1e-6 

Noise 
multiplier=1.3, 
Regularizer 
L2=1e-6 
Adaptive clip 
LR=0.2, 
Server 
optimizer 
NADAM 
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Model convergence: 
Appendix Figure 13 shows the training loss during our experiment considering all the observations to train the 
model. All the models converge to the minimum loss of 0.404. Tensorflow (TF) took 35 epochs and 
Tensorflow with differential privacy (TF+DP) took 400 epochs to converge. Tensorflow federated (TFF) took 
230 epochs/rounds and Tensorflow federated with differential privacy (TFF+DP) took around 245 
epochs/rounds to converge. 
 

 
Appendix Figure 13:  Model convergence scenario 
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Assign multiple data to a client: 
Besides assigning a single observation to a client, we did batch processing per client and each batch contains 
one country related observations. There are four countries in our experiments, therefore, we have four clients. 
The number of participants ranges from one to four which runs 100 rounds to each number of participants. 
According to the loss analysis (from Appendix Figure 14), the minimum loss (0.404) of the model considering 
different optimizers is the same as unit federation. 
 
 

 
Appendix Figure 14:  Convergence for the TFF model is stable across several optimizer and hyperparameter 
settings.  
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Appendix Figure 15: The coefficient and corresponding 95% confidence interval (CI) for Avian influenza 
patients. The coefficients reported in Fiebig et al. 2011 are colored red and labeled ‘Original’. All of our 
models (centralized and federated) can estimate the coefficients that are very close to the ‘Original’ odds ratio.  
The list of hyperparameters for this study is shown in Appendix Table 2. 
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Appendix Figure 16: The odds ratio is very close to the original study even when we grouped  patients 
based on country (unit of federation) as shown here. 

  

42 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 24, 2020. ; https://doi.org/10.1101/2020.12.22.20245407doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.22.20245407
http://creativecommons.org/licenses/by-nd/4.0/


 

[A4.3] Diabetes 
 
The Pima Indians Diabetes Dataset from the Kaggle machine learning data repository is a binary classification 
database involving females of Pima Indian heritage (UCI Machine Learning 2016). This dataset is originally 
from the National Institute of Diabetes and Digestive and Kidney Diseases which began long-term longitudinal 
studies of the onset of diabetes in this population. The dataset is used to predict whether or not a patient will 
develop diabetes in 5 years time, based on eight attributes including age, body mass index, number of prior 
pregnancies, blood pressure, insulin and glucose levels. 
 
Pioneering work on this task has been done by Smith et al. (1988) achieving AUC of 0.84 on predicting which 
individuals will develop diabetes 5 years in the future, with a neural network architecture with eight hidden 
nodes and one output node. We replicate the same experimental setup and model architecture in TensorFlow 
Federated and augment it with central and local differential privacy. This reproduction yields a stronger AUC 
of 0.875 averaged over 10-fold cross-validation, while keeping each individual patient data local to their 
(emulated) storage device and providing strong (𝜖, 𝛿)-differential privacy guarantees with central 𝜖=0.736 
and 𝛿=10-5, and local 𝜖=11.8 and 𝛿=10-9 per round. The higher AUC score of our implementation 
compared to the original study is likely due to advances in optimizing neural models that the field 
accomplished in the elapsed time and the use of regularization. 
 
Like all other studies reproduced here, no differential privacy mechanism was used in the original work. 
By contrast, we include both central and local DP to evaluate model quality with this added layer of 
protection added. We observe that even with these fairly strong privacy guarantees added, model quality 
is minimally affected (mean AUC without DP is 0.881). 
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Appendix Figure 17: Runtime of the federated learning process until convergence -- represented with 
shades of blue -- for the diabetes problem as a function of number of clients and number of features in 
each example. In this setting, the number of clients is equal to the number of examples since each 
participant contributes exactly one example. We see a linear relationship between the number of 
examples/clients and runtime. The dimensionality of the examples has no significant effect on runtime.  
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[A4.4] Bacteraemia 
This bacteremia database involves 159 case-controlled cases of bacteraemia occurring among those of age 
17 or over at four hospitals in Queensland and New South Wales, Australia between 1998 and 2015 
(Harris et al. 2017).  The data is used to predict risk factors associated with relapsed infection in patients 
with Enterobacer bacteraemia, based on multiple factors including age, sex, location, source of infection, 
hospital location, co-morbid conditions, and many other clinical factors. 
In the original study, the authors use multiple univariate logistic regression models to analyze the 
significance of the effects of clinical variables on relapsed Enterobacter bacteraemia. With significance 
level of 0.05 among reported variables, Medical Service, Source (of infection) and Immune suppression 
are determined as significant variables. We replicate the models using GLM (Statsmodels.api), 
Tensorflow Probability (TF-Centralized) and Tensorflow Probability with Federated Learning 
(TF-Fed-Patient). Figure 4 shows the coefficients and their confidence intervals of all variables across 
tested models. The GLM models are consistent with the original study, where all of the above variables 
are significant and the rest are not. TF-Centralized and TF-Fed-Patient show narrower confidence 
intervals of their coefficients. The only difference is the significance of Acquisition status, where 
TF-Centralized and TF-Fed-Patient models determine it is significant and GLM does not. The p-value of 
the variable reported in the original study and our GLM model is 0.06, which is very close to the 
borderline of significance (0.05) and hence, narrower CIs produced by TF-Centralized and 
TF-Fed-Patient consider it as borderline significant. With such a small difference (0.06 vs. 0.05), the 
conclusion of significance is expected to be sensitive to computational processes discussed in Appendix 
A6 and highlights a sensitivity and interpretation challenge for the broader field of statistical modeling. 

[A4.5] Azithromycin in Infants 
The Macrolides Oraux pour Réduire les Décès avec un Oeil sur la Résistance (MORDOR) 
community-randomized study dataset is used to describe adverse events associated with azithromycin use 
in infants from 30 communities in Niger. The dataset includes 1,712 infants aged 1 to 5 months at time of 
treatment with azithromycin or placebo between January 2015 to February 2018.  The dataset includes 
adverse events, age, sex, community and whether there were recent health issues prior to treatment 
(Oldenburg et al. 2018) 
 
The original study (Oldenburg et al. 2018) evaluates the significance of side effects of azithromycin 
treatment on infants from 1 to 5 months old. The authors build generalized linear models on three 
different major target outcomes: if a child has any health problem, has to go to clinic, or has any adverse 
event. The sole independent variable used in all models is the treatment/placebo indicator. The original 
study analyzes the significance of the GLMs to conclude that the correlations between the independent 
variable and the dependent variables are not statistically significant and hence, fail to reject the null 
hypothesis. 
 
To replicate the results of the original study, we build logistic regression models using different methods: 
GLM (Statsmodels.api), Tensorflow Probability (TF-Centralized) and Tensorflow Probability with 
Federated Learning (TF-Federated). We calculate the confidence intervals of the coefficients of the 
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independent variable (treatment/placebo) in all models and examine the significance of the coefficients at 
95% confidence (Appendix Figure 18). Differential privacy does not significantly change the coefficients. 
In all models, the confidence intervals all contain 0 and hence all models fail to reject the null hypothesis. 
All conclusions are consistent with the original study. 
 
We note that in Logistics Regression learning, there could be multiple equivalent optimums in the 
parameter space that could achieve the same value of the loss function. We notice that different learning 
methods may converge to different parameters that give rise to the same loss, which explains why their 
coefficients are not the same across methods. The important takeaway from this is even with different 
coefficient sets, the conclusion of the significance of these coefficients remains unchanged. 
 

Appendix Figure 18: Statsmodels.api (GLM), Tensorflow Probability (TF-Centralized) and Tensorflow 
Probability with Federated Learning (TF-Federated). We calculate the confidence intervals of the 
coefficients of the independent variable (treatment/placebo) in all models and examine the significance of 
the coefficients at 95% confidence. All models fail to reject the null hypothesis and therefore all 
conclusions are consistent with the original study. 
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Appendix Figure 19: Analogous to Appendix Figure 17. Runtime of the federated learning process -- 
represented with shades of blue -- for the azithromycin in infants problem as a function of number of 
clients and number of features in each example. In this setting, the number of clients is equal to the 
number of examples since each participant contributes exactly one example. We see a linear relationship 
between the number of examples/clients and runtime and no significant effect of example size. 
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[A4.6] Extrapulmonary tuberculosis 
This Ghana Extra-pulmonary TB dataset is a medical records database of 3,704 TB patients diagnosed 
from June 2010 to December 2013 at 11 health facilities in Ghana (Ohene et al. 2019). The study 
participants include those 15 years and older with no prior history of TB. The study was conducted to 
understand the predictors of extrapulmonary TB compared to pulmonary TB such as HIV status and 
gender. The study also describes factors associated with mortality among patients with extrapulmonary 
TB (EPTB).  The study dataset includes type of infection, health outcomes, age, sex, HIV status, site of 
infection, type of healthcare facility and year of diagnosis. 
 
This is a multi-hospital dataset, where groups of data rows come from four different types of hospitals. 
Exploring multiple levels of federation reveals a challenge with grouping data at a hospital level, which 
has been a common de-siloing setup in the literature. Since one type of  hospital (Teaching Hospital) in 
this dataset only contains examples of a specific type (HIV-positive), it creates a class-imbalance problem 
and the model converges to a different coefficient for HIV_Status variable (Appendix Figure 20). 
Specifically, Teaching Hospital has 29% of all HIV-positive patients but only accounts for 12% of 
patients overall. Treating them as one unit may lower down the effect of HIV-positive variable to the 
dependent variable (EPTB). The conclusion stemming from this model’s interpretation is still in line with 
all other methods, but lies outside of the 95% confidence interval. 
 

 
Appendix Figure 20: The estimated coefficients and their 95% confidence intervals by different learning 
methods. Both Age variables are insignificant. Sex variables shows negative correlations, which means 

48 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 24, 2020. ; https://doi.org/10.1101/2020.12.22.20245407doi: medRxiv preprint 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0209650
https://doi.org/10.1101/2020.12.22.20245407
http://creativecommons.org/licenses/by-nd/4.0/


 

Female has larger risk to have EPTB than Male. HIV_status shows significant positive correlation, which 
indicates that patients with positive HIV have a significantly higher risk to have EPTB than negative HIV. 
All variable significance conclusions are consistent with the original study. 

A5. Limitations 
Various sources of bias can enter a study and it is important to control for and mitigate it. Some types of 
bias -- platform independent bias -- are present irrespective of whether the study uses a centralized data 
model or a federated one. For example, study drop out due to the subject deciding to leave the study or 
even dying, or selection bias as to who joins the study in the first place. Federated settings are subject to 
an additional type of bias -- platform-dependent bias. The subset of devices that contribute - and how 
often they contribute - is heavily influenced by fleet (i.e., population of participating devices) 
heterogeneity such as time and duration of availability; network bandwidth; processing time due to device 
capabilities (CPU) and the amount of data to be processed; and survival bias due to network, 
low-memory, and charging state induced interruptions. 
 
Since we reproduce studies in this work, we have to emulate a distributed dataset from the existing 
centralized tables produced by respective prior work. We do this by defining a federated averaging 
process that takes as input the original centralized dataset and segments it into units of federation, ranging 
from individual patients to progressively larger groups. In a live study, the platform-dependent bias 
outlined above would come into play. To explore it, we simulate various dropout scenarios in the results 
below and show the distributed computation is fairly robust. However, there are myriad dropout 
scenarios, and techniques to tackle them are only beginning to emerge. For example, federated analytics 
described below could be used to securely collect aggregate statistics over all study participants in order 
to detect various potential biases and be able to react to it and subsequently control for it. The techniques 
described here apply to the homogeneous federation units setting, where the output of federated 
computation from one silo is composable with the output from another silo. This is a necessary condition 
for FL to operate in the heterogeneous setting, but not a sufficient one. 
 
Given the distributed nature of the federated approach, the hypotheses to be tested and the corresponding 
models need to be defined before the study starts and retrospective changes are by design not possible. 
However, pre-registering hypotheses ahead of time is a recommended practice that applies in any setting 
as it has been shown to help prevent data dredging and publication bias (Hardwicke & Ioannidis 2018). 
We note that a restart of a study with a new model is possible with the data recorded locally at 
participants’ end points. Further, federated analytics can be used to perform initial aggregate data 
analysis, refine hypotheses or modelling approaches, and then run federated learning as described here. 
 
Finally, this work focuses on horizontally-distributed data silos, where each participant has the same data 
schema and the rows of the full dataset are spread across the clients. While there are methods for record 
linkage (Kairouz et al. 2019), we note each study subject should always have access to their own data. 
Therefore, even if the data is split across multiple silos, the subject can download their data from all 
relevant silos they participate in, join them together vertically and then run the method described here. 
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A6. Reproducibility challenges 
There is an increasing amount of evidence that many real-world problems in statistics and machine 
learning are under-specified (D’Amour et al. 2020, Renard et al. 2020). This issue is ubiquitous and arises 
when there are different models -- each with a different set of parameters -- that explain validation data 
equally well. Since much of health research and epidemiology uses such modeling techniques, this 
challenge affects these fields as well. With under-specification, the models fail to capture generalizable 
inductive biases. As a result, traditional validation approaches cannot distinguish between them in terms 
of quality (e.g., ROC AUC, F1, accuracy) because they all perform equally well on the data available. 
However, when such models are deployed in practice on new unseen data, they often perform worse than 
would be expected based on their testing benchmark (D’Amour et al. 2020). 
 
More generally, the structural identifiability problem in dynamical systems concerns inferring unknown 
parameters of the model by given input-output data (Walter & Pronzato 1996). The perfect structural 
identifiability problem is one where the input-output relationships are noise free (Meshkat et al 2015). If 
the parameters of the dynamical system have infinitely many possibilities for the input-output data then 
the model is called identifiable. Practical identifiability deals with situations when the number of 
input-output data points are potentially noisy and few. The key points as regards to this paper are: (i) in 
general, one might not be able to uniquely reproduce identical parameters with limited training 
(input-output data), (ii) the issues when training a model using distributed methods is further complicated 
since various orders of training data might yield different outcomes. 
 
In some of our experiments below, we encounter this problem as well. We find model fits that have equal 
loss value and equivalent validation ROC AUC, and yet differ in the values of model parameters (e.g., 
weights on independent variables). Prior work typically reported only one of such equivalent models, but 
in general there is a large number of them -- some differ only slightly in their parameter values, some are 
significantly different. This problem becomes even more acute when study conclusions are drawn from 
interpretation of model weights, as is common in much health research establishing a relationship 
between several independent variables and possible confounders and an outcome. The under-specified 
problem is a challenge for the broader field of statistical machine learning, an area of active research, and 
out of scope for this work to resolve. We mitigate the issue by reporting the multiple equivalent models 
we find in our reproduction experiment and compare them in a probabilistic framework with the original 
work that presented a single model in terms of distribution over parameter values, predictive power, and 
generalizability. 
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A7. Data Repositories 

[A7.1] SARS-CoV-2 and Cancer 
Title: Malignancy in SARS-CoV2 infection 
Version (Date): 4 (26.10.2020) 
Author(s): Massimo Rugge, Manuel Zorzi, Stefano Guzzinati 
Host: Figshare 
Link: https://figshare.com/articles/dataset/Malignancy_in_SARS-CoV2_infection/12666698 
DOI: https://doi.org/10.6084/m9.figshare.12666698.v4 
License: CC0 1.0, https://creativecommons.org/publicdomain/zero/1.0/ 
Final Date Accessed: November 23, 2020 
Modifications: The original data was not modified. Federated replica(s) of this data were produced as 
described in the manuscript. 
Warranties/Endorsements: The original authors made no warranties regarding the use of this data nor 
endorsed the present manuscript or its findings. 
Methods Description: Rugge et al. 2020 
Reported Oversight: Approved by the Bioethics Committee of the Veneto Region, Italy 
 

[A7.2] Avian influenza A (H5N1) 
Title: Avian influenza A(H5N1) in humans - line list 
Version (Date): (12.08.2011) 
Author(s): Lena Fiebig, Jana Soyka, Silke Buda, Udo Buchholz, Manuel Dehnert, Walter Haas 
Host: Robert Koch Institute doc server 
Link: https://edoc.rki.de/handle/176904/7480 
DOI: http://dx.doi.org/10.25646/7661 
License: CC BY 3.0 DE, https://creativecommons.org/licenses/by/3.0/de/ 
Final Date Accessed: November 23, 2020 
Modifications: The original data was not modified. Federated replica(s) of this data were produced as 
described in the manuscript. 
Warranties/Endorsements: The original authors made no warranties regarding the use of this data nor 
endorsed the present manuscript or its findings. 
Methods Description: Fiebig et al. 2011 
Reported Oversight: N/A (all governmental/public data sources) 

[A7.3] Diabetes 
Title: Pima Indians Diabetes Database 
Version (Date): 1 (06.10.2016) 
Author(s): UCI Machine Learning, a derivative of work produced by Smith, et al. (reference 46) 
Host: Kaggle.com 
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Link: https://www.kaggle.com/uciml/pima-indians-diabetes-database 
DOI: N/A 
License: CC0 1.0, https://creativecommons.org/publicdomain/zero/1.0/ 
Final Date Accessed: November 23, 2020 
Modifications: The original data was not modified. Federated replica(s) of this data were produced as 
described in the manuscript. 
Warranties/Endorsements: The original authors made no warranties regarding the use of this data nor 
endorsed the present manuscript or its findings. 
Methods Description: Bennett, Burch & Miller 1971 
Reported Oversight: Permission from the Tribal Council of the Gila River Indian Community, the 
Division of Indian Health and the United States Public Health Service Indian Hospital, Sacaton, Arizona 

[A7.4] Electronic Medical Records 
Title: MIMIC-III Clinical Database 
Version (Date): 1.4 (04.09.2016) 
Author(s): Alistair Johnson, Tom Pollard, Roger Mark 
Host: PhysioNet 
Host Citation: Goldberger, A., Amaral, L., Glass, L., Hausdorff, J., Ivanov, P. C., Mark, R., ... & Stanley, 
H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for 
complex physiologic signals. Circulation [Online]. 101 (23), pp. e215–e220. 
Link: https://physionet.org/content/mimiciii/1.4/ 
DOI: https://doi.org/10.13026/C2XW26. 
License: PhysioNet Credentialed Health Data License 1.5.0, 
https://physionet.org/content/mimiciii/view-license/1.4/ 
Final Date Accessed: November 23, 2020 
Modifications: The original data was not modified. Federated replica(s) of this data were produced as 
described in the manuscript. 
Warranties/Endorsements: The original authors made no warranties regarding the use of this data nor 
endorsed the present manuscript or its findings. 
Methods Description: Johnson et al. 2016 
Reported Oversight: Approved by the Institutional Review Boards of Beth Israel Deaconess Medical 
Center and the Massachusetts Institute of Technology 
 

[A7.5] Heart Failure 
Title: Heart failure clinical records Data Set 
Version (Date): (05.02.2020) 
Author(s): Davide Chicco, a derivative of work produced by Ahmad et. al 
Host: UCI Machine Learning Repository 
Link: https://archive.ics.uci.edu/ml/datasets/Heart+failure+clinical+records 
DOI: N/A 
License: CC BY 4.0, https://creativecommons.org/licenses/by/4.0/ 
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Final Date Accessed: November 23, 2020 
Modifications: The original data was not modified. Federated replica(s) of this data were produced as 
described in the manuscript. 
Warranties/Endorsements: The original authors made no warranties regarding the use of this data nor 
endorsed the present manuscript or its findings. 
Methods Description: Chicco & Jurman 2020 
Reported Oversight: Approved by Institutional Review Board of Government College University 
(Faisalabad, Pakistan) 
 

[A7.6] Bacteraemia 
Title: Risk factors for relapse or persistence of bacteraemia caused by Enterobacter spp.: a case-control 
study 
Version (Date): 1.0 (18.01.2017) 
Author(s): Patrick Harris 
Host: Harvard Dataverse 
Link: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/56NCVU 
DOI: https://doi.org/10.7910/DVN/56NCVU 
License: CC0 1.0, https://creativecommons.org/publicdomain/zero/1.0/ 
Final Date Accessed: November 23, 2020 
Modifications: The original data was not modified. Federated replica(s) of this data were produced as 
described in the manuscript. 
Warranties/Endorsements: The original authors made no warranties regarding the use of this data nor 
endorsed the present manuscript or its findings. 
Methods Description: Harris et al. 2017 
Reported Oversight: Approved by Royal Brisbane & Women’s Hospital Human Research Ethics 
Committee 
 

[A7.7] Azithromycin in Infants 
Title: Replication Data for: MORDOR Infant Adverse Event Survey Data 
Version (Date): 2.0 (01.11.2018) 
Author(s): Ying Lin 
Host: Harvard Dataverse 
Link: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/MQYM5S 
DOI: https://doi.org/10.7910/DVN/MQYM5S 
License: CC0 1.0, https://creativecommons.org/publicdomain/zero/1.0/ 
Final Date Accessed: November 23, 2020 
Modifications: The original data was not modified. Federated replica(s) of this data were produced as 
described in the manuscript. 
Warranties/Endorsements: The original authors made no warranties regarding the use of this data nor 
endorsed the present manuscript or its findings. 
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Methods Description: Oldenburg et al. 2018 
Reported Oversight: Approved by the Committee on Human Research at the University of California, San 
Francisco and the Institutional Review Board at the Niger Ministry of Health 
 

[A7.8] Extrapulmonary Tuberculosis 
Title: Replication Data for Extra-pulmonary tuberculosis: a retrospective study of patients in Accra, 
Ghana 
Version (Date): 1.0 (02.08.2018) 
Author(s): Sally-Ann Ohene 
Host: Harvard Dataverse 
Link: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/TA1OII 
DOI: https://doi.org/10.7910/DVN/TA1OII 
License: CC0 1.0, https://creativecommons.org/publicdomain/zero/1.0/ 
Final Date Accessed: November 23, 2020 
Modifications: The original data was not modified. Federated replica(s) of this data were produced as 
described in the manuscript. 
Warranties/Endorsements: The original authors made no warranties regarding the use of this data nor 
endorsed the present manuscript or its findings. 
Methods Description: Ohene et al. 2019 
Reported Oversight: Approved by Ghana Health Service Ethical Review Committee 
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