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Abstract. In multi-relational databases, a view, which is a context- and
content-dependent subset of one or more tables (or other views), is often
used to preserve privacy by hiding sensitive information. However, re-
cent developments in data mining present a new challenge for database
security even when traditional database security techniques, such as data
access control via a view, are employed. This paper presents a data min-
ing framework using semi-supervised learning that demonstrates the po-
tential for privacy leakage in multi-relational databases. Many different
types of semi-supervised learning techniques, such as K-nearest neighbor
(KNN) methods, can be used to demonstrate privacy leakage. However,
we also introduce a new approach to semi-supervised learning, hyper-
clique pattern based semi-supervised learning (HPSL), which differs from
traditional semi-supervised learning approaches in that it considers the
similarity among groups of objects instead of only pairs of objects. Our
experimental results show that both the KNN and HPSL methods have
the ability to compromise database security, although HPSL is better at
this privacy violation (has higher accuracy) than KNN methods. Finally,
we provide a principle for avoiding privacy leakage in multi-relational
databases via semi-supervised learning and illustrate this principle with
a simple preventive technique whose effectiveness is demonstrated by
experiments.

1 Introduction

In multi-relational databases, a view, which is a context- and content-dependent
subset of one or more tables (or other views), is often used to preserve privacy
by hiding sensitive information. For instance, a view might be created to allow
a sales manager to see only that portion of a customer table that is related to
customers in the manager’s own territory. This view might also be limited to se-
lected columns from the base tables in which the subset of customer information
is contained. Since a key purpose of database views is to hide sensitive infor-
mation by controlling data access, the results of security breaches in database
views can be serious, ranging from financial exposure to disrupted operations.
A concern for database security was initially raised by Codd’s fundamental
work on relational databases [2]. Indeed, one of the main issues faced by database



security professionals is avoiding or limiting the inference capabilities of database
users. Specifically, the goal is to limit the ability of database users to employ
information available at one security level to infer facts that should be protected
at a higher security level.

In this paper, our concern with database security is different from the in-
ference problem mentioned above. More specifically, if some information from
a higher security level is known by a user at a lower security level,! then this
user may be able to predict additional information that should be protected at
a higher security level. Indeed, the focus of this paper is to present a framework
based on semi-supervised learning that illustrates the potential for this type of
privacy leakage in multi-relational databases.

Semi-supervised learning techniques use both labeled and unlabeled data for
predicting class labels for unlabeled objects. Among such techniques, there is a
promising family of methods which are analogous to the traditional K-Nearest-
Neighbor (KNN) method used in supervised learning [12]. The hypothesis behind
these methods is that similar data objects tend to have similar class labels.

More recently, we have defined a new pattern for association analysis—the
hyperclique pattern [16]—that demonstrates a particularly strong connection be-
tween the overall similarity of a set of attributes (or objects) and the itemset
(local pattern) in which they are involved. The hyperclique pattern, described
in more detail later, possesses the strong affinity property, i.e., the attributes
(objects) in a hyperclique pattern have a guaranteed level of global pairwise
similarity to one another as measured by the cosine or Jaccard similarity mea-
sures [14]. Intuitively, a hyperclique pattern includes objects which tend to be
from the same class category. In this paper, we propose a new semi-supervised
learning approach that is based on this observation, the hyperclique pattern
based semi-supervised learning (HPSL) method. By considering the similarity
among all objects in a hyperclique pattern instead of the similarity between
only pairs of objects, we can improve semi-supervised learning results over those
based on KNN approaches.

The main contributions of this paper can be summarized as follows.

— We describe a new challenge for database security from the data mining/machine
learning perspective. More specifically, we show that classic database security
techniques may be inadequate in light of developments in semi-supervised
learning. To demonstrate this, we present a framework that illustrates the po-
tential for privacy leakage in database views with respect to semi-supervised
learning.

— We introduce a new semi-supervised learning approach, the hyperclique pat-
tern based semi-supervised learning (HPSL) method. We use this technique,
along with a couple of KNN semi-supervised learning approaches, to illus-
trate privacy leakage in database views. (However, other semi-supervised

! Information from a higher security level could be obtained in a variety of ways, for
example, by eavesdropping electronic or otherwise but the details are outside the
scope of this paper.



learning techniques could also be used.)

— We conduct extensive experiments on several real data sets to show the effec-
tiveness of the HPSL method. Our experimental results show that the HPSL
approach can achieve better prediction accuracy than traditional K-Nearest
Neighbor (KNN) techniques.

— We provide a pseudo-attribute perturbation method that protects databases
from a potential semi-supervised learning attack by invalidating the ‘similar
data objects tend to have similar class labels’ assumption on which semi-
supervised learning techniques are based. Experimental results indicate that
this method can effectively decluster objects in the same category, thus pro-
viding enhanced database security.

2 Problem Formulation

The purpose of this paper is to investigate privacy leakage in database views via
semi-supervised learning. We formalize this problem as follows:

Problem: Privacy Leakage in Multi-relational Data-bases via Semi-
supervised Learning

— Given:

e 9 is a view that contains selected attributes, I = {i1,12,...,%m}, poten-
tially from several base tables;

e C ={cy,¢c2,...¢p} is a set of attributes which are to be protected and
are not provided in ;

e O ={01,09,...,0,} is a set of tuples (objects) in ¥ for which the values
of attributes in the set C are unknown;

o K ={ki,ko,...,ki}is a set of tuples (objects) in ¥ for which the values
of attributes in the set C are known.

— Design: An effective semi-supervised learning mechanism to predict the val-
ues of attributes in the set C for objects in O.

— Objective: Predict, with high accuracy, the values of attributes in the set
C for some objects in O.

— Constraints: 1) | << n, where [ is the number of objects with known class
labels and n is the total number of objects. 2) The attributes in the set T
have predictive power for the attributes in the set C.

Ezxample 1. Figure 1 gives an illustration of the problem. In the figure, the view
contains m attributes and n tuples (objects). All the information in the view is
known by the user. Also, there are p attributes that are in base tables but not
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Fig. 1. Illustration of the Problem

in the view. Hence, the information in these p attributes is unknown to a user of
the database view. However, if, for some objects, these p attributes are known to
a user of the database view, then such a user may use semi-supervised learning
techniques to predict these p attributes for other objects. This is the problem
addressed in this paper.

3 Background and Related Work

As mentioned, a goal of database security is to limit the ability of users to infer
facts that should be protected at a higher security level. Consider the following
example.

Ezample 2. Given a multi-relational database, assume that there is a view named
‘cargo’ that contains information on the various cargo holds available on each
outbound airplane. Each row in this view represents a single shipment and lists
the contents of that shipment and the flight identification number. The flight
identification number may be cross-referenced with other base tables to deter-
mine the origin, destination, flight time, and other information. The ‘cargo’ view

is presented in Table 1.
Table 1. The ‘cargo’ view.

Flight ID | Cargo | Contents | Classification
1200 A Boots Unclassified

1200 B Toys Unclassified
1200 C Guns Top Secret
1200 D Butter Unclassified

If a database user with a top secret security clearance requests information on
the cargo carried by flight 1200, then this user would see all shipments. However,



if a user without a security clearance requests the data, then this user would not
see the top secret shipment. The above correctly implements the security rules
that prohibit someone with lower security levels from seeing information with
higher security levels. However, assume that there is a uniqueness constraint on
flight ID and cargo (to prevent the scheduling of two shipments for the same
hold). When a user without top secret clearance sees that nothing is scheduled
for cargo hold C on flight 1200, this user might attempt to insert a new record
to reserve this cargo hold. However, the insertion of this record will fail due to
the uniqueness constraint. At this point, the user can infer that there is a secret
shipment on flight 1200 and could then cross-reference the flight information
table to find out the source and destination of the secret shipment, as well as
various other information.

There are two basic approaches to avoid such inference. One is polyinstantiation
[4], which allows the creation of multiple instances of data records in a way
such that a user with lower security levels can see the tuple associated with a
particular primary key populated with one set of element values. However, a
user with higher security levels may see the ‘same’ tuple with perhaps different
values for some of the attributes or see multiple tuples corresponding to different
security levels. Another approach is to perform data access control and ensure
that the set of all classification constraints is consistent [3]. In other words,
even if users at lower security levels can know about the existence of a classified
shipment, they will not have access to information about the contents of that
shipment.

Here, we raise another concern from a data mining perspective. Our hypothe-
sis is that, if a portion of information at a higher security level is known to a user
at a lower security level, then it is possible that this user may infer more informa-
tion at a higher security level. This problem can be treated as semi-supervised
learning on labeled data (some leaked information at a higher security level) and
unlabeled data (information at a lower security level) [12].

Traditional supervised learning methods build a prediction model from la-
beled data and use this model for predicting the labels of objects with unknown
labels. However, in the real world, there are many situations where only a small
fraction of the objects are labeled. In this case, many difficulties may arise in
building a prediction model based solely on labeled data. This is referred to as
the small training sample size problem [6,11] in machine learning.

Semi-supervised learning techniques [12], which make use of both unlabeled
and labeled data, have recently been proposed to cope with the above challenge.
Among such techniques, there is a promising family of methods that are simi-
lar to the K-Nearest-Neighbor (KNN) technique used in traditional supervised
learning [12]. The hypothesis behind these methods is that similar data objects
tend to have similar class labels. Our hyperclique pattern based semi-supervised
learning method (HPSL) is also based on this hypothesis, but differs from KNN
approaches in that it considers the similarity among a group of objects instead
of just the similarity between pairs of objects.



Finally, the objective of most traditional semi-supervised learning methods
is to learn class labels for all the objects while our HPSL method only predicts
the class labels for objects around the objects with known class labels. The
KNN approaches that we use for our experiments are also employed in the same
manner.

4 Hyperclique Patterns

A hyperclique pattern [16] is a new type of association pattern that contains
items that are highly affiliated with each other. Specifically, the presence of an
item in one transaction strongly implies the presence of every other item that
belongs to the same hyperclique pattern. The h-confidence measure captures the
strength of this association and, for an itemset P = {i1,12, ---,im}, is defined
as the minimum confidence of all association rules of the itemset with a left
hand side of one item, i.e., hconf(P) = min{conf{i1 — i2,...,im}, conf{ia =
11583y vs bm}y ovy CONF{im —> %1, .., 4m—1}}. An itemset P is a hyperclique
pattern if hconf(P) > h., where h. is the minimum h-confidence threshold. A
hyperclique pattern is a maximal hyperclique pattern if no superset of this
pattern is a hyperclique pattern.

For example, consider an itemset P = {A, B, C}. Assume that supp({A}) =
0.1, supp({B}) = 0.1, supp({C}) = 0.06, and supp({4, B,C}) = 0.06, where
supp is the association rule support [1]. Then

conf{A — B,C} = supp({A, B,C})/supp({A}) = 0.6
conf{B — A,C} = supp({A, B,C})/supp({B}) = 0.6
conf{C — A, B} = supp({A, B,C})/supp({C}) =1
Hence, hconf(P) = min{conf{B — A,C}, conf{A — B,C}, conf {C —
A,B}} = 0.6.
Table 2. Example Hyperclique Patterns

LA1 Dataset
Hyperclique patterns  |Support|H-confidence
{gorbachev, mikhail} 1.4% 93.6%
{photo, graphic, writer} | 14.5% 42.1%
{season, team, game, play}| 7.1% 31.4%

Table 2 shows some hyperclique patterns identified from a document data
set, which includes articles from various news categories such as ‘financial,’
‘foreign,’ ‘sports,” and ‘entertainment.” For instance, the hyperclique pattern
{season, team, game, play} is from the ‘sports’ category.

The h-confidence measure has three important properties, namely the anti-
monotone property, the cross-support property, and the strong affinity property
[16]. The anti-monotone property is analogous in definition and use to the anti-
monotone property of the support measure used in association-rule mining [1].



The cross-support property allows us to efficiently eliminate patterns involv-
ing items with different support levels. Together, the anti-monotone and cross-
support properties form the basis of an efficient hyperclique mining algorithm
that has much better performance than frequent itemset mining algorithms, par-
ticularly at low levels of support. Finally, the strong affinity property guarantees
that if a hyperclique pattern has an h-confidence value above the minimum h-
confidence threshold, k., then every pair of items within the hyperclique pattern
must have a cosine similarity greater than or equal to h..

5 Semi-Supervised Learning Using Nearest Neighbor
Approaches

In general, there are two potential directions for semi-supervised learning us-
ing nearest neighbors. One is a K Nearest Neighbor based Semi-supervised
(KNNS) learning method. Another one is a TOP-K Nearest Neighbor based
Semi-supervised (TOP-K NNS) learning method.

5.1 The KNNS Method

We first describe the KNNS method. For each given object with a class label,
KNNS uses the class label of the given object to label each of the k nearest
neighbors. If a predicted object is found to be one of k nearest neighbors of
more than one given object, then KNNS assigns the label of the given object
with the highest similarity.

The KNNS method is simple and easy to implement. However, the KNNS
method only considers pairs of similar objects when labeling the data objects.
Indeed, in real world data sets, it is possible that two objects are often nearest
neighbors without belonging to the same class [13]. This is illustrated by ex-
perimental results, as shown in Section 8.1. From this perspective, the KNNS
method works in a greedy fashion.

In addition, the KNNS method predicts an equal number of objects for each
given object with a class label; that is, the KNNS method gives each labeled ob-
ject equal weight as a predictor. This may not be appropriate in real-world data
sets. Intuitively, objects from a high-density cluster may predict more objects
with a high accuracy. In contrast, objects from a loosely connected cluster may
only have limited predictive power. In the worst case, a labeled object can be
noise or an outlier that is completely unsuitable for prediction.

5.2 The TOP-K NNS Method

In this subsection, we present the TOP-K NNS method. For n given objects with
class labels, the TOP-K NNS method finds the k objects with the highest level
of similarity from the neighborhood of these n objects.

The TOP-K NNS method has two appealing characteristics. First, this method
is simple and is easy to implement. Second, based on similarity, the TOP-K NNS



method assigns different predictive power to different labeled objects. Hence,
unlike the KNNS method, the TOP-K NNS method can avoid many prediction
errors when some labeled objects are noise or an outlier.

The TOP-K NNS method is a greedy-choice algorithm. The prediction mech-
anism of this algorithm is solely based on pair-wise similarity. As already noted,
in real world data sets, it is quite possible that two objects can be nearest neigh-
bors without belonging to the same class [13]. As a result, many prediction errors
can be generated by this greedy choice approach. Also, this method gives higher
predictive power to objects from a dense cluster. If the labeled objects are from
both dense and sparse clusters, it is possible that 1) few objects from a sparse
cluster can be predicted if the value of & is small and 2) if a very large value of k
is specified, then some objects from a sparse cluster can be predicted. However,
in the latter case, more prediction errors will be introduced for those objects
from dense clusters.

6 HPSL: Hyperclique Pattern Based Semi-supervised
Learning

In this section, we present a hyperclique pattern [16] based semi-supervised
learning (HPSL) approach and show the difference between HPSL and KNN
approaches.

6.1 The HPSL Algorithm

The problem of privacy leakage in multi-relational databases via semi-supervised
learning assumes that only a small portion of the objects have class labels. For
an object with a class label, our purpose is to find a maximal hyperclique pattern
that contains this object and then label all other objects in the pattern with the
label of this object.

Figure 2 shows the pseudocode of the HPSL algorithm. This algorithm con-
sists of two phases. In phase I, HPSL finds maximal hyperclique patterns with
object constraints. For a given object O, we will use the maximal hyperclique
pattern in which it occurs for semi-supervised learning. In Phase II, HPSL labels
all the unlabeled objects in the discovered maximal hyperclique patterns.

The detailed steps of this algorithm are explained as follows. Line 1 finds a set
of unlabeled objects. Line 2 sorts labeled and unlabeled objects based on their
support. Line 3 generates an itemset for single items. Line 4 prunes the single
itemsets by using the minimum support threshold. Lines 5 through 9 generate
hyperclique patterns from size 2 to size k. Line 6 generates candidate size k
patterns by joining pairs of patterns with size £ — 1. Note that we only need to
generate candidate patterns that contain objects with class labels, which reduces
the search space significantly. Next, in line 7, we prune candidate patterns using
the anti-monotone and cross-support properties of h-confidence [16] and generate
hyperclique patterns. Line 10 generates maximal hyperclique patterns. Finally,
lines 11-15 generate semi-supervised learning results.



HPSL Algorithm
Input: D: a data set.

O: a set of objects with class labels.

#: a minimum h-confidence threshold.

a: a minimum support threshold.
Output: SLR: Semi-supervised Learning Results.
Method
Phase I: Hyperclique Mining with Object Constraints

1. O, < unlabeled_item(D, O)

2. O < sort(0); O; « sort(0;)

3. m <+ OUO;

4. C; «+ prune(m, a)

5. for the size of itemsets, 4, in (2,3,...,k— 1) do
6. Ci < jOin(C¢_1,C¢_1)

7. C; < prune(C;, 6, a)

8. S« SuUC;

9. endfor

10. MS ¢« maximal_hyperclique_pattern(S)

Phase II: Semi-supervised Learning

11. for each pattern p in MS
12. SL <+ semi_label(p)
13. SLR « SLR U SL
14. endfor

15. OUTPUT SLR

16. End

Fig. 2. The HPSL Algorithm

There are several benefits of the HPSL method. First, this method only
predicts class labels for objects strongly connected to objects with known class
labels. Recall that the KNNS and TOP-K NNS methods also have this character-
istic. Second, unlike the KNNS method, HPSL considers the similarity among
groups of objects instead of just pairs of objects. Third, hyperclique patterns
represent unique concepts that may potentially help guide better information
inference in databases. Finally, the application of the HPSL method for attack-
ing database security reveals an interesting direction for multi-relational data
mining [5].

6.2 A Comparison of HPSL and KNNS

In this subsection, we illustrate the difference between the KNNS method and
the HPSL method in terms of the scope of objects that may be predicted. Assume
that we already know class labels for five objects: O1, O3, O3, O4, and Os. The
KNNS method will find the & most similar neighbors around each object with a
class label and label these neighbors using the label of the given object. In this
case, the KNNS method treats every object with a class label as an equally good



predictor and will predict the same number of objects for each labeled object. In
contrast, for each object with a class label, the HPSL method finds the maximal
hyperclique pattern that contains this object and labels all members of this
pattern with this class label. Hence, for the HPSL method, each object with a
class label has different predictive power. In other words, different numbers of
objects are predicted for each object with a class label. This is desirable since it
better fits real world situations.

Fig. 3. The Working Mechanism of HPSL.

The rationale behind the HPSL method is as follows. If there is a clustering
effect in a real life data set, then different clusters often have different cluster
sizes. Objects representing noise and outliers may also be present. Hence, it is
natural that different objects should have different predictive power, since an
object that represents noise or an outlier may not predict anything, while an
object from a large cluster may be used to predict class labels for many objects
within this cluster. Consider the following example.

Example 3. Figure 3 shows a hyperclique pattern graph of a sample data set with
19 objects at the h-confidence threshold 0.2. If the cosine similarity of two objects
is above 0.2, an edge is put between them and the similarity value is the weight
of the edge. In this sample data set, we assume that the class labels for objects:
01, O3, and Oj9 are known. If the KNNS method is applied, k£ nearest neighbors
around O;, O3z, and Oq9 will be found and labeled using the class label of Oy,
O3, and Oqg respectively. Not surprisingly, the prediction accuracy is extremely
poor. Since the object O1g is a noise point, the class label of Og is expected to
be different from the objects found by the KNNS method. Also, for the object
O3, the KNNS method makes a prediction for its k similar neighbors, however
the scope of this inference is limited. In contrast, the HPSL method will first



find a maximal hyperclique pattern for each object. Since there is no hyperclique
pattern that can be found for the object Oi9, no objects can be predicted by
this object using the HPSL method. Also, since {Os,04,05,06,07,05} is a
hyperclique pattern at the h-confidence threshold 0.2—recall that the cosine
similarity of pairwise objects in this pattern is above 0.2—the HPSL method
will label all members in this pattern with the label of the object O3. Hence, it
is expected that the HPSL method will achieve better prediction accuracy and
will be more suitable for real world situations.

6.3 A Comparison of HPSL and TOP-K NNS

The major difference between the HPSL method and the TOP-K NNS method is
that the TOP-K NNS method is a greedy choice algorithm, which is solely based
on pairwise similarity. In contrast, the HPSL method takes the similarity among
all objects into consideration, rather than relying only on pairwise similarity.
Therefore, the HPSL method has the potential for avoiding prediction errors
that result from the greedy choice approach. Also, if the labeled objects come
from clusters with different cluster densities, it is possible that & objects with
top k highest similarity are all from a dense cluster. Hence, no object will be
predicted from a cluster with a lower density even though objects in a cluster
with a lower density may be tightly coupled. Consider the following example.

Example 4. For the data set in Figure 3, assume that the class labels of ob-
jects O11 and Og are known and we want to predict 5 objects. For the TOP-K
NNS method, five objects, O3, O4, O5, Og, O7, around Og have the top-5 highest
similarity, so these objects are labeled by the label of Og and no object will
be predicted by the object Oq;. In order to predict some objects around O,
we have to increase the number of objects for prediction. However, this may
result in some prediction errors around the labeled object Og due to the greedy
choice of pair-wise similarity. For instance, before we can predict objects around
011, we must first predict additional objects, such as O and O;7, around the
object Og. This can introduce a lot of prediction errors. In contrast, the HPSL
method can find {Og, O1¢, O11, 012,013} and {O3, 04, O5, Og, O7, Os} as hyper-
clique patterns and then label all members in these two patterns with the labels
of Og and O;1, respectively.

7 Prevention

The results of security breaches in database views can be extremely serious. In
this section, we investigate how to prevent the potential information leakage
from semi-supervised learning in multi-relational databases.

In the following, we first give a principle which can be used to guide the
design of effective techniques for preventing semi-supervised learning attacks.

Principle 1 A prevention technique should have the ability to decluster the data,
i.e., similar data objects tend to have different class labels.



Pseudo-Attribute Perturbation
Input: D: a data set.
m: the number of attributes.
n: the number of data objects.
p: the number of classes.
Variables: S: a set of pseudo-attributes.
Output: an extended data set D’ with k number
of pseudo-attributes

Method

1. S ¢ random_sample_attributes(k, D)
2. (S1,82,-..,Sp) « partition(S, p)

3. Fori=1topdo

4. ¢ < centroid(S;)

5. For each O in S; do

6. O < perturbation(O, c)
7. End for

8. End for

9. S(_(SlstV"aSP)

10. D’=DuUS

11. OUTPUT D’

12. End

Fig. 4. Pseudo-Attribute Perturbation

The rationale of this principle follows directly from the hypothesis of semi-
supervised learning attacks: similar data objects should have similar class labels.

Following this principle, we provide a preventive technique by introducing
pseudo-attributes into the database view. The purpose of these pseudo-attributes
is to make sure that the objects with the same class label have poor similarity
to each other. In other words, pseudo-attributes can decluster objects with the
same class label.

The key idea of the pseudo-attribute perturbation method is illustrated as
follows. First, consider Equation 1 which defines the cosine similarity measure
for two vectors z = {z1,22,...,Zm} and y = {y1,92,..,Ym}. Our purpose is
to introduce some pseudo-attributes into these two vectors such that the value
> zy is decreased and the value /) z2 > y? is increased. As a result, the cosine
similarity between x and y is reduced.

ey (1)
Vet y?

Figure 4 shows the pseudo-attribute perturbation algorithm. Line 1 randomly
samples k attributes from the data set for perturbation. For the data set with
the selected k attributes, Line 2 partitions objects based their class labels into
p groups. For each group, Line 4 computes the centroid vector ¢ and Line 6

cos(z,y) =



reduces the cosine similarity between each object O and the centroid ¢ using the
above mentioned idea. The data with perturbed attributes are combined with
the original data set to form a new data set.

Finally, we should point out that the above proposed preventive technique
may not be the best approach to deter semi-supervised learning attacks. However
it does increase the complexity for an attacker to a higher level.

8 Experimental Evaluation

In this section, we demonstrate the potential information leakage in database
views via a hyperclique pattern based semi-supervised learning technique (HPSL)
with experiments on several real-world data sets. The relative performance be-
tween HPSL and KNNS as well as TOP-K NNS is also presented.

Experimental Data Sets. For our experiments, we used three real life data
sets, which are from several different application domains. Some characteristics
of these data sets are shown in Table 3.

Table 3. Characteristics of data sets.

Data Set LA1 REO |[WAP
Number of Documents 3204 1504 |1560
Number of Words 31472 | 11465 |8460
Number of Classes 6 13 20
Min Class Size 273 11 5
Max Class Size 943 608 (341
Min Class Size/Max Class Size| 0.29 0.018 ]0.015
Source TREC-5|Reuters| WebAce

The LA1 data set is part of the TREC-5 collection [15] and contains news
articles from the Los Angeles Times. The REO data set is from the Reuters-21578
text categorization test collection Distribution 1.0 [9]. The data set WAP is from
the WebACE project (WAP) [7]; each document corresponds to a web page listed
in the subject hierarchy of Yahoo!. For all data sets, we used a stop-list to remove
common words, and the words were stemmed using Porter’s suffix-stripping al-
gorithm [10].

Entropy Measure. In our experiments, we applied the entropy measure for
evaluating the clustering effect in a data set. To compute the entropy of a set of
clusters, we first calculate the class distribution of the objects in each cluster,
i.e., for each cluster j we compute p;;, the probability that a member of cluster
Jj belongs to class ¢. Given this class distribution, the entropy, E;, of cluster j is
calculated using the standard entropy formula E; = — Y, p;;log(p;;), where the
sum is taken over all classes and the log is log base 2. The total entropy for a
set of clusters is computed as the weighted sum of the entropies of each cluster,
as shown in the equation E = ZT=1 %J * E;, where n; is the size of cluster j, m
is the number of clusters, and n is the total number of data points.
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8.1 A Potential Problem with NN Approaches

In real world data sets, it is possible that two objects can often be nearest
neighbors without belonging to the same class. To illustrate this, let us consider
real document data sets. Figure 5 shows the percent of documents whose nearest
neighbor is not of the same class. While this percentage varies widely from one
data set to another, the chart confirms the previous claim about nearest neighbor
behavior in documents.

Since, in many cases, the nearest neighbors of an object are of different
classes, the nearest neighbor based semi-classification approach will often assign
objects of different classes to the same class. To cope with this challenge, our
HPSL method considers the similarity among all objects instead of the two most
similar objects.

8.2 Cluster Nature of Hyperclique Patterns

In this experiment, we explain why the hyperclique pattern is a good candi-
date to use for a pattern based semi-supervised learning. Figure 6 shows, for
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the LA1 data set, the entropy of the discovered hyperclique patterns for dif-
ferent minimum h-confidence and support thresholds. As Figure 6 shows, when
the minimum h-confidence threshold increases, the entropy of hyperclique pat-
terns decreases dramatically. For instance, when the h-confidence threshold is
higher than 0.25, the entropy of hyperclique patterns is less than 0.1 at all the
given support thresholds. This indicates that, at certain h-confidence thresholds,
hyperclique patterns tend to include objects from the same class.

8.3 The Effect of Changing the Number of Objects with Known
Class Labels

Here, we show the relative performance of the HPSL method and the nearest
neighbor based approaches including KNNS and TOP-K NNS as the number
of objects with known class labels is increased. More specifically, we present
the prediction accuracies and the object coverage—the percentage of the given
labeled objects that have been used for prediction—when the number of objects
with class labels is 2, 4, 6, 8, and 10, respectively. In this experiment, we specify
the total number of predicted objects to be approximately five times more than
the number of objects with class labels. We also performed random sampling to
select objects with class labels. Finally, in order to reduce the random effect, we
conducted 10 trials for each experiment.
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Figures 7 a), b), and c¢) show the classification accuracies of HPSL, KNNS,
and TOP-K NNS on WAP, LA1, and REQ data sets respectively. As can be
seen, for most observed numbers of objects with known class labels, the achieved
accuracies of the HPSL method are significantly and systematically better than
that of KNNS and TOP-K NNS methods. This is due to the fact that the HPSL
method has the power to eliminate the isolated data objects that often result
in prediction errors in nearest neighbor approaches, such as KNNS and TOP-
K NNS. Another observation is that the TOP-K NNS method performs much
better than KNNS in terms of accuracies. Indeed, the KNNS method is forced
to predict the same number of objects for each labeled object. If noise or outliers
are picked, the KNNS method tends to make a wrong prediction. In contrast,
the TOP-K NNS method only predicts objects with the top k highest similarity.
Hence, it is possible that no prediction will be made for noise or outliers, thus
reducing the chance of incorrect predictions.

Figures 7 d), e), and f) show the object coverage percentage by HPSL, KNNS,
and TOP-K NNS on WAP, LA1, and REO data sets respectively. Since KNNS
is forced to use each labeled object for prediction, the object coverage of KNNS
is always 100%. Also, we observed that the coverage of HPSL is slightly smaller
than that of TOP-K NNS.

8.4 Changing the Proportion of Predicted Objects

In this subsection, we show the effect of changing the proportion of predicted ob-
jects on the performance of HPSL, KNNS, and TOP-K NNS. In the experiment,
we set the number of objects with class labels to be six and did a random sam-
pling to select these six objects. Also, 10 trials were conducted for each observed
parameter.

Figure 8 shows the prediction accuracies of HPSL, KNNS, and TOP-K NNS
on REO, LA1, and WAP data sets as the proportion of predicted objects is
increased. In the figure, we can observe that the prediction accuracy of HPSL
is much better that that of KNNS or TOP-K methods on all three testing data
sets. Also, we observed, for all three methods, that there is a downward trend in
accuracy when the proportion of estimated instances is increased. This result is
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8.5 The Effectiveness of the Pseudo-Attribute Perturbation
Technique

In this experiment, we tested the effectiveness of the pseudo-attribute perturba-
tion technique on three real life data sets: REO, LA1, and WAP. More specifically,
our purpose is to show that the pseudo-attribute perturbation technique can in-
troduce the declustering effect among objects in the same category. In other
words, this preventive technique tends to invalidate the basic assumption on
which semi-supervised learning attacks on multi-relational databases are based.

Figure 9 shows the entropies achieved by the bisecting K-means clustering
method [8] before and after the pseudo-attribute perturbation. As can be seen,
if no pseudo-attribute perturbation is involved, the entropy is relatively low for
different sizes of cluster on all three data sets. This indicates that there is a strong
clustering effect in each category for all three test data sets. After we applied
the pseudo-attribute perturbation technique, the entropy jumps significantly for
all three test data sets, i.e., there is a declustering effect on objects within the
same category.

9 Conclusions

In this paper, we demonstrated a new challenge for multi-relational database se-
curity from the data mining perspective. More specifically, we presented a frame-
work for illustrating potential privacy leakage in multi-relational databases via
a semi-supervised learning. We also introduced a new semi-supervised learning
approach, hyperclique pattern based semi-supervised learning method (HPSL).
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The hypothesis behind this method is that similar data objects tend to have sim-
ilar class labels. As demonstrated by our experimental results, the HPSL method
can achieve better prediction accuracy than the traditional KNNS and TOP-K
NNS approaches. Finally, we proposed a principle for protecting multi-relational
databases from such semi-supervised learning attacks. A simple pseudo-attribute
perturbation method was also provided. Our experiments showed that the pseudo-
attribute perturbation method can reduce the clustering effect in data sets, and
thus reducing the risk of semi-supervised learning attacks.

For future work, we plan to investigate other semi-supervised learning tech-
niques from statistics or machine learning. We also plan to investigate additional
approaches for protecting database security in the face of semi-supervised learn-
ing attacks.
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