
Privacy of Outsourced Data

Sabrina De Capitani di Vimercati1, Sara Foresti1, Stefano Paraboschi2, Pierangela Samarati1

1 University of Milan - 26013 Crema, Italy

{decapita,foresti,samarati}@dti.unimi.it

2 University of Bergamo - 24044 Dalmine, Italy

parabosc@unibg.it

Contents

1 Introduction 2

2 Basic Scenario and Data Organization 3

2.1 Parties Involved . 3

2.2 Data Organization . 4

2.3 Interactions . 6

3 Querying Encrypted Data 7

3.1 Bucket-Based Index . 7

3.2 Hash-Based Index . 9

3.3 B+ Trees Index . 10

3.4 Other Approaches . 12

3.5 Evaluation of Inference Exposure . 14

4 Security Issues 16

4.1 Access Control Enforcement . 16

4.1.1 Selective Encryption . 16

4.1.2 Other Approaches . 22

5 Conclusions 23

Sara
Line

2

1 Introduction

The amount of information held by organizations’ databases is increasing very quickly. To respond to

this demand, organizations can either add data storage and skilled administrative personnel (at a high

rate), or, a solution becoming increasingly popular, delegate database management to an external service

provider (database outsourcing). In database outsourcing, usually referred to as Database As a Service

(DAS) the external service provider provides mechanisms for clients to access the outsourced databases. A

major advantage of database outsourcing is related to the high costs of in-house versus outsourced hosting.

Outsourcing provides significant cost savings and promises higher availability and more effective disaster

protection than in-house operations. On the other hand, database outsourcing poses a major security

problem, due to the fact that the external service provider, which is relied upon for ensuring high availability

of the outsourced database (i.e., it is trustworthy), cannot always be trusted with the confidentiality of

database content.

Besides well-known risks of confidentiality and privacy breaks, threats to outsourced data include im-

proper use of database information: the server could extract, resell, or commercially use parts of a collection

of data gathered and organized by the data owner, potentially harming the data owner’s market for any prod-

uct or service that incorporates that collection of information. Traditional database access control techniques

cannot prevent the server itself from making unauthorized access to the data stored in the database. Alterna-

tively, to protect against “honest but curious” servers, a protective layer of encryption can be wrapped around

specific sensitive data, preventing outside attacks as well as infiltration from the server itself [1]. Data en-

cryption, however, raises the problem of efficiently querying the outsourced database (now encrypted). Since

confidentiality demands that data decryption must be possible only at the client-side, techniques have been

proposed, enabling external servers to directly execute queries on encrypted data. Typically, these solutions

consist mainly in adding a piece of information, called index , to the encrypted data. An index is computed

based on the plaintext data and it preserves some of the original characteristics of the data.

Several approaches have been proposed for encrypting and indexing outsourced databases and for querying

them. Also, these proposals assume all users to have complete access to the whole database. This assumption

does not fit current scenarios where different users may need to see different portions of the data, that is, where

selective access needs to be enforced. Adding a traditional authorization layer to the current outsourcing

scenarios requires that when a client posed a query, both the query and its result have to be filtered by the

data owner (who is in charge of enforcing the access control policy), a solution that however is not applicable

in a real life scenario. More recent research has addressed the problem of enforcing selective access on the

outsourced encrypted data by combining cryptography with authorizations, thus enforcing access control

3

Translator

Encrypt
Decrypt

AC
Policy

B

Metadata

Query
Processor

k

3) encrypted
result

 2) transformed
query Qs

1) original
query Q

metadata

Bk

Client Server

User Data owner

Query
Engine

Qc

Qs

4) plaintext result

Metadata

Figure 1: DAS Scenario

via selective encryption. Basically, the idea is to use different keys for encrypting different portions of the

database. These keys are then distributed to users according to their access rights. The challenge is then to

limit the amount of cryptographic information that needs to be stored and managed.

In this chapter, we survey the main proposals addressing the data access and security issues arising in

the database outsorcing scenario. The remainder of the chapter is organized as follows. Section 2 gives an

overview of the entities involved in the DAS scenario and of their typical interactions. Section 3 describes

the main indexing methods proposed in the literature for supporting queries over encrypted data. Section 4

presents the main proposals for enforcing selective access on the outsourced data. Finally, Section 5 concludes

the chapter.

2 Basic Scenario and Data Organization

We describe the entities involved in the DAS scenario, how data are organized in the outsourced database,

and the interaction among the entities for query execution.

2.1 Parties Involved

There are four distinct entities interacting in the DAS scenario (Figure 1):

• a data owner (person or organization) produces and outsources resources to make them available for

controlled external release;

• a user (human entity) presents requests (queries) to the system;

4

• a client front-end transforms the queries posed by users into equivalent queries operating on the

encrypted data stored on the server;

• a server receives the encrypted data from one or more data owners and makes them available for

distribution to clients.

Clients and data owners, when outsourcing data, are assumed to trust the server to faithfully maintain

outsourced data. The server is then relied upon for the availability of outsourced data, so the data owner

and clients can access data whenever requested. However, the server (which can be “honest but curious”) is

not trusted with the confidentiality of the actual database content, as outsourced data may contain sensitive

information that the data owner wants to realease only to authorized users. Consequently, it is necessary

to preserve the server from making unauthorized access to the database. To this purpose, the data owner

encrypts her data with a key known only to trusted clients, and sends the encrypted database to the server

for storage.

2.2 Data Organization

A database can be encrypted according to different strategies. In principle, both symmetric and asymmetric

encryption can be used at different granularity levels. Symmetric encryption, being cheaper than asymmetric

encryption, is usually adopted. The granularity level at which database encryption is performed can depend

on the data that need to be accessed. Encryption can then be at the finer grain of [2, 3]:

• table: each table in the plaintext database is represented through a single encrypted value in the

encrypted database. Consequently, tuples and attributes are indistinguishable in the released data,

and cannot be specified in a query on the encrypted database;

• attribute: each column (attribute) in the plaintext table is represented by a single encrypted value in

the encrypted table;

• tuple: each tuple in the plaintext table is represented by a single encrypted value in the encrypted

table;

• element: each cell in the plaintext table is represented by a single encrypted value in the encrypted

table.

Both table level and attribute level encryption imply the communication to the requesting client of the

whole table involved in a query, as it is not possible to extract any subset of the tuples in the encrypted

representation of the table. On the other hand, encrypting at element level would require an excessive

5

Employee

Emp-Id Name YoB Dept Salary

P01 Ann 1980 Production 10
R01 Bob 1975 R&D 15
F01 Bob 1985 Financial 10
P02 Carol 1980 Production 20
F02 Ann 1980 Financial 15
R02 David 1978 R&D 15

(a)

Employeek

Counter Etuple I1 I2 I3 I4 I5

1 ite6*+8wc π α γ ε λ
2 8(nfeua4!= φ β δ θ λ
3 Q73gnew321*/ φ β γ µ λ
4 -1vs9e892s π α γ ε ρ
5 e32rfs4+@ π α γ µ λ
6 r43arg*5[) φ β δ θ λ

(b)

Figure 2: An example of plaintext (a) and encrypted (b) table

workload for data owners and clients in encrypting/decrypting data. For balancing client workload and

query execution efficiency, most proposals assume that the database is encrypted at tuple level.

While database encryption provides an adequate level of protection for data, it makes impossible for

the server to directly execute the users’ queries on the encrypted database. Upon receiving a query, the

server can only send to the requestor the encrypted tables involved in the query; the client can then decrypt

such tables and execute the query on them. To allow the server to select a set of tuples to be returned in

response to a query, a set of indexes can be associated with the encrypted table. In this case, the server

stores an encrypted table with an index for each attribute on which conditions may need to be evaluated.

For simplicity, we assume an index for each attribute in each table of the database. Different kinds of indexes

can be defined, depending on the clauses and conditions that need to be remotely evaluated for the different

attributes. Given a plaintext database B, each table ri over schema Ri(Ai1, Ai2, . . ., Ain) in B is mapped

onto a table rki over schema Rki(Counter, Etuple, I1, I2, . . ., In) in the corresponding encrypted database

Bk. Here, Counter is a numerical attribute added as primary key of the encrypted table; Etuple is the

attribute containing the encrypted tuple whose value is obtained applying an encryption function Ek to the

plaintext tuple, where k is the secret key; and Ij is the index associated with the j-th attribute in Ri. While

we assume encrypted tuples and indexes to be in the same relation, we note that indexes can be stored in a

separate table [4].

To illustrate, consider table Employee in Figure 2(a). The corresponding encrypted table is shown in Fig-

ure 2(b), where index values are conventionally represented with Greek letters. The encrypted table has

exactly the same number of tuples as the original table. For the sake of readability, the tuples in the en-

crypted table are listed in the order with which they appear in the corresponding plaintext table. The same

happens for the order of indexes, which are listed in the same order as the plaintext attributes to which they

refer.

6

2.3 Interactions

The introduction of indexes allows to partially evaluate any query Q at the server-side, provided it is

previously translated in an equivalent query operating on the encrypted database. Figure 1 summarizes the

most important steps necessary for the evaluation of a query submitted by a user.

1. The user submits her query Q referring to the schema of the plaintext database B, and passes it to the

client front-end. The user needs not be aware that data have been outsourced to a third party.

2. The client maps the user’s query onto: 1) an equivalent query Qs, working on the encrypted tables

through indexes, and 2) an additional query Qc working on the results of Qs. Query Qs is then passed

on to the remote server. Note that the client is the unique entity in the system that knows the structure

of both B and Bk and that can translate the queries the user may submit.

3. The remote server executes the received query Qs on the encrypted database and returns the result

(i.e., a set of encrypted tuples) to the client.

4. The client decrypts the tuples received and eventually discards spurious tuples (i.e., tuples that do not

satisfy the query submitted by the user). These spurious tuples are removed by executing query Qc.

The final plaintext result is then returned to the user.

Since a client may have a limited storage and computation capacity, one of the primary goals of the query

execution process is to minimize the workload at the client side, while maximizing the operations that can

be computed at the server side [2, 3, 5, 6].

Iyer et al. [2, 3] present a solution for minimizing the client workload that is based on a graphical

representation of queries as trees. The tree representing a query is split in two parts: the lower part includes

all the operations that can be executed by the server, while the upper part contains all the operations that

cannot be delegated to the server and therefore needs to be executed by the client. In particular, since a query

can be represented with different, but equivalent, trees by simply pushing down selections and postponing

projections, the basic idea of the proposed solution is to determine an equivalent tree representation of the

query, where the operations that only the client can execute are in the highest levels of the tree. For instance,

if there are two anded conditions in the query and only one can be evaluated on the server-side, the selection

operation is split in such a way that one condition is evaluated server-side and the other client-side.

Hacigümüs et al. [5] show a method for splitting the query Qs to be executed on the encrypted data into

two sub-queries, Qs1 and Qs2, where Qs1 returns only tuples that will belong to the final result, and query

Qs2 may contain also spurious tuples. This distinction allows the execution of Qc over the result of Qs2

7

only, while tuples returned by Qs1 can be immediately decrypted. To further reduce the client’s workload,

Damiani et al. [6] propose an architecture that minimizes storage at the client and introduce the idea of

selective decryption of Qs. With selective decryption, the client decrypts the portion of the tuples needed for

evaluating Qc, while complete decryption is executed only for tuples that belong to the final result and that

will be returned to the final user. The approach is based on a block-cipher encryption algorithm, operating

at tuple level, that allows the detection of the blocks containing the attributes necessary to evaluate the

conditions in Qc, which are the only ones that need decryption.

It is important to note that the process of transforming Q in Qs and Qc greatly depends both on the

indexing method adopted and on the kind of query Q. There are operations that need to be executed by

the client, since the indexing method adopted does not support the specific operations (e.g., range queries

are not supported by all types of indexes) and the server is not allowed to decrypt data. Also, there are

operations that the server could execute over the index, but that require a pre-computation that only the

client can perform and therefore must be postponed in Qc (e.g., the evaluation of a condition in the having

clause, which needs a grouping over an attribute whose corresponding index has been created by using a

method that does not support the group by clause).

3 Querying Encrypted Data

When designing a solution for querying encrypted data, one of the most important goals is to minimize

the computation at the client-side and to reduce communication overhead. The server therefore should be

responsible for the majority of the work. Different index approaches allow the execution of different types

of queries at server-side.

We now describe in more detail the methods initially proposed to efficiently execute simple queries at

the server side, and we give an overview of more recent methods that improve the server’s ability to query

encrypted data.

3.1 Bucket-Based Index

Hacigümüs et al. [7] propose the first method to query encrypted data, which is based on the definition of a

number of buckets on the attribute domain.

Let ri be a plaintext relation over schema Ri(Ai1, Ai2, . . . , Ain) and rki be the corresponding encrypted

relation over schema Rki(Counter, Etuple).

Considering an arbitrary plaintext attribute Aij in Ri, with domain Dij, bucket-based indexing methods

partition Dij in a number of non-overlapping subsets of values, called buckets, containing contiguous values.

8

1970 1980 1990

10 20 30

YoB

Salary

Figure 3: An example of bucketization

This process, called bucketization, usually generates buckets that are all of the same size.

Each bucket is then associated with a unique value and the set of these values is the domain for index Ij

associated with Aij. Given a plaintext tuple t in ri, the value of attribute Aij for t belongs to a bucket.

The corresponding index value is then the unique value associated with the bucket to which the plaintext

value t[Aij] belongs. It is important to note that, for better preserving data secrecy, the domain of index Ij

may not follow the same order as the one of the plaintext attribute Aij. Attributes I3 and I5 in Figure 2(b)

are the indexes obtained by applying the bucketization method described in Figure 3 to attributes YoB and

Salary in Figure 2(a).

Bucket-based indexing methods allow the server-side evaluation of equality conditions appearing in the

where clause, as these conditions can be mapped into equivalent conditions operating on indexes. Given

a plaintext condition of the form Aij=v, where v is a constant value, the corresponding condition operating

on index Ij is Ij=β, where β is the value associated with the bucket containing v. As an example, with

reference to Figure 3, condition YoB=1985 is transformed into I3=γ. Also, equality conditions involving

attributes defined on the same domain can be evaluated by the server, provided that attributes are indexed

using the same bucketization. In particular, a plaintext condition of the form Aij=Aik is translated into

condition Ij=Ik operating on indexes.

Bucket-based methods do not easily support range queries. Since the index domain does not necessarily

preserve the plaintext domain ordering, a range condition of the form Aij ≥v, where v is a constant value,

must be mapped into a series of equality conditions operating on index Ij of the form Ij=β1 or Ij=β2 or

. . .or Ij=βk, where β1, . . . , βk are the values associated with buckets that correspond to plaintext values

greater than or equal to v. As an example, with reference to Figure 3, condition YoB>1977 must be translated

into I3=γ or I3=δ, as both values represent years greater than 1977.

Since the same index value is associated with more than one plaintext value, bucket-based indexing

usually produces spurious tuples that need to be filtered out by the client front-end. Spurious tuples are

tuples that satisfy the condition over the indexes, but that do not satisfy the original plaintext condition.

For instance, with reference to the tables in Figure 2, query “select * from Employee where YoB=1985”

9

is translated into “select Etuple from Employeek where I3=γ”. The result of the query executed by the

server contains tuples 1, 3, 4, and 5; however, only tuple 3 satisfies the original condition as written by the

user. Tuples 1, 4, and 5 are spurious and must be discarded by the client.

Hore et al. [8] propose an improvement to bucket-based index methods by introducing an efficient way

for partitioning the domain of attributes. Given an attribute and a query profile of it, the authors present

a method for building an efficient index, which tries to minimize the number of spurious tuples in the result

of range and equality queries.

One of the main disadvantages of bucket-based indexing methods is that they expose data to inference

attacks (see Section 3.5).

3.2 Hash-Based Index

Hash-based index methods are similar to bucket-based methods and are based on the concept of one-way

hash function [4].

Let ri be a plaintext relation over schema Ri(Ai1, Ai2, . . . , Ain) and rki be the corresponding encrypted

relation over schema Rki(Counter, Etuple). For each attribute Aij in Ri to be indexed, a secure one-way hash

function h : Dij → Bij is defined, where Dij is the domain of Aij and Bij is the domain of index Ij associated

with Aij.

Given a plaintext tuple t in ri, the index value corresponding to attribute Aij for t is computed by applying

function h to the plaintext value t[Aij].

An important property of any secure hash function h is its determinism; formally, ∀x, y ∈ Dij : x =

y ⇒ h(x) = h(y). Another interesting property of secure hash functions is that the codomain of h is smaller

than its domain, so there is the possibility of collisions; a collision happens when given two values x, y ∈ Dij

with x 6= y, we have that h(x) = h(y). A further property is that h must produce a strong mixing, that

is, given two distinct but near values x, y (| x − y |< ε) chosen randomly in Dij, the discrete probability

distribution of the difference h(x) − h(y) is uniform (the results of the hash function can be arbitrarily

different, even for very similar input values). A consequence of strong mixing is that the hash function does

not preserve the domain order of the attribute on which it is applied. As an example, consider the relations

in Figure 2. Here the indexes corresponding to attributes Emp-Id, Name, and Dept in relation Employee

are computed by applying a hash-based method. The values of attribute Name have been mapped onto

two distinct values, namely α and β; the values of attribute Emp-Id have been mapped onto two distinct

values, namely π and φ; and the values of attribute Dept have been mapped onto three distinct values,

namely ε, θ, and µ. Like for bucket-based methods, hash-based methods allow an efficient evaluation of

10

equality conditions of the form Aij=v, where v is a constant value. Each condition Aij=v is transformed

into a condition Ij=h(v), where Ij is the index corresponding to Aij in the encrypted table. For instance,

condition Name=“Alice” is transformed into I2=α.

Also, equality conditions involving attributes defined on the same domain can be evaluated by the server,

provided that these attributes are indexed using the same hash function. The main drawback of hash-based

methods is that they do not support range queries, for which a solution similar to the one adopted for

bucket-based methods is not viable: colliding values in general are not contiguous in the plaintext domain.

Index collisions produce spurious tuples in the result. A collision-free hash function guarantees absence of

spurious tuples, but may expose data to inference (see Section 3.5). For instance, assuming that the hash

function adopted for attribute Dept is collision-free, condition Dept=“Financial” is translated into I4=µ,

that will return only the tuples (in our example, tuples 3 and 5) that belong to the result set of the query

that contains the corresponding plaintext condition.

3.3 B+ Trees Index

Both bucket-based and hash-based indexing methods do not easily support range queries, since both these

solutions are not order preserving. However, there is frequently the need for range queries. Damiani et al. [4]

propose an indexing method that, while granting data privacy, preserves the order of plaintext data. This

indexing method exploits the traditional B+ tree data structure used by relational DBMSs for physically

indexing data. A B+ tree with fan out n is a tree where every vertex can store up to n− 1 search key values

and n pointers and, except for the root and leaf vertices, has at least dn/2e children. Given an internal

vertex storing p key values k1, . . . , kp with p ≤ n− 1, each ki is followed by a pointer ai and k1 is preceded

by a pointer a0. Pointer a0 points to the subtree that contains keys with values lower than k1, ap points

to the subtree that contains keys with values greater than or equal to kp, and each ai points to the subtree

that contains keys with values included in the interval [ki, ki+1). Internal vertices do not directly refer to

tuples in the database, but just point to other vertices in the structure; on the contrary, leaf vertices do

not contain pointers, but directly refer to the tuples in the database having a specific value for the indexed

attribute. Leaf vertices are linked in a chain that allows the efficient execution of range queries. As an

example, Figure 4(a) represents the B+ tree index built for attribute Name of table Employee in Figure 2(a).

To access a tuple with key value k, value k is first searched in the root vertex of the B+ tree. The tree

is then traversed by using the following scheme: if k < k1, pointer a0 is chosen; if k ≥ kp, pointer ap is

chosen, otherwise if ki ≤ k < ki+1, pointer ai is chosen. The process continues until a leaf vertex has been

examined. If k is not found in any leaf vertex, then the table does not contain any tuple having, for the

11

Carol

Bob David

Ann Bob Carol David

(a)

Id VertexContent
1 2, Carol, 3
2 4, Bob, 5
3 6, David, 7
4 Ann, 5, 1, 5
5 Bob, 6, 2, 3
6 Carol, 7, 4
7 David, nil, 6

(b)

Id C
1 gtem945/*c
2 8dq59wq*d’
3 ue63/)¡w
4 8/*5sym,p
5 mw39wio[
6 =wco21!ps
7 oieb5(p8*

(c)

Figure 4: An example of B+ tree indexing structure

indexed attribute, value k.

A B+ tree index can be usefully adopted for each attribute Aij in schema Ri and defined over a partially

ordered domain. The index is built by the client over the plaintext values of the attribute, and then stored on

the remote server, together with the encrypted database. To this purpose, the B+ tree structure is translated

into a specific table with just two attributes: the vertex identifier and the vertex content. The table has

a row for each vertex in the tree and pointers are represented through cross references from the vertex

content to other vertex identifiers in the table. For instance, the B+ tree structure depicted in Figure 4(a)

is represented in the encrypted database by the relation in Figure 4(b).

Since the relation representing the B+ tree contains sensitive information (i.e., the plaintext values of the

attribute on which the B+ tree is built) this relation has to be protected by encrypting its content. To this

purpose, encryption is also applied at the level of vertex, to protect the order relationship between plaintext

and index values. The corresponding encrypted table has therefore two attributes: attribute Id that, as

before, is the identifier of the vertex, and attribute C that is the encrypted vertex. Figure 4(c) illustrates the

encrypted B+ tree table that corresponds to the plaintext B+ tree table in Figure 4(b).

The B+ tree based indexing method allows the evaluation of both equality and range conditions appearing

in the where clause. Moreover, being order preserving, it also allows the evaluation of order by and

group by clauses, and of most of the aggregate operators, directly on the encrypted database.

Given the plaintext condition Aij >v, where v is a constant value, the client needs to traverse the B+ tree

stored on the server to find out the leaf vertex representing v. To this purpose, the client queries the B+ tree

table to retrieve the root, which is the tuple with Id equal to 1. It then decrypts it, evaluates its content,

and according to the search process above-mentioned queries again the remote server to retrieve the next

vertex that has to be checked. The search process continues until a leaf vertex containing v is found (if any).

The client then follows the chain of leaf vertices starting from the retrieved leaf. As an example, consider

the B+ tree in Figure 4(a) defined for attribute Name. A query asking for tuples where the value of attribute

12

Name follows Bob in the lexicographic order is evaluated as follows. First, the root is retrieved and evaluated:

since Bob precedes Carol, the first pointer is chosen and vertex 2 evaluated. Since Bob is then equal to the

value in the vertex, the second pointer is chosen and vertex 5 evaluated. Vertex 5 is a leaf, and all tuples in

vertices 5, 6, and 7 are returned to the final user.

It is important to note that B+ tree indexes do not produce spurious tuples when executing a query, but

the evaluation of conditions is much more expensive for the client with respect to bucket and hash-based

methods. For this reason, it may be advisable to combine the B+ tree method with either hash-based or

bucket-based indexing, and use B+ tree only for evaluating conditions based on intervals. Compared with

traditional B+ tree structures used in DBMSs, the vertices do not have to be of the same size as a disk

block; a cost model can then be used to optimize the number of children of a vertex, potentially producing

vertices with a large number of children and trees with limited depth. Finally, we note that since the B+

tree content is encrypted, the method is secure against inference attacks.

3.4 Other Approaches

In addition to the three main indexing methods previously presented, many other solutions have been

proposed to support queries on encrypted data. These methods try to better support SQL clauses or to

reduce the amount of spurious tuples in the result produced by the remote server.

Wang et al. [9, 10] propose a new indexing method, specific for attributes whose domain is a set of characters,

which adapts the hash-based indexing methods to permit direct evaluation of like conditions. The index

value associated with any string s, composed of n characters c1c2 . . . cn, is obtained by applying a secure

hash function to each couple of subsequent characters in s. Specifically, given a string s = c1c2 . . . cn =

s1s2 . . . sn/2, where si = c2ic2i+1, the corresponding index is i = h(s1)h(s2) . . . h(sn/2).

Hacigümüs et al. [5] study a method to remotely support aggregation operators, such as count, sum, avg,

min, and max. The method is based on the concept of privacy homomorphism [11, 12], which exploits

properties of modular algebra to allow the execution over index values of sum, subtraction, and product,

while not preserving domain ordering. Evdokimov et al. [13] formally analyze the security of the method

based on privacy homomorphism with respect to the degree of confidentiality assigned to the remote server.

Specifically, a definition of intrinsic security is given for encrypted databases, and it is proved that almost

all indexing methods are not intrinsically secure; in particular, methods that do not cause spurious tuples

to belong to the result of a query inevitably are exposed to attacks coming from a malicious third party or

from the service provider.

The Partition Plaintext and Ciphertext (PPC) is a new model for storing server-side outsourced data [3].

13

This model proposes outsourcing of both plaintext and encrypted information, which need to be stored

on the remote server. In this model, only sensitive attributes are encrypted and indexed, while the other

attributes are released in plaintext form. The authors propose an efficient architecture for the DBMS to

store together, and specifically in the same page of memory, both plaintext and encrypted data.

To support equality and range queries over encrypted data without adopting B+ tree structures, Agrawal et

al. [14] present an Order Preserving Encryption Schema (OPES). An OPES function has the advantage of

flattening the frequency spectrum of index values, thanks to the introduction of new buckets when needed.

It is important to note here that queries executed over this kind of indexes do not return spurious tuples.

Also, OPES provides data secrecy only if the intruder does not know the plaintext database or the domain

of original attributes.

Aggarwal et al. [15] discuss a new solution for querying remotely stored data, while preserving their privacy.

The authors assume that some security constraints are defined on outsourced data, specifying which sets

of attributes cannot be released together and which attributes cannot appear in plaintext. To guarantee

constraint satisfaction, the authors propose to vertically fragment the universal relation R, decomposing

the database into two fragments that are then stored on two different servers. The method is based on the

assumption that the two servers do not exchange information and that all the constraints can be satisfied

by encrypting just a few attributes in each fragment.

Different working groups [16, 17, 18, 19, 20] introduce other approaches for searching keywords in encrypted

documents. These methods are based on the definition of a secure index data structure. The secure index

data structure allows the server to retrieve all documents containing a particular keyword without the need

to know any other information. This is possible because a trapdoor is introduced when encrypting data, and

such a trapdoor is then exploited by the client when querying data. Other similar proposals are based on

Identity Based Encryption technique for the definition of secure indexing methods. Boneh and Franklin [21]

present an encryption method allowing searches over ciphertext data, while not revealing anything about

the original data. This method is shown to be secure through rigorous proofs. Although these methods for

searching keywords over encrypted data have been originally proposed for searching over audit logs or email

repositories, they are also well suited for indexing data in the outsourced database scenario.

To summarize, Figure 5 shows, for each indexing method discussed, what type of query is supported.

Here, an hyphen means that the query is not supported, a black circle means that the query is supported,

and a white circle means that the query is partially supported.

14

Query
Index Equality Range Aggregation
Bucket-based [7] • ◦ –
Hash-based [4] • – ◦
B+ Tree [4] • • •
Character oriented [9, 10] • ◦ –
Privacy homomorphism [5] • – •
PPC [3] • • •
OPES [14] • • ◦
Secure index data structures [16, 17, 18, 19, 20] • ◦ –
Fragmentation based [15] • • •
• fully supported; ◦ partially supported; – not supported

Figure 5: Indexing methods supporting queries

3.5 Evaluation of Inference Exposure

Given a plaintext relation r over schema R(A1, A2, . . ., An), it is necessary to decide which attributes need to

be indexed, and how the corresponding indexes can be defined. In particular, when defining the indexing

method for an attribute, it is important to consider two conflicting requirements: on one side, the indexing

information should be related with the data well enough to provide for an effective query execution mech-

anism; on the other side, the relationship between indexes and data should not open the door to inference

and linking attacks that can compromise the protection granted by encryption. Different indexing methods

can provide a different trade-off between query execution efficiency and data protection from inference. It

is therefore necessary to define a measure of the risk of exposure due to the publication of indexes on the

remote server.

Although many techniques to support various types of queries in the DAS scenario have been developed,

a deep analysis of the level of protection provided by all these methods against inference and linking attacks

is missing. In particular, only inference exposure of a few indexing methods has been evaluated [4, 8, 22, 23].

Hore et al. [8] analyze the security issues related to the use of bucket-based indexing methods. The authors

consider data exposure problems in two situations: 1) the release of a single attribute, and 2) the publication

of all the indexes associated with a relation. To measure the protection degree granted to the original data

by the specific indexing method, the authors propose to exploit two different measures. The first measure

is the variance of the distribution of values within a bucket b. The second measure is the entropy of the

distribution of values within a bucket b. The higher is the variance, the higher is the protection level granted

to the data. Therefore, the data owner should maximize, for each bucket in the relation, the corresponding

variance. Analogously, the higher is the entropy of a bucket, the higher is the protection level of the relation.

The optimization problem that the data owner has to solve, while planning the bucketization process on a

15

table, is the maximization of minimum variance and minimum entropy, while maximizing query efficiency.

Since such an optimization problem is NP-hard, Hore et al. [8] propose an approximation method, which

fixes a maximum allowed performance degradation. The objective of the algorithm is then to maximize both

minimum variance and entropy, while guaranteeing performances not to follow under an imposed constraint.

To the aim of taking into consideration also the risk of exposure due to association, Hore et al. [8] propose

to adopt, as a measure of the privacy granted by indexes when posing a multi-attribute range query, the well

known k-anonymity concept [24].

Damiani et al. [4, 22, 23] evaluate the exposure to inference due to the adoption of hash-based indexing

methods. Inference exposure is measured by taking into account the prior knowledge of the attacker that

introduces two different scenarios. In the first scenario, called Freq+DBk, the attacker is supposed to know,

in addition to the encrypted database (DBk), the domains of the plaintext attributes and the distribution

of plaintext values (Freq) in the original database. In the second scenario, called DB+DBk, the attacker is

supposed to know both the encrypted (DBk) and the plaintext database (DB). In both scenarios, the exposure

measure is computed as the probability for the attacker to correctly map index values onto plaintext attribute

values. The authors show that to guarantee a higher degree of protection against inference, it is convenient

to use a hash-based method that generates collisions. In case of a hash-based method where the collision

factor is equal to 1, meaning that there are no collisions, the inference exposure depends on the number

of attributes used for indexing. In the DB+DBk scenario, the exposure grows as the number of attributes

used for indexing grows. In the Freq+DBk scenario, the attacker can discover the correspondences between

plaintext and indexing values by comparing their occurrence profiles. Intuitively, the exposure grows as the

number of attributes with a different occurrence profile grows. For instance, considering relation Employee

in Figure 2(a), we can notice that both Salary and the corresponding index I5 have a unique value, that is,

20 and ρ, respectively. We can therefore conclude that the index value corresponding to 20 is ρ, and that no

other salary value is mapped into ρ as well.

Damiani et al. [23] extend the inference exposure measures presented in [4, 22] to produce an inference

measure that can be associated with the whole table instead of with single attributes. Specifically, the

authors propose two methods for aggregating the exposure risk measures computed at attribute level. The

first method exploits the weighted mean operator and weights each attribute Ai proportionally with the risk

connected with the disclosure of the values of Ai. The second one exploits the OWA (Ordered Weighted

Averaging) operator, which allows the assignment of different importance values to different sets of attributes,

depending on the degree of protection guaranteed by the indexing method adopted for the specific subset of

attributes.

16

4 Security Issues

The emerging DAS scenario introduces also numerous research challenges related to data security. We now

describe the main proposals that aim at ensuring the confidentiality of the outsourced data.

4.1 Access Control Enforcement

All the existing proposals for designing and querying encrypted/indexing outsourced databases assume that

the client has complete access to the query result. However, this assumption does not fit real world scenarios,

where different users may have different access privileges. A trivial solution for implementing selective access

in the DAS scenario consists in explicitly defining authorizations at the data owner site. The main drawback

of this method is that the server cannot directly send the result of a query to the client because the data

owner first has to remove all the tuples that the final user cannot access (this task cannot be delegated to the

remote server, which may not be allowed to know the access control policy defined by the data owner). Such

an approach however puts much of the work on the data owner introducing a bottleneck for computation

and communication.

A promising direction consists in selectively encrypting data so that users (or groups thereof) can decrypt

only the data they are authorized to access. Intuitively, selective encryption means that data are encrypted

by using different keys and that users can decrypt only data for which they know the corresponding en-

cryption key. Although it is usually advisable to leave authorization-based access control and cryptographic

protections separate, as encryption is traditionally considered a mechanism and should not be adopted in

model definition, such a combination proves successful in the DAS scenario [30]. In particular, since neither

the data owner nor the remote server can enforce the access control policy, for either security or efficiency

reasons, the data themselves need to implement selective access. We now describe the proposals supporting

selective access in more details.

4.1.1 Selective Encryption

Given a system composed of a set U of users and a set R of resources, the data owner may want to define

and enforce a policy, stating which user ui ∈ U is allowed to access which resource rj ∈ R in the outsourced

database. In the DAS scenario, a resource may be a table, an attribute, a tuple, or even a cell, depending on

the granularity at which the data owner wishes to define her policy. Since existing solutions do not depend

on the granularity level to which the access control policy is defined [30], in the remainder of this section,

we will continue to use the generic term resource to generically indicate any database element on which

authorizations can be specified.

17

r1 r2 r3 r4
A 0 1 1 1
B 1 0 1 0
C 1 1 0 1
D 0 1 1 1

Figure 6: An example of access matrix

The set of authorizations defined by the data owner are represented through a traditional access matrix

A having a row for each user in U and a column for each resource in R. Since only read privileges are

considered (the enforcement of write privileges is still an open issue), each cell A[ui,rj] may assume two

values: 1, if ui is allowed to access rj ; 0, otherwise. Given an access matrix A over sets U and R, acl(rj)

denotes the access control list of resource rj (i.e., the set of users that can access rj), and cap(ui) denotes

the capability list of user ui (i.e., the set of resources that ui can access). For instance, Figure 6 represents

an access matrix for a system with four users (A, B, C, and D), and four resources (r1, r2, r3, and r4).

Here, for example, acl(r1)={B,C} and cap(B)={r1,r3}.

The naive solution for enforcing access control through selective encryption consists in using a different

key for each resource in the system, and in communicating to each user the set of keys associated with the

resources she can access. This solution correctly enforces the policy, but it is very expensive since each user

needs to keep a number of keys that depends on her privileges. That is, users having many privileges and,

probably, often accessing the system, will have a greater number of keys than users having a few privileges

and, probably, accessing only rarely the system. To reduce the number of keys a user has to manage, the

authors propose to use a key derivation method. A key derivation method is basically a function that, given

a key and a piece of publicly available information, allows the computation of another key. The basic idea is

that each user is given a small number of keys, from which she can derive all the keys needed to access the

resources she is authorized to access.

To the aim of using a key derivation method, it is necessary to define which keys can be derived from

another key and how. Key derivation methods proposed in the literature are based on the definition of a

key derivation hierarchy. Given a set of keys K in the system and a partial order relation � defined on

it, the corresponding key derivation hierarchy is usually represented as a pair (K,�), where ∀ki, kj ∈ K,

kj � ki iff kj is derivable from ki. Any key derivation hierarchy can be graphically represented through

a directed graph, having a vertex for each key in K, and a path from ki to kj only if kj can be derived

from ki. Depending on the partial order relation defined on K, the key derivation hierarchy can be: a chain

(i.e., � defines a total order relation); a tree; or a directed acyclic graph (DAG). The different key derivation

methods can be classified on the basis of the kind of hierarchy they are able to support, as follows.

18

• The hierarchy is a chain of vertices [31]. Key kj of a vertex is computed on the basis of key ki of its

(unique) parent (i.e., kj = f(ki)) and no public information is needed.

• The hierarchy is a tree [31, 32, 33]. Key kj of a vertex is computed on the basis of key ki of its (unique)

parent and on the publicly available label lj associated with kj (i.e., kj = f(ki, lj)).

• The hierarchy is a DAG [34, 35, 36, 37, 38, 39, 40, 41, 42]. Since each vertex in a DAG can have

more than one parent, the derivation methods are in general more complex than the methods used

for chains or trees. There are many proposals that work on DAGs; typically they exploit a piece of

public information associated with each vertex of the key derivation hierarchy. In [35], Atallah et al.

introduce a new class of methods. The method in [35] maintains a piece of public information, called

token, associated with each edge in the hierarchy. Given two keys, ki and kj arbitrarily assigned to two

vertices, and a public label lj associated with kj , a token from ki to kj is defined as Ti,j=kj ⊕h(ki, lj),

where ⊕ is the n-ary xor operator and h is a secure hash function. Given Ti,j , any user knowing ki

and with access to public label lj , can compute (derive) kj . All tokens Ti,j in the system are stored in

a public catalog.

It is important to note that the methods operating on trees can be used for chains of vertices, even if the

contrary is not true. Analogously, the methods operating on DAGs can be used for trees and chains, while

the converse is not true.

When choosing a key derivation method for the DAS scenario, it is necessary to take into consideration

two different aspects: 1) the client overhead and 2) the cost of managing access control policy updates. The

client overhead is mainly the communication and computation time for getting from the server the public

information that is needed in the derivation process (e.g., tokens in [35]). The cost of enforcing access control

policy updates is the cost of updating the key derivation hierarchy. As we will see later on, the key derivation

hierarchy is used to correctly enforce the access control policy specified by the data owner, and therefore its

definition is based on the access control policy itself. Intuitively, since the access control policy is likely to

change over time, the hierarchy needs to re-arrange accordingly (i.e., insert or delete vertices, and modify

keys). An important requirement is then to minimize the amount of re-encrypting and re-keying need in

the hierarchy re-arrangement. Indeed, any time the key of a vertex is changed, at least the tuples encrypted

with that key need to be re-encrypted by the data owner, and the new key should be given to all users

knowing the old one. By analyzing the most important key derivation methods, we can observe that the key

derivation methods operating on trees allow insertion and deletion of leaf vertices, without need of changing

other keys in the tree. If, instead, an internal vertex v is inserted or deleted, all the keys of the vertices in the

subtree rooted at v must be updated accordingly. Analogously, methods operating on DAGs and associating

19

∅

A

mmmmmmmmmmm
B

yyyyyy
C

EEEEEE
D

QQQQQQQQQQQ

AB

����

nnnnnnnnn
AC

hhhhhhhhhhhhhhhh
AD

BBBBB

hhhhhhhhhhhhhhhh
BC

RRRRRRRRRRR
BD

VVVVVVVVVVVVVVVV
CD

?????

PPPPPPPPP

ABC

>>>>
hhhhhhhhhhhhhhh

ABD

PPPPPPP

hhhhhhhhhhhhhhh
ACD

RRRRRRRRR

VVVVVVVVVVVVVVV

nnnnnnnn
BCD

BBBBB
�����

ABCD

EEEEE
QQQQQQQQ

mmmmmmmm
yyyyy

(a) User-based hierarchy

r1r2r3r4

uuu
uuu

kkkkkkkkk
SSSSSSSSS

III
III

r1r2r3

{{
{{

{
WWWWWWWWWWWWWWWWWr1r2r4

llllllll

WWWWWWWWWWWWWWWWW r1r3r4

jjjjjjjjjj

ggggggggggggggggg

RRRRRRRR r2r3r4

ww
ww

w
CC

CC
C

r1r2

CC
CC

C

RRRRRRRRRR r1r3

WWWWWWWWWWWWWWWWWW r1r4

ww
ww

w

WWWWWWWWWWWWWWWWWW r2r3

jjjjjjjjjjjj r2r4

gggggggggggggggggg r3r4

{{
{{

{

llllllllll

r1

SSSSSSSSSSSS r2

HHHHHH r3

vvvvvv
r4

kkkkkkkkkkkk

∅
(b) Resource-based hierarchy

Figure 7: Examples of key derivation hierarchies

public information with edges in the graph (e.g., Atallah’s et al. [35]) allow insertion and deletion of vertices

without need of re-keying operations. By contrast, all the other key derivation methods operating on DAGs

require both to modify all keys derivable from the key that has been changed, and to re-encrypt all tuples

previously encrypted by using the old keys. Among all the key derivation methods proposed, the key method

proposed in [35] seems the method that better suits the DAS scenario.

Key derivation hierarchies. We now describe how it is possible to define a key derivation hierarchy that

allows the correct enforcement of the access control policy defined by the data owner.

An access control policy A can be enforced by defining different key derivation hierarchies. In particular,

a key derivation hierarchy can be defined according to two different strategies: user-based and resource-based.

In the user-based strategy, the access control policy A is modeled as a set of access control lists, while in

the resource-based strategy, it is modeled as a set of capabilities. We can then define a user-based or a

resource-based hierarchy as follows.

A user-based hierarchy, denoted UH, is defined as a pair (P (U),�), where P (U) is the set containing

all possible sets of users in the system, and � is the partial order relation induced by the set containment

relation (⊆). More precisely, ∀a, b ∈ P (U), a � b if and only if b ⊆ a. The user-based hierarchy contains

therefore the set of all subsets of U and the corresponding DAG has 2|U | vertices. For instance, Figure 7(a)

represents a user-based hierarchy built over a system with four users A, B, C, and D. To correctly enforce

the access control policy, each vertex in the hierarchy is associated with a key, each resource in the system

is encrypted by using the key of the vertex representing its acl, and each user is given the key of the vertex

representing herself in the hierarchy. From the key of vertex ui, user ui can then derive the keys of the

vertices representing groups of users containing ui and therefore she can decrypt all the resources she can

access (i.e., belonging to her capability list). Note that the empty set vertex represents a key known only

to the data owner, and it is used to encrypt resources that nobody can access. As an example, consider

the policy in Figure 6 and the hierarchy in Figure 7(a). Resource r1 is encrypted with key kBC of vertex

20

BC, r2 with kACD, r3 with kABD, and r4 with kACD. Each user knows the key associated with the vertex

representing herself and there is a path connecting each user’s vertex with all the vertices representing a

group containing the user. For instance, if we consider user A, from vertex A it is possible to reach vertices

AB, AC, AD, ABC, ABD, ACD, and ABCD. Consequently, user A can decrypt r2, r3, and r4, which are

exactly the resources in her capability list.

A resource-based hierarchy, denoted RH, can be built in a dual way. The resource-based hierarchy is

therefore defined as pair (P (R),�), where P (R) is the set of all subsets of R, and order relation � is based

on the set containment relation (⊆). In other words, ∀a, b ∈ P (R), a � b if and only if a ⊆ b. For instance,

Figure 7(b) represents a resource-based hierarchy built over a system with four resources r1, r2, r3, and r4.

Like for the user-based hierarchy, to correctly enforce the access control policy, each vertex in the hierarchy

is associated with a key, each resource in the system is encrypted by using the key of the vertex representing

the resource itself in the hierarchy, and each user is given the key of the vertex representing her capability.

From the key of the vertex corresponding to her capability, each user can compute the keys of the vertices

representing resources belonging to her capability list. For instance, consider users B and C and resource

r1. Vertex r1 can be reached starting from vertices r1r2r3r4, r1r2r3, r1r2r4, r1r3r4, r1r2, r1r3, and r1r4.

Users B and C know the key of vertices r1r3 and r1r2r4, respectively, which are the vertices corresponding

to their capability lists. Consequently, since there is a path from the key of B and C to the key used for

encrypting r1, B and C, which are exactly the users in the access control list of r1, can access r1.

Both the user-based and the resource-based hierarchies here defined correctly enforce the policy described

in the access matrix A, and both of them assign a unique secret key to each user of the system and define

a unique key for encrypting each resource in the system. The most important difference between these

approaches lays in the key assignment method . In a user-based hierarchy, a different key is assigned to each

user, while tuples may share the same key (if they have the same access control list). By contrast, with a

resource-based hierarchy, a different key is associated with each resource, while users may share the same

key (if they have the same capability list). When deciding whether to adopt a user-based or a resource-based

hierarchy, it is therefore important to determine whether users can share the same key for accessing the

system. It is also important to note that the number of keys in the system depends on the number of users

and resources in the system, respectively. Consequently, if the number of users is lower than the number of

resources, it may be convenient to adopt UH.

Hierarchy reduction. For simplicity, we now focus our attention on UH (however, the following consid-

erations are valid also for the resource-based hierarchy). It is easy to see that the solution described above

defines more keys than actually needed and requires the publication of a great amount of information on the

21

remote server, thus causing an expensive key derivation process at the client-side. The higher is the number

of users, the deeper is the key derivation hierarchy (the hierarchy height is equal to the number of users in

the system). As an example, consider the user-based hierarchy in Figure 7(a) and, in particular, consider

user A. To access resource r3, A has to first derive kAD that in turn can be used for deriving kABD, which

is the key needed for decrypting r3. However, in this case, vertex AD makes only the derivation process

longer than needed and therefore it can be removed without compromising the correctness of the derivation

process.

Since an important goal is to reduce the client’s overhead, it is possible to simplify the key derivation

hierarchy, removing non necessary vertices, while ensuring a correct key derivability. Therefore, instead

of representing all the possible groups of users in the DAG, it is sufficient to represent those sets of users

whose key is relevant for access control enforcement. Intuitively, these groups are those corresponding either

to the acl values or singleton sets of users. The vertices corresponding to acls and to users are necessary

because their keys are used for resource encryption and allow users to correctly derive all the other keys used

for encrypting resources in their capabilities, respectively. This set of vertices needs then to be correctly

connected in the hierarchy. In particular, from the key of any user ui it must be possible to derive the keys of

all those vertices representing a group that contains ui. Since in [30] the authors propose to use a user-based

hierarchy in combination with the Atallah’s et al. key derivation method, it is not advisable to connect each

user’s key directly with each group containing the user itself. Indeed, any time a client needs to derive a key,

it queries the remote server to gain the tokens necessary for derivation. Another important observation is

that when building the key derivation hierarchy, other vertices can be inserted, which are useful for reducing

the size of the public catalog, even if their keys are not used for derivation. As an example, consider a system

with five users and three acl values: ACD, ABD, and ADE. If vertices A, B, C, D, and E are connected

directly with ACD, ABD, and ADE, the system needs nine tokens. If instead a new vertex AD is inserted

and connected with the three acl values, A and D do not need an edge connecting them directly to each acl

value, but they only need an edge connecting them with AD. In this case, the system needs eight tokens.

Therefore, any time three or more vertices share a common parent, it is useful to insert such a vertex for

saving tokens in the public catalog. Figure 8 illustrates the hierarchy corresponding to the access control

policy in Figure 6 and containing only the vertices needed for a correct enforcement of the policy. The

problem of correctly enforcing a policy through a key derivation graph while minimizing the number of edges

in the DAG is however NP-hard . In [30] the authors have solved this problem through an approximation

algorithm.

22

A

--
--

--
--

-

HHHHHHHHHHHHHHH B

??
??

? C

��
��

�
D

vvvvvvvvvvvvvvv

��
��
��
��
�

BC

ABD ACD

Figure 8: An example of reducted hierarchy enforcing the access control policy in Figure 6

4.1.2 Other Approaches

Damiani et al. [30] propose a method based on key derivation methods operating on trees and transform

the original user-based hierarchy in a tree enforcing the same policy. In this case, each user has to manage

more than one key. They propose therefore an approximation algorithm to the aim of limiting the average

number of keys assigned to each user in the system.

Zych and Petkovic [43] propose an alternative access control enforcement method for outsourced databases,

which exploits the Diffie-Hellman key generation scheme and asymmetric encryption. They define a user-

based hierarchy that is then transformed into a V-graph. For each vertex in the V-graph, the number of

incoming edges is either 2 or 0, and for any two vertices, there is at most one common parent vertex. The

resulting structure is a binary tree, whose leaves represent singleton sets of users, and whose root represents

the group containing all the users in the system. Here, the key derivation process goes from leaf vertices to

the root. Each user is given the private key of the vertex representing herself in the hierarchy, while each

resource is encrypted with the public key of the vertex representing its acl. Consequently, each user can

compute, through derivation, the keys necessary to decrypt the resources she is authorized to access. This

method requires: O(E) public space, where E is the set of edges in the tree; O(N) private space on clients,

where N is the number of cells equal to 1 in the access matrix; and O(n) derivation time, where n is the

number of users in the system.

Key derivation hierarchies have also been adopted for access control enforcement in contexts different

from the one introduced in this chapter. For instance, pay-tv systems usually adopt selective encryption

for selective access enforcement and key hierarchies to easily distribute encryption keys [44, 45, 46, 47, 48].

Although these applications have some similarities with the DAS scenario, there are important differences

that do not make them applicable in the DAS scenario. First, in the DAS scenario we need to protect stored

data, while in the pay-tv scenario streams of data are the resources that need to be protected. Second, in

the DAS scenario key derivation hierarchies are used to reduce the number of keys each user has to keep

secret, while in the pay-tv scenario a key derivation hierarchy is exploited for session key distribution.

To guarantee security in the DAS scenario, physical devices have also been studied, both operating client-

side [49] and server-side [50]. However, the usage of smart cards for clients and of secure co-processors for

23

the remote server has not been deeply studied. These methods can be adopted together with the security

and querying solutions presented in this chapter.

5 Conclusions

Database outsourcing is becoming an emerging data management paradigm that introduces many research

challenges. In this chapter, we focused on the problems related to query execution and access control

enforcement. For query execution, different indexing methods have been discussed. These methods mainly

focuses on supporting a specific kind of conditions or a specific SQL clause and on minimizing the client

burden in query execution. Access control enforcement is instead a new issue for the DAS scenario and

has not been deeply studied jet. The most important proposal for enforcing selective access on outsourced

encrypted data is based on selective encryption. This method exploits cryptography for access control

enforcement by using different keys to protect data. Each user is then given the set of keys allowing her to

access exactly the resources belonging to her capability list.

There are however many other issues that need to be further investigated. The identification of techniques

able to enforce updates that can modify the set of users, the set of resources, or their authorizations while

maintaining a limited cost in terms of key reassignment or decryption/encryption is again an open issue.

Another interesting issue is related to the management of write privileges; although there are solutions that

provide data integrity by detecting non authorized modifications of database content, these solutions do not

prevent unathorized modifications.

Acknowledgements

This work was supported in part by the European Union under contract IST-2002-507591, by the Italian

Ministry of Research Fund for Basic Research (FIRB) under project RBNE05FKZ2, and by the Italian

MIUR under project 2006099978.

References

[1] Davida, G., Wells, D., and Kam, J., A database encryption system with subkeys. ACM Transactions

on Database Systems, 6:312, 1981.

24

[2] Hacigümüs, H., Iyer, B., and Mehrotra, S., Providing database as a service. In Proc. of the 18th

International Conference on Data Engineering, San Jose, California, USA. IEEE Computer Society,

2002, 29.

[3] Iyer, B. et al., A framework for efficient storage security in RDBMS. In Bertino, E. et al., Eds., Proc. of

the International Conference on Extending Database Technology (EDBT 2004), volume 2992 of Lecture

Notes in Computer Science, Crete, Greece. Springer, 2004, 147.

[4] Damiani, E. et al., Balancing confidentiality and efficiency in untrusted relational DBMSs. In Jajodia, S.,

Atluri, V., and Jaeger, T., Eds., Proc. of the 10th ACM Conference on Computer and Communications

Security (CCS03), Washington, DC, USA. ACM, 2003, 93.

[5] Hacigümüs, H., Iyer, B., and Mehrotra, S., Efficient execution of aggregation queries over encrypted

relational databases. In Lee, J., Li, J. Wndhang, K., and Lee, D., Eds., Proc. of the 9th International

Conference on Database Systems for Advanced Applications, volume 2973 of Lecture Notes in Computer

Science, Jeju Island, Korea. Springer, 2004, 125.

[6] Damiani, E. et al., Implementation of a storage mechanism for untrusted DBMSs. In Proc. of the

Second International IEEE Security in Storage Workshop, Washington DC, USA. IEEE Computer

Society, 2003, 38.

[7] Hacigümüs, H. et al., Executing SQL over encrypted data in the database-service-provider model. In

Proc. of the ACM SIGMOD 2002, Madison, Wisconsin, USA. ACM Press, 2002, 216.

[8] Hore, B., Mehrotra, S., and Tsudik, G., A privacy-preserving index for range queries. In Nascimento,

M. et al., Eds., Proc. of the 30th International Conference on Very Large Data Bases, Toronto, Canada.

Morgan Kaufmann, 2004, 720.

[9] Wang, Z. et al., Fast query over encrypted character data in database. Communications in Information

and Systems, 4:289, 2004.

[10] Wang, Z., Wang, W., and Shi, B., Storage and query over encrypted character and numerical data

in database. In Proc. of the Fifth International Conference on Computer and Information Technology

(CIT’05), Shanghai, China. IEEE Computer Society, 2005, 77.

[11] Boyens, C. and Gunter, O., Using online services in untrusted environments - a privacy-preserving

architecture. In Proc. of the 11th European Conference on Information Systems (ECIS ’03), Naples,

Italy, 2003.

25

[12] Domingo-Ferrer, J. and Herrera-Joancomart, J., A privacy homomorphism allowing field operations on

encrypted data, Jornades de Matematica Discreta i Algorismica, 1998.

[13] Evdokimov, S., Fischmann, M., and Gunther, O., Provable security for outsourcing database operations.

In Liu, L. Reuter, A., Whang, K., and Zhang, J., Eds., Proc. of the 22nd International Conference on

Data Engineering (ICDE ’06), Atlanta, GA, USA. IEEE Computer Society, 2006, 117.

[14] Agrawal, R. et al., Order preserving encryption for numeric data. In Weikum, G., König, A., and

Deßloch, S., Eds., Proc. of the ACM SIGMOD 2004, Paris, France. ACM, 2004, 563.

[15] Aggarwal, G. et al.. Two can keep a secret: a distributed architecture for secure database services. In

Proc. of the Second Biennal Conference on Innovative Data Systems Research (CIDR 2005), Asilomar,

CA, 2005, 186.

[16] Boneh, D. et al., Public-key encryption with keyword search. In Proc. of the Eurocrypt 2004, volume

3027 of Lecture Notes in Computer Science, Interlaken, Switzerland. Springer, 2004, 506.

[17] Brinkman, R., Doumen, J., and Jonker, W., Using secret sharing for searching in encrypted data. In

Jonker, W. and M., P., Eds., Proc. of the Secure Data Management Workshop, volume 3178 of Lecture

Notes in Computer Science, Toronto, Canada. Springer, 2004, 18.

[18] Goh, E., Secure indexes. http://eprint.iacr.org/2003/216/, 2003.

[19] Song, D., Wagner, D., and Perrig, A., Practical techniques for searches on encrypted data. In Proc. of

the 21st IEEE Computer Society Symposium on Research in Security and Privacy, Berkeley, CA, USA.

IEEE Computer Society, 2000, 44.

[20] Waters, B. et al., Building an encrypted and searchable audit log. In Proc. of the 11th Annual Network

and Distributed System Security Symposium, San Diego, CA. Internet Society, 2004.

[21] Boneh, D. and Franklin, M., Identity-based encryption from the weil pairing. SIAM Journal on

Computing, 32:586, 2003.

[22] Ceselli, A. et al., Modeling and assessing inference exposure in encrypted databases. ACM Transactions

on Information and System Security (TISSEC), 8:119, 2005.

[23] Damiani, E. et al., Measuring inference exposure in outsourced encrypted databases. In Gollmann,

D. Massacci, F. and Yautsiukhin, A., Eds., Proc. of the First Workshop on Quality of Protection,

volume 23 of Advances in Information Security, Milan, Italy. Springer, 2005.

26

[24] Samarati, P., Protecting respondents’ identities in microdata release. IEEE Transactions on Knowledge

and Data Engineering, 13:1010, 2001.

[25] Hacigümüs, H., Iyer, B., and Mehrotra, S., Ensuring integrity of encrypted databases in database as a

service model. In De Capitani di Vimercati, S., Ray, I., and Ray, I., Eds., Proc. of the IFIP Conference

on Data and Applications Security, Estes Park Colorado. Kluwer, 2003, 61.

[26] Mykletun, E., Narasimha, M., and Tsudik, G., Authentication and integrity in outsourced database. In

Proc. of the 11th Annual Network and Distributed System Security Symposium, San Diego, California,

USA. The Internet Society, 2004.

[27] Narasimha, M. and Tsudik, G., DSAC: integrity for outsourced databases with signature aggregation

and chaining. In Herzog, O., Schek, H., Fuhr, N., Chowdhury, A., and Teiken, W., Eds., Proc. of the

14th ACM International Conference on Information and knowledge management, Bremen, Germany.

ACM, 2005, 235.

[28] Sion, R., Query execution assurance for outsourced databases. In Böhm, K., Jensen, C., Haas, L.,

Kersten, M., Larson, P., and Ooi, B., Eds., Proc. of the 31st International Conference Very Large Data

Bases, Trondheim, Norway. ACM, 2005, 601.

[29] Mykletun, E., Narasimha, M., and Tsudik, G., Signature bouquets: Immutability for aggre-

gated/condensed signatures. In Samarati, P., Ryan, P., Gollmann, D., and Molva, R., Eds., Proc. of

the European Symposium On Research in Computer Security (ESORICS 2004), volume 3193 of Lecture

Notes in Computer Science, Sophia Antipolis, France. Springer-Verlag, 2004, 160.

[30] Damiani, E. et al., Selective data encryption in outsourced dynamic environments. In Proc. of the Second

International Workshop on Views On Designing Complex Architectures (VODCA 2006), Electronic

Notes in Theoretical Computer Science, Bertinoro, Italy. Elsevier, 2006.

[31] Sandhu, R., On some cryptographic solutions for access control in a tree hierarchy. In Proc. of the 1987

Fall Joint Computer Conference on Exploring Technology: Today and Tomorrow, Dallas, Texas, USA.

IEEE Computer Society, 1987, 405.

[32] Gudes, E., The design of a cryptography based secure file system. IEEE Transactions on Software

Engineering, 6:411, 1980.

[33] Sandhu, R., Cryptographic implementation of a tree hierarchy for access control. Information Processing

Letters, 27:95, 1988.

27

[34] Akl, S. and Taylor, P., Cryptographic solution to a problem of access control in a hierarchy. ACM

Transactions on Computer System, 1:239, 1983.

[35] Atallah, M., Frikken, K., and Blanton, M., Dynamic and efficient key management for access hierarchies.

In Atluri, V., Meadows, C., and Juels, A., Eds., Proc. of the 12th ACM conference on Computer and

Communications Security (CCS05), Alexandria, VA, USA. ACM SIGSAC, 2005, 190.

[36] De Santis, A., Ferrara, A.L., and Masucci, B., Cryptographic key assignment schemes for any access

control policy. Inf. Process. Lett., 92(4):199205, 2004.

[37] Harn, L. and Lin, H., A cryptographic key generation scheme for multilevel data security. Computers

and Security, 9:539, 1990.

[38] Hwang, M. and Yang, W., Controlling access in large partially ordered hierarchies using cryptographic

keys. The Journal of Systems and Software, 67:99, 2003.

[39] Liaw, H., Wang, S., and Lei, C., On the design of a single-key-lock mechanism based on newton’s

interpolating polynomial. IEEE Transaction on Software Engineering, 15:1135, 1989.

[40] MacKinnon, S. et al., An optimal algorithm for assigning cryptographic keys to control access in a

hierarchy. IEEE Transactions on Computers, 34:797, 1985.

[41] Shen, V. and Chen, T., A novel key management scheme based on discrete logarithms and polynomial

interpolations. Computer and Security, 21:164, 2002.

[42] Crampton, J., Martin, K., and Wild, P., On key assignment for hierarchical access control. In Proc. of

the 19th IEEE Computer Security Foundations Workshop (CSFW’06), Los Alamitos, CA, USA. IEEE

Computer Society, 2006, 98.

[43] Zych, A. and Petkovic, M., Key management method for cryptographically enforced access control. In

Proc. of the 1st Benelux Workshop on Information and System Security, Antwerpen, Belgium, 2006.

[44] Birget, J. et al., Hierarchy-based access control in distributed environments. In Proc. of the IEEE

International Conference on Communications, volume 1, Helsinki, Finland. IEEE Computer Society,

2002, 229.

[45] Ray, I., Ray, I., and Narasimhamurthi, N., A cryptographic solution to implement access control in a

hierarchy and more. In Proc. of the 11th ACM Symposium on Access control Models and Technologies

(SACMAT’02), Monterey, California, USA. ACM Press, 2002, 65.

28

[46] Tsai, H. and Chang, C., A cryptographic implementation for dynamic access control in a user hierarchy.

Computer and security, 14:159, 1995.

[47] Wong, C., Gouda, M., and Lam, S., Secure group communications using key graphs. IEEE/ACM

Transactions on Networking, 8:16, 2000.

[48] Sun, Y. and Liu, K., Scalable hierarchical access control in secure group communications. In Proc. of

the IEEE Infocom, volume 2, Hong Kong, China. IEEE Computer Society, 2004, 1296.

[49] Bouganim, L. and Pucheral, P., Chip-secured data access: confidential data on untrusted servers. In

Bernstein, P. et al., Eds., Proc. of the 28th International Conference on Very Large Data Bases, Hong

Kong, China. Morgan Kaufmann, 2002, 131.

[50] Bouganim, L. et al., Chip-secured data access: Reconciling access rights with data encryption. In

Freytag, J., Lockemann, P., Abiteboul, S., Carey, M., Selinger, P., and Heuer, A., Eds., Proc. of the

29th VLDB conference, Berlin, Germany. Morgan Kaufmann, 2003, 1133.

