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Fully autonomous vehicles (FAVs) lack monitoring inside the cabin.  erefore, an in-cabin monitoring system (IMS) is required
for surveilling people causing irregular or abnormal situations. However, monitoring in the public domain allows disclosure of an
individual’s face, which goes against privacy preservation. Furthermore, there is a contrary demand for privacy in the IMS of AVs.
 erefore, an intelligent IMS must simultaneously satisfy the contrary requirements of personal privacy protection and person
identi�cation during abnormal situations. In this study, we proposed a privacy-preserved IMS, which can reidentify anonymized
virtual individual faces in an abnormal situation.  is IMS includes a step for extracting facial features, which is accomplished by
the edge device (onboard unit) of the AV.  is device anonymizes an individual’s facial identity before transmitting the video
frames to a data server. We created di�erent abnormal scenarios in the vehicle cabin. Further, we reidenti�ed the involved person
by using the anonymized virtual face and the reserved feature vectors extracted from the suspected individual. Overall, the
proposed approach preserves personal privacy while maintaining security in surveillance systems, such as for in-cabin monitoring
of FAVs.

1. Introduction

Intelligent monitoring and surveillance systems are widely
used to ensure safety and security. Popular applications of
monitoring in public are video surveillance cameras (closed-
circuit television); monitoring in intelligent transportation
systems, including in-cabin monitoring and road tra�c
monitoring; and video monitoring for data generation and
navigational tasks around city centers, airports, and public
roads [1]. Driving automation also requires public visual
information for multiple tasks [2].  e Society of Automotive
Engineers de�ned six levels of autonomy in driving auto-
mation in 2014 (from no automation (level 0) to full auto-
mation (level 5)) [2–4]. Level 4 autonomous vehicles (AVs)
are highly automated and capable of performing all driving
tasks under certain conditions without human intervention.
However, the driver (human) may control such AVs as and
when required. In particular, fully autonomous vehicles
(FAVs) (level 5 AVs) have no drivers; all occupants are

passengers only [3, 4].  erefore, no one oversees such AVs.
In addition, in public and shared vehicles (such as ridesharing,
carsharing, and car-full services in AVs), the passengers do
not know each other.  erefore, it is important to ensure the
security and safety of all occupants sitting in the cabin of such
AVs. Furthermore, the vehicle should be protected from any
malicious behavior of the occupants and/or external threats.
 erefore, FAVs essentially require a multipronged in-cabin
monitoring task in real time [5]. However, many countries
have imposed a ban or severe restrictions on facial recognition
techniques to secure personal information [6–16].  ere are
legal and ethical issues that impose various restrictions on
public monitoring and surveillance systems [16–19]. Fur-
thermore, identi�cation of the accused is also important in
abnormal (irregular) situations.  is study was motivated by
the fact that facial monitoring is important for safety; how-
ever, it poses a threat to individual privacy. In this study, we
focused on the following two problems associated with in-
cabin monitoring systems (IMSes):
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(i) Protection of facial privacy.
(ii) Evidence of the accused in abnormal situations.

+erefore, a robust solution is required to provide pri-
vacy-preserved monitoring in public [20]. Moreover, it
should be capable of identifying the concerned person when
required. Figure 1 shows the dilemma of intelligent moni-
toring systems.

As illustrated in the above figure, an anonymous face
protects personal information during in-cabin monitoring
of an FAV. However, in certain irregular situations, personal
identity is required to identify the accused person. An ex-
ample of an abnormal incident or irregular situation can be
an occupant of the FAV acting violently or attempting
vandalism against the other occupants or toward the FAV
itself. In such cases, it is important to identify the concerned
person. Furthermore, this is an abnormal situation; however,
in-cabin monitoring with real faces is not a solution to this
problem. +e breach of facial information leads to multiple
consequences, such as misuse of facial data and banking and
financial fraud [1, 6, 7, 13, 14]. One of our motivations for
this work was to provide an approach that can protect
against such problems in public monitoring systems, par-
ticularly the IMS. In-cabin monitoring with facial ano-
nymization has security issues, while those with facial
identity have privacy issues. +erefore, it creates a contra-
diction between privacy and security.

1.1. In-CabinMonitoring. In-cabin monitoring is important
in level 4 and beyond AVs [5]. It provides safety and security
to the occupants. Simultaneously, it provides safety to the
vehicle itself in an irregular situation. Past research works
include in-cabin monitoring in various situations [21]. In-
cabin monitoring for violence detection inside a FAV was
reviewed in [22]. Bell et al. performed in-cabin monitoring
to detect harsh vehicle maneuvers and risky driving be-
haviors [23]. Szawarski et al. patented the idea of in-cabin
monitoring for a monitoring vehicle seat, occupants inside a
vehicle, and the orientation of both the occupants and the
vehicle seat [24]. Safety and cleaning problems of in-cabin
monitoring of a vehicle were presented in [25]. However, a
monitoring system should protect against any breach of
personal privacy (facial identity) with the simultaneous
ability to identify an actual person in case of irregular
situations.

1.2. Facial Privacy versus Facial Recognition in Monitoring
Applications. Real-time monitoring is essential in multiple
monitoring applications. However, privacy in the public
domain is an important concern in real-time monitoring
tasks [26–30]. Facial anonymization is a common practice
for preserving personal privacy. Recently, generative
adversarial network- (GAN-) based deep learning (DL)
models have been widely used for face swapping and ano-
nymization [31–34]. In our previous study [31], we dem-
onstrated a robust approach to preserving the facial identity
of the occupants in a FAV cabin. It incorporated the facial
swapping and reenactment technique to maintain privacy in

in-cabin monitoring. However, in ab abnormal situation, the
anonymized face of the occupants made it difficult to
identify the concerned person [20].

1.3. Our Key Research Highlights. In this study, we propose
an intelligent IMS. It is an efficient approach for identifying a
person, even with an anonymized face. +is method resolves
both privacy and security issues. Accordingly, we can
identify the person who causes an irregular situation, even
with their anonymized face. In this approach, we preserved
the key facial information of the occupants and stored these
identity features on the cloud. +ese key features help in
recognition of the person involved in the irregular situation.
+e highlights of this study are as follows:

(i) +e concept of having an appropriate source face for
each target face enhances puppeteering and reen-
actment of facial emotion and behavior. It helps in
event and behavior detection in intelligent moni-
toring and surveillance systems in the public
domain.

(ii) +e involvement of the two-dimensional (2D)
landmark position in the reenactment generator
and separate segmentations of face and hair in the
segmentation generator with inpainting and
blending generators enhances the facial anonym-
ization and reenactment operations.

(iii) +e 128D identity feature is a key marker for ac-
curate facial identification in an anonymized do-
main. +e concept of storing a pair of IDs (original
and anonymized) leads to reidentification without
any privacy threat. It is not possible to know the
original face with only 128D identity features. For
reidentification, both the original visual input and
the ID are required. In the cloud, the anonymized
visual image with the original ID is stored. +ere-
fore, there is no threat of privacy breach, even
though the IDs are stored in the cloud.

(iv) +erefore, the proposed approach augments the
facial identity feature information to locate the
involved person in any abnormal situation without
any personal privacy breach.

+is approach pioneers a newer method of monitoring
and surveillance to avoid any legal or ethical issues.
+erefore, a monitoring database can be created in the
anonymized domain, thereby facilitating further research on
events and behavior monitoring in the public domain.

2. Materials and Methods

Personal privacy with identification is a challenge as well as a
demand in real-time monitoring applications [20]. In this
study, we developed a privacy-preserved IMS with the rei-
dentification capability that can identify the accused person.
+e framework of the proposedmethod is shown in Figure 2.
+e proposed system operates in three stages. In stage 1,
facial anonymization was performed to ensure personal
privacy. It was performed using the onboard device of the
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AV. In stage 2, a pair of identity features (IDs) was generated
for each face before and after anonymization (IDR and IDA).
Further, the anonymized video along with the IDs was fed to
the cloud.  e pairs of IDs were kept in the cloud for person

reidenti�cation when required.  e anonymized video
frames were sent to the data center for further processing
(monitoring and surveillance). In stage 3, the IDs were
matched to search the accused (person involved in an
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Figure 2: Proposed privacy-preserved intelligent IMS. Here, the identity features (IDs) are as follows: real face ID (IDR), anonymized face ID
(IDA), ID of the occupant that caused an abnormal situation (IDA_AS), and suspect face ID during the investigation (IDinv).
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Figure 1: System overview of the proposed IMS. (a) Few examples causing abnormal situations in the cabin of a vehicle. (b) e dilemma of
the legal and ethical issues (privacy) and practical problems (requirement of monitoring). Case 1: the masked face has no facial information,
which is crucial in surveillance and monitoring inside the cabin of a vehicle. Case 2: real face su�ers from personal privacy threats. Case 3:
facial anonymization solves the problem of privacy; however, it has the problem of identifying the concerned person in case of irregular
situations.
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irregular situation (IDA_AS)). During the investigation, the
similarity between IDs ensured the identification of the
concerned person (ID). Further, during the investigation,
this approach was verified bymatching the IDs of the suspect
face (IDinv) at the time of investigation with the accused
person’s ID.

+e dilemma between monitoring requirements and
legal and ethical issues is also resolved through this ap-
proach. +e details of the proposed approach are discussed
thoroughly in Section 2.2. +is approach is suitable for
creating a monitoring and surveillance database with
legitimation.

2.1.Materials. Many research works have been published on
personal privacy and person identification considering these
two issues as separate research problems. In this study, we
briefly surveyed the related works and developments on both
face anonymization and person identification.

2.1.1. Face Anonymization. Face deidentification preserves
privacy-sensitive information. It alters the original face to
hide privacy-sensitive information. Anonymization of faces
is an easier and more robust solution to personal privacy-
related threats in the digital domain [35]. Blurring, masking
faces, or creating a patch over faces is slightly easier than any
other face anonymization approach; however, those
methods suffer from significant loss of facial information
[32, 36]. +erefore, face swapping has attracted significant
attention for facial anonymization purposes. +e morphable
model-based facial exchange approach is considered a
pioneering work in face swapping [37]. Bitouk et al. dem-
onstrated automatic face replacement in their work [38].
Machine-learning-based face swapping was suggested in
[39]. A convolutional neural network (CNN) was used for
face segmentation and swapping in [40]. GAN-based deep
models have become popular for virtual human face gen-
eration [33, 34]. +erefore, along with autoencoders, GAN-
based face swapping has gained considerable attention
among researchers for seamless end-to-end face anonym-
ization [33, 34, 41]. Face swapping-based automatic gen-
eration and editing of faces was showcased in [42]. It used a
region-separative GAN (RSGAN). An autoencoder-based
algorithm for face swapping was presented to detect fake
videos [43]. In [44], a GAN-based encoder-decoder network
was suggested to swap human faces. Collateral privacy issues
have also been resolved using the face swapping method
[45]. Nirkin et al. suggested a face swapping GAN (FSGAN)
in [46]. It provided subject agnostic face swapping and
reenactment between a pair of faces. Naruniec et al. pre-
sented a fully automatic neural face swapping method in
[47]. Sun et al. proposed a hybrid model for face ano-
nymization [36]. Hukkelas et al. introduced a GAN-based
DeepPrivacy architecture for face deidentification to remove
all privacy-sensitive information [34].

2.1.2. Person Identification. Facial recognition has multi-
purpose objectives, such as recognition, classification, and

discrimination. Urbanization and smart cities demand
widespread applications for face recognition [48–52].
+erefore, various face recognition approaches involving
person identification have been demonstrated by past re-
searchers. Face recognition approaches are classified into
three categories: local, holistic, and hybrid approaches [52].
Local approaches involve only partial facial features (such as
eyes, mouth, and nose) to recognize a face, whereas holistic
approaches involve complete facial features, including
background for facial recognition. Hybrid approaches, as the
name suggests, involve both local and holistic approaches. In
holistic approaches, popular algorithms involve indepen-
dent component analysis, linear discriminative analysis, and
principal component analysis [53, 54]. +e development of
artificial intelligence (AI) incorporating DL and CNNs has
boosted the performance of facial recognition algorithms.
Taigman et al. presented a deep neural network-based face
recognition system, DeepFace [55]. Furthermore, many
other extended versions of DeepFace have been demon-
strated in multiple studies [56–59]. Adjabi et al. thoroughly
reviewed face recognition techniques and their comparisons
and future scope in their study [51]. Kortli et al. surveyed
popular face recognition techniques in all three categories,
that is, local, holistic, and hybrid approaches, in their study
[52]. +ey compared these techniques in terms of accuracy,
complexity, and robustness. +ey also discussed the ad-
vantages and disadvantages of the respective approaches.
Wang et al. efficiently surveyed DL-based face recognition
techniques in their study [60]. +ey exhaustively reviewed
various popular DL-based approaches, including autoen-
coder-based, CNN-based, and GAN-based techniques. +ey
also enumerated the key features, advantages, and disad-
vantages of these techniques. Furthermore, they summa-
rized some of the commonly used datasets for deep face
recognition. Moreover, they indexed the emerging real-
world issues and major technical key challenges in deep
facial recognition.

However, an application involving person identification
must address important privacy concerns [61]. In particular,
facial identification in the public domain must tackle in-
dividual freedom and ethics-related issues [51, 62]. +ere-
fore, the state-of-the-art research problem in face
recognition is the reidentification of an individual on
anonymized data. Rocher et al. demonstrated the likelihood
of correctly reidentifying a specific individual, even with the
anonymized dataset [30]. +ey suggested a generative
graphical model that can be trained on incomplete data to
accurately identify individuals. Rooijen et al. suggested 2D
video tracking for the reidentification of individuals in an
anonymized dataset [20]. +ey suggested that the real facial
information of a person is not necessary for reidentification.
Luo et al. suggested effective training tricks for person
reidentification [63]. A residual learning framework using
the residual network (ResNet) model was suggested in [64]
for visual recognition tasks. +is facilitated the easier and
more efficient training of a substantially deeper network.
Schroff et al. suggested unified embedding using only
128 bytes per face for efficient face recognition [65]. +ey
developed their network by incorporating the batch input
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layer and deep CNN, followed by normalization. +ey used
triplet loss to minimize the training errors. +e world’s
simplest face recognition library (Dlib face recognition) is a
popular and efficient tool for extracting facial landmarks
[66]. It is a cross-platform open-source machine-learning
toolkit that supports the development of machine-learning
algorithms. It helps in recognizing and manipulating faces.
Intent and behavior have been successfully detected using
various techniques. Facial gesture sensing is performed
using virtual reality (VR) and augmented reality (AR) de-
vices, respectively in [67, 68]. AR/VR devices provide sensor
responses to detect the intent or behavior of the user.
However, FAV in-cabin monitoring requires intent or be-
havior detection using visual (computer vision (CV)-based)
monitoring approaches.

2.2. Method. In this study, we proposed a representation
learning-based approach to generate the identity signature
of occupants. +is signature is capable of deidentifying a
person concerned with an irregular situation in the cabin of
level 4 and beyond AVs. We proposed facial anonymization
and reidentification system to provide countermeasures in
case of an irregular situation. +erefore, this method pro-
vides personal information security with traces of the
concerned person in case of any abnormality. +e proposed
method includes four main tasks. First, face anonymization
with reenrollment. +is is performed by using the face
agnostic face swapping technique. It uses a set of GANs.
+ese GANs are used for three purposes: facial reenactment
and segmentation, facial inpainting, and facial blending.
After accomplishing face anonymization, the second task is
to extract the facial identity features of the occupant’s faces
in pairs (before and after anonymization, i.e., IDR and IDA)
using the ResNet-based model. +ese IDs are stored in the
cloud, and the anonymized video frames of in-cabin
monitoring are transferred to the data center via the cloud
for further processing. +e third task of the proposed ap-
proach is to identify the accused by identity feature
matching. Similarity matching of the ID of the accused
obtained at the data center with the IDs of the occupants
stored in the cloud ensures the identification of the con-
cerned person (IDA). However, it is the ID of the anony-
mized face of the accused.+e Euclidean distance metric was
used for similarity matching. Similarly, using the stored pairs
of IDs (IDR and IDA), we can obtain the real face identity
feature of the accused (IDR). Finally, in the fourth task, the
evidence of the accused is obtained by matching the simi-
larities between the IDs of the suspects with the ID of the
accused during an investigation. Further details of the
proposed method are provided in the following sections.

2.2.1. Facial Identity Feature Vector. +e facial identity
feature is (128, 1)-dimensional encoding of a facial image. It
contains the encoded landmarks of the face using the ResNet
model. +e FaceNet-based CNN model and Facedlib face
recognition library are used to extract the 128D identity
features (ID) from the faces. Additionally, 128D is optimal
embedding, which results in appropriate features required

for reidentification or measuring the similarity between two
faces. It has already been validated in the “FaceNet” ar-
chitecture that fewer than 128D identity features deteriorate
the identification performance; however, increasing the
dimension only unnecessarily increases the number of pa-
rameters. +is is the main reason for adopting the 128D
identity features for recognizing faces.

Figure 3 shows the (128, 1)-dimensional facial identity
feature vector generation of the occupant’s face image. It
uses a ResNet-based architecture consisting of 29 convolu-
tional layers for this purpose. +e ResNet architecture fa-
cilitates the dipper layer accessibility. Additionally, they have
an inherent tendency to minimize the training error loss by
increasing the number of layers. +e triplet loss function is
used to estimate the error in the reidentification of the
concerned person. It performs similarity matching on the
128D identity features. For the anonymized anchor image ID
(IA), positive anonymized image ID (IP), and negative
anonymized image ID (IN), the triplet loss is estimated by the
following equation:

L(A, P, N) � max ‖IA, IP2‖ − ‖IA, IN‖2 + margin, 0 . (1)

+e anonymized anchor image ID (IA) represents the
128D ID of the person figured out in an irregular situation.
+e positive anonymized image (IA) is the stored image
128D ID of the same person on the cloud, and the negative
anonymized image ID (IA) is the 128D ID of another oc-
cupant. Here, (‖x, y‖2) denotes the “Euclidean distance”
between pairs {x, y} in the triplet loss function. A factor
margin is included in equation (1) to reduce the chances of
misclassification. +ese facial features are incorporated in
128D encoding and are used as the facial recognizer using
only 128 bytes per face.

Furthermore, a distance-based classifier compares the
128D features to identify the person involved in an irregular
situation. It represents the difference between two feature
vectors in Euclidean space. Suppose that image (R) repre-
sents the person. Image (C) is the stored image (copy) of the
same person on the cloud, and image (D) is an image of
another occupant. Further, f (x) represents the 128D
encoding of the image f(x). +e similarity (S) in the vector
space is measured by the following equation:

S � min ‖f(R), f(C)‖2, ‖f(R), f(D)‖2( ( . (2)

It guarantees that images (R) and (C) are of the same
occupant and are different from image (D), which is the
image of another occupant.

2.2.2. Source Image Generation. A source image was re-
quired for face swapping in facial anonymization. It is used
to replace the face appearing in the target image. +is re-
placement, that is, swapping, should produce a realistic
result that seamlessly reenacts the anonymized face that is
similar to the target face. Our recommendation is to use a
nonreal face as the source image. It mitigates any chaos/
conflicts that may occur by using any real face as the source
image. +erefore, in our proposed method, we used GAN-
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generated virtual human faces as the source image. We have
considered generating appropriate source faces that can
effectively render the original emotions or behaviors per-
formed by the occupants. It helps in further event and
behavior-monitoring tasks. Figure 4 shows the proposed
source image generation process. We applied the concept of
similarity matching in vector space to select a similar source
face for each target face from the set of virtual human faces
(nonreal face as the source image). Similarity matching
between source and target faces facilitates reciprocating
similar emotions and intents, which is necessary for further
monitoring applications.

Figure 4 shows the source image generation process.
+e face detector detects the faces (target faces) of the
occupants (from the in-cabin visual input). +e identity
feature extractor extracts the IDs (128D identity features) of
faces (target faces) and matches the similarity of the target
faces with the set of virtual human faces (source faces) to
find the most appropriate source face. +is similarity
matching is in the vector space (Euclidean distance
matching between the extracted face ID and IDs of the set of
virtual human faces).

2.2.3. Facial Anonymization. Facial anonymization requires
exactitude in the anonymized faces to mitigate errors in
further processing. +erefore, swapping should be per-
formed efficiently to provide unaltered expressions and
emotions over the anonymized face. We used the concept of
FSGAN for facial anonymization to provide personal privacy
during in-cabin monitoring of irregular situations. +is
requires perfection in the following three tasks:

(i) Facial Reenactment and Segmentation. To obtain proper
facial swapping, we must estimate the proper reenacted face.
+is is performed by the proper segmentation of the face and

hair segments of the target image. Proper facial reenactment
requires separate face and hair segmentations with the
mapping of 2D facial landmark positions. +erefore, the
stepwise loss function is considered as the objective function
for implementing facial reenactment. For ith layer feature
map (Fi ∈ RCi×Hi×Wi ), the perceptual loss (Lperc) between
pairs of images (x, y) is expressed as follows:

Lperc(x, y) � 
1

Ci × Hi × Wi

× ‖Fi(x), Fi(y)‖2. (3)

+e reconstruction loss (Lrec) between a pair of images
(x, y) is expressed as follows:

Lrec(x, y) � λperc × Lperc(x, y) + λpixel × Lpixel(x, y), (4)

where “λ” is the corresponding hyperparameter (λperc � 1;

λpixel � 0.1; λadv � 0.001; λSG � 0.1; λrec � 1; λstepwise � 1) and
λreenactment is linearly increased from 0 to 1 during training.
Pixelwise loss (Lpixel) between a pair of images (x, y) is
calculated as (Lpixel(x, y) � ‖x − y‖). We have used the
multiscale discriminator adversarial loss objective function
to improve the realism of the generated images. +e
adversarial loss (Ladv) between the generator and dis-
criminator (G, D) is expressed as follows:

Ladv(G, D) � min max LGAN(G, D)  ,

LGAN(G, D) � E(x,y)[log D(x, y)] + E(x)[log(1 − D(x, G(x)))],

(5)

where “E(x,y)” is the expected value over all real data in-
stances. “E(x)” is the expected value over all random inputs
to the generator. +e reenactment generator loss (LRG) is
given by the following equation:

LRG � Lperc + Lrec + Ladv. (6)

Figure 3: Illustration of 128D facial identity feature vector generation (from the occupant’s face image). Image shown is taken from our in-
cabin monitoring database. +e numerical values in the yellow, red, green, and blue colored boxes are representing respective passengers’
(128, 1)-dimensional facial identity feature vectors (ID).
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+e perpetual loss is used to estimate the errors in
capturing fine facial details, and the reconstruction loss is
used to evaluate pixelwise color inaccuracy. Adversarial loss
improves the generated images and provides a realistic look.
+e standard cross-entropy loss (LCE) is defined as (for
truth label “ti” and the “SoftMax” probability “Pi” for ith

class)

LCE � −  ti × log Pi( . (7)

Further, segmentation generator loss (LSG) is obtained
by the following equation:

LSG � LCE + Lpixel. (8)

(ii) Facial Inpainting. +is method estimates the
missing portions of the reenacted face based on the face
and hair segmentation of the target image. +e inpainting
generator loss (LIP) was calculated using the following
equation:

LIP � Lrec + Ladv. (9)

(iii) Facial Blending. It blends the completely reenacted
face such that the swapped face matches the
background environment like the original target
face. +e loss function (LB) for facial blending is
obtained using the following equation:

LB � Lperc + Ladv. (10)

+e identity signature is generated corresponding to
each occupant (a pair of identity signatures for real and
anonymized faces) in the FAV. After facial anonymization,
the video frames are transmitted to the cloud along with a
pair of identity signatures of the occupants.

2.2.4. Anonymized Person Reidentification in Abnormal
Situations. +e proposed IMS facilitates the reidentification
of the person involved in an abnormal situation. In our
algorithm, in-cabin facial anonymization for preserving
identity before transmitting the video frames to the cloud
was achieved through the following pseudocode. +e
identity signature is generated corresponding to each oc-
cupant in the FAV. It is a vector of size 1× 128.+erefore, for
each occupant, we have a pair of identity signatures cor-
responding to the original and anonymized faces. Each pair
is stored in the cloud. In any irregular situation, the con-
cerned person is back-traced by matching the identity sig-
nature and anonymized face. +e following is Pseudocode 1
of our proposed approach for obtaining the identity features
(ID) of the person involved in an abnormal situation.

We considered virtual human face generation for the
source faces. +ese faces are used to swap the target face in
the captured visual in-cabin dataset. +e source faces are
generated depending on the similarity of the target face in
the vector space. A similar source face provides the exac-
titude in replaying the facial gestures. +is facilitates better
reenactment performances. +e concept of virtual human
face generation for the source face protects any chaos or risk
of threatening others’ identities. Furthermore, we generated
the facial identity signatures of the original and anonymized
faces.+ese identity signatures help backtrack the concerned
person in the event of an irregular situation. +e identity
signature is only vectored information. In other words, the
identity signature in our proposed approach is extracted
from a face that is used to reidentify the face. However, a face
cannot be recreated using this information. +erefore,
personal identity is not revealed through the identity sig-
nature. Our proposed approach provides proof or evidence
that confirms the identity of the concerned person. +e

Set of male faces Set of male faces
Set of virtual human faces Set of 128-D identity features extracted

from the virtual human faces

Generated faces with best
matching technique

Similarity matching
in vector space

128-D identity
features

128-D identity
features

…

…

In-cabin visual input

Figure 4: Source image generation using AI-generated faces with the best matching technique.
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following is Pseudocode 2 of our proposed approach for
evidence of the person involved in an abnormal situation.

In the case of proof or evidence, our method determines
who is the concerned person. +e returned identity feature
(real face IDR(k)) in Pseudocode 1 refers to the crucial
identity parameter of the person involved in an abnormal
situation. Matching the identity feature at the time of in-
vestigation with the obtained ID (real face IDR(k)) confirms
the person involved in an abnormal situation.+erefore, this
approach easily locates the person involved in an irregular
situation without any breach of others’ identities.

3. Results and Discussion

In our experiment, we first anonymized the occupants of the
FAV to secure their privacy in the public domain. Further,
we applied the concept of vector space similarity to match
the representation learning-based identity features for face
recognition to locate the person involved in an irregular
situation. +e augmentation of the representation-learning-

based identity feature introduces a new domain in rei-
dentification. +e proposed system was introduced to
maintain personal privacy during the monitoring. We ex-
amined our proposed system for the in-cabin monitoring
task of the FAV. We captured our database for in-cabin
monitoring in abnormal situations. +e similarity measure
(Si,j) is calculated by the Euclidean distance (ED) metric that
is expressed as follows:

Si,j � ‖f(i), f(j)‖2, (11)

where f (i) and f (j) represent the 128D encoding of images i
and j, respectively. +erefore, the similarity measure iden-
tifies the distance (Euclidean distance) between two pairs of
IDs (128D encoding).+e lesser the distance is, the closer the
faces are.

3.1. Appropriate Source Faces. We proposed the concept of
an appropriate source face in our facial anonymization
approach. For every occupant face (target face), an

(i) Definitions: Faces of the occupant (F); target face (T); appropriate source face (S); anonymized face (A); identity features (ID):
real face ID (IDR); anonymized face ID (IDA); ID of the occupant that caused an abnormal situation (IDA_AS); and an in-cabin
abnormal situation (AS).

(ii) Functions:F � face detector; S � source detector; A � anonymizer; I � IDextractor.
(iii) Input: video frames (in-cabin)
(1) for i� 1 to range of the occupant:
(iv) T(i)� F (Input)
(v) S(i)� S (T(i)) # search most similar source face for target face
(vi) A(i) ← A (T(i), S(i))
(vii) IDR(i)� II (T(i)) # 128D feature vector of the target face IDA(i)� II (A(i))
(2) store: ID(i) ← (IDR(i); IDA(i))
(3) At datacenter: monitor event and behavior for AS:

(viii) if occupant j is involved in AS, then:
(xi) generate (IDA_AS(j)) #ID of jth occupant in abnormal situation
(x) match ID:
(xi) for ID from 1 to range of the ID:
(xii) k� argmin(‖IDA_AS(j), IDA(:))‖2)
(4) Map: IDR(k) ← IDA(k)

(xiii) return (IDR(k)) # the algorithm returns the real face ID of an anonymized person

PSEUDOCODE 1: Algorithm for obtaining the ID of a person involved in an abnormal situation.

(i) Definitions: Target face (occupant’s face) captured during the investigation (Tinv); ID of the occupant’s face obtained during an
investigation (IDinv); ID of the person involved in the abnormal situation (IDR); and real face of the occupant involved in the
abnormal situation (O).

(ii) Functions: II � ID extractor.
(iii) Input: Tinv; IDR
(1) At investigation:
(iv) for i from 1 to range of the target faces:
(v) IDinv(i)� II (Tinv(i))
(vi) match ID: # compare IDR and the suspect face ID
(vii) j � argmini(‖IDR, IDinv(i)‖2)

(2) Map: O ← j
(viii) return (O)

PSEUDOCODE 2: Algorithm for evidence of the person involved in the abnormal situation.
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appropriate source face is obtained by matching their
similarity in the vector space. We considered various sce-
narios to assess the efficacy of our proposed approach, in-
cluding single and multiple faces in the input image frame.
Figure 5 shows the complete set of the considered source
faces in our experiment. We considered a set of 24 source
faces (shown below). All these faces were not real (AI-
generated). +e source faces were used to swap the target
face in the facial anonymization process.

+ese faces are nonreal virtual human faces. Generated
Photos provides GAN-generated faces, which are human
faces of nonreal humans. +is has the benefit of further
augmentation in anonymization. We considered various
scenarios in our experiments. Examples include images with
a single face only (for bothmales and females), multiple faces
for males only and females only, and multiple faces for both
males and females. +ese are in-cabin images obtained from
the public domain (through an image search on the web) and
are shown in Figure 6. We considered different scenarios for
the occupants in the cabin. +erefore, in F1 and F2, there is
only a single person in-cabin (F1: male and F2: female). In
other scenarios, we considered more than one person in the
cabin (only males, only females, and both males and fe-
males). Finally, we considered a family with children. +ere
are four most appropriate source faces (S1 to S4) chosen for
face anonymization.

Table 1 presents the similarities (in vector space) be-
tween the source and target faces, as shown in Figures 5 and
6.

+ese values follow the facial similarities of the source
and target faces. +ese values measure the distance between
the identity features of the source and target faces. +e lower
the values are, the more similar the faces are. +e values in
the green boxes represent the minimum Euclidean distances.
+ese minimum values indicate appropriate source faces for
anonymization. We can observe that the male target faces
have lesser distances for male source faces than for female
source faces. Interestingly, the distance values follow the
similarity in looks as well. +e eastern looks target faces have
a lesser distance for eastern source faces than for the western
source face, and vice versa. Female source faces have a lesser
distance than the identity features of children’s target faces.

3.2. Privacy Preservation during In-Cabin Monitoring.
Facial anonymization is performed after deciding the ap-
propriate source face using FSGAN-based face swapping
and reenactment. Figure 7 depicts the reenacted anonym-
ization of the target faces. Here, the first row (F1 to F8) and
the third row (F9 to F23) show the original in-cabin visual
inputs, and the corresponding anonymized output is rep-
resented in the second row (A1–A8) and fourth row
(A9–A23). We chose four source faces (S1 to S4 shown in
Figure 6) to swap the target faces (F1 to F23).

It is evident from this result that perfect reenactments are
achieved even in the anonymized domain. +us, it discerns
the preservation of personal privacy during monitoring and
surveillance operations. Furthermore, this appropriate re-
enactment supports the detection of abnormal or irregular

situations in real time. To examine abnormality detection in
the anonymized domain, we have experimented by con-
sidering vandalism as an irregular situation inside the ve-
hicle cabin. We created our database for a similar situation.
Snippets of the vandalism inside the vehicle are shown in
Figure 8. We created a situation wherein occupants in the
back seat of the vehicle started fighting with the occupants in
the front seat. Four scenes were captured in our experiment.
Shoulder shaking is shown in scene #1. Scene #2 shows a
slapping scenario. Head shaking is discerned in scene #3,
and scene #4 represents a neck choking incident inside the
cabin of the vehicle. +e identity features (IDs) of each
occupant were calculated for normal and irregular situa-
tions. It is clearly observed that O3 (in the green box) is
responsible for the irregular situation (in-cabin vandalism of
the vehicle shown in the red box).

3.3. Person Reidentification in Abnormal Situations.
Table 2 presents the similarities of the anonymized identity
feature (IDA) with the anonymized facial identity feature of
occupant #3 (IDA_IS). Here, IDA_IS is the anonymized
identity feature of the occupant who is involved in an ir-
regular situation calculated at the data center, and IDA is the
anonymized identity feature of the occupant stored in the
cloud.

+e values in the green boxes represent the minimum
Euclidean distances. +ese minimum differences between the
IDs indicate the involved person. +e original ID of this
person is stored in the cloud. +erefore, by mapping the ID,
we can easily identify the real person. Reidentification was
performed by backtracking the ID obtained from the cloud
and pictures of the occupants taken during the investigation.
+e ID of the person involved in an abnormal situation from
the cloud (IDR) needs to be matched with the IDs of the
occupants inside the vehicle for facial identification of the
person. +is approach provides proof or evidence confirming
the identity of the concerned person. For assurance of the
person involved in the abnormal situation, we took pictures of
the occupants (during an investigation). +e images are
shown in Figure 9. Now, the identity feature of each occupant
is extracted to match the concerned person ID (IDR) (as per
Pseudocode 2). First, we compared the similarity between the
faces of the occupants inside the vehicle with those of the
other faces captured during the investigation. +is is required
to ensure that the occupants are the same.

Table 3 presents the similarity measures between the
occupants’ IDs extracted during an investigation and their
IDs extracted from the in-cabin images.

+e minimum Euclidean distances are represented by
the green boxes. Here, minima indicate that the occupants O
and O′’ are the same. +ereafter, assurance of the involved
person is performed by matching the identity feature of the
occupants extracted from the in-cabin image of the vehicle
with the ID of the person involved in an abnormal situation
(stored in cloud IDR). Table 4 presents the similarity mea-
sures between the occupants’ IDs extracted from the in-
cabin image with the obtained ID of the person involved in
an abnormal situation (stored in cloud IDR).
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Figure 6: We have chosen single and multiple faces in the input images in different scenarios: single face (only male or only female),
multiple faces (only male), multiple faces (only female), and multiple faces (both male and female). Here, the target (occupant) faces are
indexed from F1 to F23, and considered source faces (both male and female) are indexed from S1 to S4.

Figure 5: Set of virtual human faces (AI-generated faces). +ese virtual human faces are obtained from Generated Photos. It provides AI-
generated images that are free from any copyrights, distribution rights, and infringement claims (source: Generated Photos (https://
generated.photos/)).

Table 1: Similarities between the source and target faces.

Scenario Target (occupants†)
Similarity measure (using Euclidean distance)

S1 S2 S3 S4

Single face Male F1 0.91489481 0.80287961 0.89433056 0.74069120
Female F2 0.78818484 0.81636149 0.68592050 0.76422129

Multiple face

Male F3 0.91414391 0.88400388 0.87615788 0.83486502
F4 0.79685733 0.71862379 0.93450242 0.75311709

Male F5 0.91205174 0.82094296 0.87266242 0.78036428
F6 0.81236709 0.80381698 0.93859941 0.67143296

Female F7 0.81097788 0.82709409 0.71891988 0.86480495
F8 0.85947196 0.78512872 0.77978978 0.90500906

Both F9 0.89428390 0.83158545 0.88401185 0.80949051
Both F10 0.84977716 0.90480697 0.71174311 0.94153902
Both F11 0.65831500 0.52838455 0.95610671 0.88142326
Both F12 0.38916649 0.45361382 0.89109294 0.88496564
Both F13 0.79624321 0.80097813 0.88202307 0.71975099
Both F14 0.63660264 0.67343593 0.88004248 0.96042187
Both F15 0.84524707 0.89008615 0.77500429 0.86828727
Both F16 0.74547080 0.77676084 0.93155677 0.73583944
Both F17 0.79179192 0.80390987 0.73040828 0.88839209
Both F18 0.78950908 0.79986798 0.72049968 0.94658813
Both F19 0.90007099 0.85322199 0.99829307 0.85322199
Both F20 0.40197132 0.63806865 0.83032199 0.88047087
Both F21 0.46230089 0.53098278 0.85879277 0.86241199
Both F22 0.48055832 0.54356384 0.83216505 0.81304802
Both F23 0.55751665 0.45767183 0.90473598 0.78517239

†+e occupants are numbered from left to right clockwise.

10 Computational Intelligence and Neuroscience

https://generated.photos/
https://generated.photos/


+e zero value in the green box indicates that the oc-
cupant (O3) is the person involved in an abnormal situation.
Overall, this approach focuses on in-cabin monitoring with
personal privacy preservation to avoid abnormal situations.

Personal privacy preservation is achieved by using the
concept of event and behavior monitoring in an anonymized
domain. +e person’s reidentification is only for providing
evidence in cases where the involved person is denying it.

Figure 7: Facial anonymization with reenactment. F1 to F23: original images. A1 to A23: corresponding anonymized images considering
appropriate source faces.

Normal condition
Irregular condition (vandalism inside vehicle cabin)

Scene#1 Scene#2 Scene#3 Scene#4

R1:

R2:

O1
O3

O4O2

Figure 8: Snippets of our database showing vandalism inside the vehicle cabin. +e original image under normal and irregular situations is
in row R1, and the corresponding anonymized images are shown in row R2. +e occupants are numbered from left to right clockwise (O1,
O2, O3, and O4). Scene #1: O3 shakes shoulder of O4; scene #2: O3 tries to slap O4; scene #3 O3 shakes head of O4; and scene #4: O3 chokes
neck of O4. Green box: concerned person and red box: in-cabin vandalism.

Table 2: Identity feature matching between IDA_IS #3 at the data center and other stored IDs of the occupants in the cloud for different
scenarios.

Scene
Similarity measure (in Euclidean distance)

IDA #1 IDA #2 IDA #3 IDA #4
Scene #1 0.52893346 0.78363186 0.35424358 0.42124692
Scene #2 0.45234707 0.79687774 0.35880417 0.40963131
Scene #3 0.49863882 0.77615540 0.41716736 0.44500655
Scene #4 0.74701755 0.5816643 0.53716927 0.73605501
Detail description of scenes (scenes #1–#4) is mentioned in Section 3.2.
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4. Conclusions

Identity feature augmentation in anonymization is a po-
tential solution for providing privacy in public domain
monitoring. Identification of the involved person is crucial,
especially in abnormal situations. +e proposed intelligent
IMS augments the security features with privacy. +is
method is suitable for creating a monitoring database
without any restrictions or legalities. We performed various
scenarios to assess the efficacy of the proposed system. It
provided an efficient algorithm to perform monitoring tasks
in the public domain without any threat to the personal
identity of a person. +is helped in reidentification, even
with an anonymized face. In the future, this algorithm can be
implemented on various public domain monitoring plat-
forms, such as transportation systems, shopping centers,
theaters, hospitals, highways, fuel refilling stations, smart
city applications, and toll plazas.
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[2] J. Janai, F. Güney, A. Behl, and A. Geiger, “Computer vision
for autonomous vehicles: problems, datasets and state of the
art,” Foundations and Trends in Computer Graphics and
Vision, vol. 12, no. 1–3, pp. 1–308, 2020.

[3] “SAE international releases updated visual chart for its “levels
of driving automation” standard for self-driving vehicles,”
February 2021, https://www.sae.org/news/press-room/2018/
12/sae-international-releases-updated-visual-chart-for-its-%
E2%80%9Clevels-of-driving-automation%E2%80%9D-
standard-for-self-driving-vehicles.

[4] “Automated vehicles for safety,” 25 February 2021, https://
www.nhtsa.gov/technology-innovation/automated-vehicles-
safety.

[5] A. Mishra, J. Kim, D. Kim, J. Cha, and S. Kim, “An intelligent
in-cabin monitoring system in fully autonomous vehicles,” in
Proceedings of the 2020 International SoC Design Conference
(ISOCC), pp. 61-62, Yeosu, Korea, October 2020.

[6] “UK’s facial recognition technology ‘breaches privacy rights,”
February 2021, https://www.theguardian.com/technology/
2020/jun/23/uks-facial-recognition-technology-breaches-
privacy-rights.

[7] “Facial recognition technology privacy and accuracy issues
related to commercial uses,” February 2021, https://www.gao.
gov/assets/710/708045.pdf.

[8] “Facial recognition technology fundamental rights con-
siderations in the context of law enforcement,” February
2021, https://fra.europa.eu/en/publication/2019/facial-
recognition-technology-fundamental-rights-
considerations-context-law.
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