
MULTIMEDIA APPENDIX 1 

In our setting, we assume that the dataset (𝑋, 𝑌) is owned by 𝑚 ≥ 2 data holders (or sites) 𝑆*,… , 𝑆,  and the 

different sites are interested in cooperatively performing linear regression on the union of their datasets, 

however they are not willing to share their data. Only the final result of the computation should be revealed to 

all parties.  

Formally, the data (𝑋, 𝑌) is divided horizontally into 𝑚 subsets {(𝑋*, 𝑌*); … ; (𝑋,,𝑌,)}, with 𝑋0 = (𝑋*0 ,… , 𝑋20 ) 

the 𝑛0 × 𝑝 feature matrix for subset 𝑖 (where 𝑋70 is an 𝑛0 × 1 matrix) and 𝑌0 = (𝑦*0 ,… , 𝑦:;
0 )<  the corresponding 

𝑛0 × 1 response vector. The algorithm then executes the following two steps: 

1. Each site calculates their local feature selection vector privately, and the local vectors are aggregated 

securely using a secure median protocol. 

2. Next, each site uses the shared selected features to calculate the model parameters locally. These local 

parameters are then securely averaged using a secure average protocol.  

An example for our method is provided in detail in Figure 1 and Figure 2 below. In this example the 

secure sum and secure median protocols are based on Paillier homomorphic encryption, however that 

other secure protocols can be used instead. The algorithm was first presented in [1] 

 
1. A semi-trusted third party generates the keys for the Paillier cryptosystem and propagates the public 

key to all parties 

2. Each party calculates its local feature selection vector via Lasso, the overall feature selection vector is 

then calculated using the secure median protocol. The secure median protocol retains all features that 

have an overall inclusion probability greater than ½. The calculated median vector is then propagated 

to the different parties without leaking any information about individual feature selection vectors. 

Thus, if 𝛾0 = {𝛾*0 ,… , 𝛾20} is the feature selection vector for site 𝑖, (with 𝛾70 = 1 if feature 𝑗 is included 

and 0 otherwise), then the overall vector is obtained by: 𝛾 =

{𝑚𝑒𝑑𝑖𝑎𝑛{𝛾**, … , 𝛾*,}, … ,𝑚𝑒𝑑𝑖𝑎𝑛B𝛾2*,… , 𝛾2,C}  



3. After receiving the overall feature selection vector, each party calculates the coefficients of the 

selected features separately. The encrypted average of these features is then securely computed using 

Paillier encryption: thus, if 𝛽0 = {𝛽*0 ,… , 𝛽20 } is the feature coefficient vector for site 𝑖, then 𝛽 =

𝑆𝑒𝑐𝑢𝑟𝑒{𝐴𝑣𝑒𝑟𝑎𝑔𝑒{𝛽**,… , 𝛽*,},… , 𝐴𝑣𝑒𝑟𝑎𝑔𝑒B𝛽2*, … , 𝛽2,C: each site 𝑖 calculates 𝐸𝑛𝑐(M
;
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0P* ) sequentially. The encrypted result is sent to the third party 

which decrypts and propagates the estimated feature coefficients. 

Figure 1. Steps for the secure linear regression algorithm 

It is important to note that the algorithm can be slightly changed to operate without the need of a third party. 

In such case, a threshold Paillier cryptosystem can replace the third party. For more information, readers are 

referred to [1].  

Initialization 

1:  𝜃 = {*
T
}2 

 

Each party 𝒊 

2: Generates a random positive integer 𝑥0 # denote by 𝑥 = ∏ 𝑥0W
0P*  

Each party calculates 

3: 𝑤0 = (𝛾0 − 𝜃)  

4: 𝐸𝑛𝑐(𝑤0)  

 

All parties calculate 

5: 𝐸𝑛𝑐(𝑤) = ∑ 𝐸𝑛𝑐(𝑤0)W
0P*  # note if 𝑤 is positive at position 𝑗 (𝑤[𝑗] > 0) this implies that the majority of sites 

had 1 at the 	𝑗 position in their feature inclusion model 

Sequentially the parties calculate 

6: 𝐸𝑛𝑐(𝑤𝑥) = {𝐸𝑛𝑐(𝑤[1])_,… , 𝐸𝑛𝑐(𝑤[𝑝])_} # party1 calculates 𝐸𝑛𝑐(𝑤𝑥*) = 

{𝐸𝑛𝑐(𝑤[1])_`,… , 𝐸𝑛𝑐(𝑤[𝑝])_`} and sends it to party2,  party 2 calculates 𝐸𝑛𝑐(𝑤𝑥*𝑥T) = 

{𝐸𝑛𝑐(𝑤𝑥*)_a,… , 𝐸𝑛𝑐(𝑤𝑥*)_a} and so on. 

7: 𝐸𝑛𝑐(𝑤𝑥) is sent to third party 



 

Third party 

8: Decrypts 𝐸𝑛𝑐(𝑤𝑥)  

9: Propagates 𝑤𝑥 

Each site  

10: Calculate γ as follows cγ
[j] = 1	if	W[j] > 0
γ[j] = 0	otherwise   

Figure 2. The secure median algorithm 

The complexity of the algorithm is 𝑛𝑝T and total communication required is 2 messages per party, where each 

message is of size 𝑝 integers. This is a big step forward in terms of the communication required and it is due to 

the fact that model selection and regression parameters are calculated locally. And that communication is 

required to aggregate the local results at 2 different instances in the program execution. 
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