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Abstract: The industrial environment has gone through the fourth revolution, also called “Industry
4.0”, where the main aspect is digitalization. Each device employed in an industrial process is
connected to a network called the industrial Internet of things (IIOT). With IIOT manufacturers being
capable of tracking every device, it has become easier to prevent or quickly solve failures. Specifically,
the large amount of available data has allowed the use of artificial intelligence (AI) algorithms to
improve industrial applications in many ways (e.g., failure detection, process optimization, and
abnormality detection). Although data are abundant, their access has raised problems due to privacy
concerns of manufacturers. Censoring sensitive information is not a desired approach because it
negatively impacts the AI performance. To increase trust, there is also the need to understand how
AI algorithms make choices, i.e., to no longer regard them as black boxes. This paper focuses on
recent advancements related to the challenges mentioned above, discusses the industrial impact of
proposed solutions, and identifies challenges for future research. It also presents examples related
to privacy-preserving and explainable AI solutions, and comments on the interaction between the
identified challenges in the conclusions.
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1. Introduction

Industry 4.0 [1] has introduced advanced technology in manufacturing, to make it
more client-driven and customizable, leading to manufacturers striving toward a contin-
uous improvement in quality and productivity. To achieve smart manufacturing, which
enables variable product demand, intelligent systems were introduced in industrial units.

Recent developments in Internet of things (IOT) [2], Cyber-Physical Production Sys-
tems (CPPS) [3], and big data [4] led to major improvements in productivity, quality, and
monitoring of industrial processes. Artificial intelligence (AI) plays an important role in
industry, as more and more manufacturers are implementing AI in their processes.

Developed and employed with the purpose of performing tasks that normally require
human discernment, AI is currently a popular topic. Having the capability of interpreting
data for solving complex problems [5], AI is also a good fit for factories [6]. It enables
industrial systems to process data, perceive their environment, and learn, while building
up experience, in order to become better at a task by dealing with it and its data repeatedly.

Artificial intelligence [7] is a subject that researchers have been preoccupied with
almost since computers were invented. AI includes every algorithm that enables machines
to perform tasks that require discernment, not just by applying a formula or following
a strict rule-based logic. Thus, if we provide datasets with inputs and outputs to an AI
algorithm, it will be capable of yielding a logic which maps the inputs to the outputs. In
contrast, in classic programming, humans provide the logic. Of course, in many situations
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it is not necessary to use AI (e.g., if the problem can be solved through a mathematical
formula). In the last two decades, thanks to the increase in computational power, AI
has become very popular, and it has been used in several domains (medicine, marketing,
industry, etc.), with various subdomains of algorithms such as machine learning (ML) [8]
and deep learning (DL).

Machine learning is a popular subdomain of AI, and it is composed of statistical
algorithms that can learn from data to create mathematical models for intelligent systems.
Today, we have recommendation systems that use ML to suggest aspects that we like on
the basis of our preferences (e.g., music, ads, and shopping). In the medical environment,
we have ML models which help clinicians during diagnostic processes (decision support
systems) [9].

Deep learning [10] is a widely used type of learning algorithm that relies on defining
neural networks [11] with more than one hidden layer of neurons. Neural networks are
inspired by the human brain, having computational units (named neurons) which are
interconnected and exchange information to extract features from input data, thus enabling
the mapping of input data to output data. However, neural networks used in AI do not
work in the same way as human neural networks, because they exchange information
using real numbers, whilst our neurons exchange information through electrical impulses.
Neurons are organized in layers, where the first and the last layer are those that interact
with the external environment, also named the input layer and output layer. Intermediate
layers are called hidden layers.

Multiple review papers have described the multitude of approaches on the basis of
which AI is employed in manufacturing. In [12], Sharma et al. presented a theoretical
framework for machine learning in manufacturing, which guides researchers in elaborating
a paper in this field. They pointed to several review papers that targeted the use of ML
in the industrial environment. Rai et al. [13] discussed the use of AI in the context of the
fourth industrial revolution. To highlight the potential advantages and potential flaws
of using AI in industry, Bertolini et al. [14] reviewed the literature and classified research
on the basis of the algorithm and application domain. Sarker [15] also reviewed the use
of machine learning in real-world applications such as cyber security, agriculture, smart
cities, and healthcare. In [16], Rao summarized the use of AI in different domains such as
healthcare and travel.

In [17], four important challenges were identified: data availability, data quality,
cybersecurity and privacy preservation, and interpretability/explainability. While the
former two have been extensively discussed in the past and are well known, in this paper,
we focus on topics related to the latter two challenges.

AI/ML relies extensively on existing and future data to deliver accurate and reliable
results. The collection of large volumes of data for centralized processing poses severe
privacy concerns. Thus, the first challenge refers to the fact that, while industrial data are
abundant, they are hard to circulate and access due to privacy/IP constraints, also affecting
the development of computer-based solutions. Industrial AI systems are difficult to realize,
as data to develop and train them exist, but are not accessible. If training datasets lack
diversity, algorithms may be biased or skewed to certain types of data/events [18].

Secondly, AI algorithms should be explainable and interpretable. ML algorithms are, in
general, related to the concept of ‘black box’, i.e., the rationale for how the outputs are inferred
from the input data is unclear [19]. Algorithmic decisions should, however, ideally provide
a form of explainability [20]. In general, explanations are about the attribution of the worth
of input features toward the final model predictions, whereas interpretability refers to the
deterministic propagation of information from the input to the response function.

ML is usually regarded as a ‘black box’ unit; once a model is trained, its logic for
determining the outputs on the basis of the inputs is not available, and further experiments
and methods need to be performed to understand the way a trained model analyzes and
processes the data. For stakeholders, however, it is important to understand how and why
a solution is being proposed. Hence, explainable AI, with its interpretability tools, is key.



Appl. Sci. 2022, 12, 6395 3 of 14

Model-agnostic methods [21] were the subject of past research that yielded good results.
Most of them targeted local interpretable model-agnostic explanations (LIMEs) [22] and
Shapley additive explanations [23]. An important advantage of these methods is that they
are compatible with a multitude of ML models. On the other hand, there are model-specific
interpretation methods [24], which have the disadvantage of being compatible only with
specific model types.

This paper highlights the recent developments related to privacy preservation and
explainability in industrial AI applications and discusses the potential impact of existing
solutions in the industrial domain. Several examples are presented, related to explainable
AI methods and privacy preservation techniques. Section 2 addresses aspects related to pri-
vacy preservation in industrial AI applications, while the explainability and interpretability
requirements of an AI model are discussed in Section 3. In the context of the approaches
described herein, Section 4 focuses on the impact of AI in industry and identifies remaining
challenges. Final conclusions are drawn in Section 5. Given the focus on the two challenges,
the paper should be regarded as an argumentative review; the literature is examined selec-
tively in order to support the arguments of the necessity of both explainability and privacy
preservation in industrial AI applications. Furthermore, new challenges are identified, and
their interaction is discussed.

2. Privacy Preservation in Industrial AI Applications
2.1. State of the Art in Privacy-Preserving AI

In this section, we briefly present various approaches for performing privacy-preserving AI.
One of the most used solutions in privacy-preserving AI is homomorphic encryption

(HE). HE allows users to perform computations on encrypted data, yielding results that
are also encrypted (results are identical to those obtained by performing the operations
on unencrypted data). This type of encryption is necessary when processing sensitive
data (e.g., healthcare data). Homomorphic encryption has been introduced and developed
independently from AI, but the large computational overhead limits its real-world usage.
Since AI-based methods provide results in near real time, i.e., the computational cost during
inference is small, extending AI with HE allows for privacy-preserving data processing,
while obtaining results in a reasonable amount of time.

One of the first notable approaches in using homomorphic encryption with neural
networks was proposed by Orlandi et al. [25]. They developed an approach to process
encrypted data using a neural network, ensuring that not only the data are protected, but
also the neural network itself (weight values and hyperparameters). Figure 1 illustrates the
data exchange between server and client, in an encrypted format.

Figure 1. Workflow of privacy-preserving feature-based ECG classification method [26].

HE comes in many forms, and one of them is fully homomorphic encryption (FHE), which
refers to a cryptosystem able to support arbitrary computation on ciphertexts. Sun et al. [27]
used FHE to implement a private decision tree classification of user data. Aslett et al. [28]
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performed a review of homomorphic encryption techniques successfully applied in machine
learning, and they also documented an R package implementing a homomorphic scheme.
Deep neural networks were also employed in studies with homomorphic encryption. For
example, Takabi et al. [29] used HE for multiparty machine learning; multiple parties partici-
pated in training the deep neural network, while maintaining data privacy.

A novel homomorphic encryption framework was proposed by Li et al. [30] to protect
the data and the expertise of the algorithm when using cloud computing for model training.
For healthcare and bioinformatics applications, Wood et al. [31] reviewed the use of FHE
together with machine learning models.

The main disadvantage of FHE is its large computational cost. To address this as-
pect, partially homomorphic encryption (PHE) schemes were proposed and used by
Fang et al. [32] to transmit encrypted gradients from all learning parties, thus speeding up
the training by 25–28%, while maintaining the same level of accuracy in comparison with a
classic approach.

Distributing the training process to multiple servers or decentralized edge devices
with local data is a preferred approach to address privacy and scalability issues. This type
of training is known as federated learning [33] and enables the collaboration of industrial
nodes for training a model without exchanging sensitive data. However, reverse engineer-
ing may still be employed to extract from the model sensitive information regarding the
datasets [34]. Hence, further research is needed for addressing privacy preservation.

Cloud-based implementations that can be used to run homomorphic encryption
frameworks are available. One of them is Google’s Cloud Platform [35], which runs on the
same infrastructure as Google Search, YouTube, and Google Drive. Another widely used
ML service is made available by Microsoft. Microsoft Azure Machine Learning [36] provides
ML services which can also help in deploying models and managing them efficiently.

2.2. Review of Privacy-Preserving AI in Industrial Applications

In this section, we focus on research that targeted privacy-preserving artificial intelligence
applied in industrial applications. Some of the main subjects in industry-oriented research
are industrial Internet of things (IIOT) and Industry 4.0. A new method termed verifiable
federated learning (VFL) was proposed by Fu et al. [37] for privacy preservation in industrial
IOT, which employs federated learning, while also allowing for information extraction from
the shared gradients. Figure 2 illustrates the proposed federated learning framework.

Figure 2. Federated learning framework proposed by Fu et al.

As mentioned above, a promising solution for privacy preservation is homomorphic
encryption, but there are also other techniques for data encryption and/or anonymization.
For example, on the basis of homomorphic data space transformation, Girka et al. [38]
proposed an anonymization algorithm to protect data, while still allowing neural network
training. They analyzed the effects that this method has on the neural network perfor-
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mance. By adding new frozen layers to the neural network, they succeeded in achieving
anonymization, while the performance was slightly lower when compared to that of the
original model.

Blockchain can also be used instead of simple federated learning. Zhao et al. [39]
employed blockchain to transfer models trained by customers, thus eliminating the need
for federated learning for gradient updates. Because blockchain records are not altered,
malicious manufacturers or customer activities are traceable. Another study highlighted
the need for privacy preservation to ensure data protection when exchanging information
between multiple owners of renewable energy power plants. The main goal of the data
exchange is to increase the forecast performance. Gonçalves et al. [40] proposed a privacy-
preserving framework that combines the alternating direction method of multipliers with
data transformation techniques. Their method proved to be successful, being robust to
privacy breaches and communication failures, while the forecast performance was only
marginally lower than that obtained using a model without privacy protection.

Generative adversarial network (GAN) is a machine learning algorithm that is widely
used to generate synthetic data. Being first proposed in 2014 by Goodfellow et al. [41], GAN
is currently popular and comes in different forms, one of them being least square generative
adversarial network (LSGAN), which was used by Li et al. [42] together with federated
learning to generate renewable scenarios. Through federated learning, a model was trained
by gathering knowledge from different renewable sites, and then LSGAN was employed to
generate renewable scenarios from the same distribution as the historical data, thanks to the
capability of capturing the spatiotemporal characteristics of renewable powers.

Below, we provide a concrete example of a privacy-preserving AI application for
casting [43]: a manufacturing process in which a liquid material is usually poured into a
mold, which contains a hollow cavity of the desired shape, and then allowed to solidify.
Defects may appear during the casting process, e.g., blow holes, pinholes, burr, shrinkage
defects, mold material defects, pouring metal defects, and metallurgical defects, which have
to be detected, and the corresponding parts have to be removed. Typically, this process is
performed by a human operator, who may not be 100% accurate and consistent in their de-
cisions. A fully automated, AI-based approach may reach 100% accuracy and remove inter-
and intra-user variability, i.e., improve the robustness of the detection. The manufacturer
would typically decide to externalize the development of the AI model, which means that
a large dataset containing photos of both acceptable and nonacceptable parts would have
to be shared with the entity developing the AI model. However, the manufacturer may not
feel comfortable with externalizing photos of nonacceptable parts. In a privacy-preserving
setting, the photos would first be homomorphically encrypted or obfuscated, such that
the external party cannot reconstruct the original images. The AI model would be trained
on the encrypted or obfuscated images, and the trained model would be deployed as
an AI service. During inference, the same encryption or obfuscation method would be
employed to ensure that the AI model is not fed with out-of-distribution data. A possible
technical solution was recently published for a healthcare application [44], which could be
similarly applied in the industrial domain for the casting application. Therein, an image
obfuscation algorithm was proposed that combines a variational autoencoder with random
non-bijective pixel intensity mapping to protect the content of medical images, which are
subsequently employed in the development of DL-based solutions. Although a drop in
accuracy could be observed when the classifier was trained on obfuscated images, the
performance was deemed satisfactory in the context of a privacy–accuracy tradeoff.

3. Explainable Industrial AI Applications
3.1. The Black-Box Aspect of AI

Artificial intelligence algorithms are, in general, regarded as black-box algorithms,
i.e., it is not possible to determine or infer why the model has generated a certain output.
A representative example was described in [45]; a robotics graduate student tried in 1991
to train a military vehicle to self-drive. The training of the system was accomplished by
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him manually driving the vehicle while the system (the algorithm was a neural network)
memorized the moves for different situations. After a few training sessions, the approach
seemed to be working well; however, when the vehicle reached a bridge, it did not know
how to handle the situation, and the model would have crashed the vehicle if the user had
not intervened. Further testing revealed that the model was relying on grassy roadsides to
be guided along the road; hence, the appearance of the bridge caused confusion.

The black-box problem [46] has represented a concern since the very beginnings
of neural network research. Currently, very complex neural network architectures are
employed, which deepen the black-box problem. The advancements of the technology and
of computing power have also further increased its importance. It has become obvious both
as a developer and as a user that, to trust an algorithm for making important decisions, one
needs to make sure that the algorithm relies on the right properties and reasons.

3.2. State of the Art in Explainable AI

To make it easier for a user to understand the logic behind the decision taken by an
algorithm, a user interface (UI) should accompany it. Using UI, automation bias can be
mitigated. We can categorize explainable AI methods into the following:

• saliency maps: elements in the input that have the largest influence in the prediction
are identified (e.g., LIME);

• feature attribution: attributing the classification to a small number of numeric/semantic
features [47,48];

• metric learning [49]: mapping out data structures by deriving a metric from a classifier
(explicit Siamese networks are very popular);

• activation maximization: methods that are based on GAN.

There are several methods of explainable AI that can be applied, depending on the
data type. These are discussed below.

Even though there are several explainable AI techniques, only certain methods can
be applied on tabular data [50]. Techniques designed for images or text data are typically
not applicable to tabular data. Tabular data can present characteristics such as correlations
between features or temporal aspects, and they may contain categorical features along with
continuous features. Poulin et al. [51] proposed one of the first methods of explainable AI,
named ExplainD. It measures the importance of each input feature related to the prediction
of a classifier. LIME proposed by Ribeiro et al. [52] is a model-agnostic technique used to
explain the predictions of the classifier. Many other methods have been developed on the
basis of LIME. The core principle is that one or more models are trained to approximate the
predictions of the classification model, to determine why the classification model outputted
a certain prediction. These models are trained with a dataset containing perturbed data
points, which are close to the instance of interest. The newly trained model (named the
surrogate model) is used to compute the proximity of each sample instance to the instance
of interest. In Figure 3, the explanations for three predictions can be observed.

For time series, saliency maps can be extracted to highlight the importance of a
sequence from the input, which is related to the prediction. Class activation mapping
(CAM) is a method used on convolutional neural networks (CNN) to identify input features
which are representative for a class. Oviedo et al. [53] applied this method to explain model
decisions when classifying small X-ray diffraction. Thrun et al. [54] proposed a new method
of explainable artificial intelligence (XAI) in which a data-driven approach is used to exploit
distance-based data structures, without the need for making any assumption related to the
data. LIME can also be employed, as well as any method that yields a heatmap, e.g., deep
learning important features (DeepLIFT). Layer-wise relevance propagation (LRP) [55] can
also be used, which is a method that computes feature importance by backpropagating
a relevance score through the model. Figure 4 contains an example of how features are
highlighted to justify model predictions.
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Figure 3. Explaining Google’s Inception neural network predictions: electric guitar (b), acoustic
guitar (c) and Labrador (d). Highlighted parts from the (a) original image are those that contributed
the most to each prediction. Adapted with permission from [52], 2016.

Figure 4. Heatmaps yielded by different techniques for two animals identified in a picture. Adapted
with permission from [55], 2020.

It is widely known that XAI presents a wide variety of methods to be used for imaging
data. All methods described in the categories above can be applied to gain insight into the
logic used by the model to perform the prediction. Yang et al. [56] discussed the use of XAI
for medical images, and Xu et al. [57] described approaches and future challenges after
summarizing the history of XAI.

3.3. Review of Explainable Industrial AI Applications

Manufacturers are now more interested in the use of AI to improve the overall quality
of industrial applications, while at the same time unboxing the original black-box models.
One of the domains in which AI is not widely used is air traffic management (ATM); how-
ever, introducing AI is a need which can help ATM in the future. As they are increasing in
complexity, there is also a need for explainable AI techniques, to identify the most impor-
tant features in model predictions [58]. Gade et al. [59] introduced a tutorial in which they
presented an overview of model explainability and interpretability, alongside techniques
which are helpful in providing explainability for AI systems. Their examples were mainly
applications from the industrial environment. Longo et al. [60] and Ahmed et al. [61] also
reviewed XAI applied in industry. In the automotive field, explainable AI is used to create
transparency and understand model decisions [62], but it turns out that XAI itself is not
sufficient to increase the trust [63]. Other explanations need to be provided, not only for
developers, but also for the end-user.

Krishnamurthy et al. [64] proposed a new XAI framework for predicting maintenance
applications for automotive applications and others. Brito et al. [65] used XAI for diagnosis
and fault detection in rotating machinery. Anomaly detection was used for performing,
while, for interpreting fault diagnosis models, they employed Shapley additive explana-
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tions (SHAPs). To reduce energy consumption in mineral processing, Chelgani et al. [66]
highlighted the importance of using high-pressure grinding rolls (HPGRs). The main
problem is HPGR modeling; they proposed to expand the existing conscious laboratory
(CL) and used XAI systems to innovate powder technology industries. SHAP and extreme
gradient boosting (XGBoost) were the selected methods for achieving model explainability.

4. Industrial Impact and Remaining Challenges
4.1. Industrial Impact

The use of artificial intelligence in industrial applications, and the use of techniques
for privacy preservation and model explainability can impact industries in many ways:

• improving productivity: by predicting the quality parameters of the product [67],
manufacturers can swiftly modify the industrial process setup to fit the updated
requirements. Thus, they can save time by using an AI method to provide the best
setup which meets their needs;

• improving maintenance: AI algorithms can be used to identify anomalies, and they
can also handle large quantities of data [68]. By training an AI model to behave
like a device in its normal state, it will be able to identify events that are abnormal
(anomalies), which are dangerous, and which can lead to accidents. Prevention is a
key factor in reducing them;

• increasing security: the use of privacy-preserving methods for artificial intelligence
algorithms will increase security for the client, as well as the provider, making sure
that no entity can have access to the model expertise while using the model to generate
predictions [69];

• increasing trust in predictions: to improve the accuracy, the model complexity must
be increased, and this leads to models being regarded as black boxes. To identify the
logic behind a prediction, explainability methods have been developed, and they can
be used to identify key features from the input data, which lead to a certain prediction
and, thus, an understanding of the model logic.

4.2. Remaining Challenges

In this section, we present and discuss other remaining challenges related to the use of
AI in industrial applications. AI models come with inherent risks posed by factors which
are outside our control or governance, such as biased datasets or lack of robustness. These
are discussed briefly below.

4.2.1. Bias and Fairness

Data remain the base of every learning algorithm, and any issue in the underlying
dataset will be reflected in the algorithm performance. One such example is data bias [70].
If datasets present biases, then these will be learned and reflected by the model predictions.
Biases can also appear when data are not biased, e.g., due to design choices. Considering
the training of a neural network for identifying animals, like dogs, for example, if 95% of
dogs in the dataset have brown fur, then the model will not have a good performance on
dogs with white fur, and the model might focus on color instead of key features to identify
dogs in images.

In the industrial environment, it is crucial to store data yielded by each hardware com-
ponent (sensors, motors, etc.), so that an algorithm can extract relevant features and learn
to predict accurately. Typically, equipment is running in a normal state, and breakdowns
are very rare, e.g., once a week, month, or even year. Hence, omitting breakdown events
will result in a biased dataset, because the model will react poorly when an abnormal event
happens, thus decreasing the trust in its predictions.

Another issue that can be encountered in datasets related to industrial applications
is data noise [71]. Training only on noisy data may result in a biased model because,
when presenting data without noise or with a decreased level of noise, the model may
have a weaker performance. Trying to filter the noise from a dataset may not be a good
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choice either, since noise happens uncontrollably and is typically present in real-world
applications. To address these issues, one needs to make sure that datasets include both
normal and noisy data, representative for the actual use of the models.

Another overarching topic is that of fairness [72]. There is no general definition since it
is a term which spans across multiple domains such as computer science, psychology, and
philosophy. A fair algorithm will be one that is not biased and does not discriminate against
individuals, groups, or subgroups. If biases are identified in datasets, it is necessary to eliminate
them before performing the training, to ensure that the model will not perpetuate them.

4.2.2. Robustness

Robustness refers to the property that characterizes how effective the AI model is when
being tested on a new independent dataset. Specifically, robustness can be linked to the topic
of confidence and out-of-distribution detection. It is known that the output of classic deep
neural networks may be unreliable when applied on out-of-domain, noisy, or uncertain input
data. Many methods have been proposed for assessing model output confidence.

Normalizing flows (NFs) are a family of generative models with tractable distributions,
where both sampling and density evaluation can be efficient and exact [73]. The goal is
to model p(x), where x denotes samples from a training set and p(x) is the probability
distribution. An NF model can answer the following question: given a new set of x, how
likely are they to be from the same p(x) distribution (as observed in the training set)? The
NF framework employs two components: a bijective encoder (usually employing deep
neural networks) and a prior probability distribution (usually a fixed multivariate normal
distribution). In contrast with other methods such as variational inference (which only
offer a lower bound of p(x) named “evidence lower bound-ELBO”), NFs are capable of fast
density estimation, given a suitable choice of model architecture. In that aspect, coupling
layers have recently been proposed [74,75] which offer a simple and efficient mechanism for
computation of both forward (for density estimation) and backward passes (for sampling).
Training can be performed end-to-end in an unsupervised manner.

An NF model can be deployed to detect out-of-distribution (OoD) input samples
which should be excluded from the downstream deep neural network (DNN) pipeline. For
example, given a model which was trained on a supervised task on a trainset T, an NF
model can be trained on the same trainset. If, for new samples, the NF model computes
low probability estimates, then those samples are outside the training manifold T of the
supervised model, and its predictions may be regarded as unreliable.

Another approach to OoD detection in multiclass classification tasks is to employ
softmax logits to compute energy scores, which have been shown to be aligned with the
probability density of the inputs and be less susceptible to the overconfidence issue [76].
This approach can distinguish between in- and out-of-distribution samples, even when
employing out-of-the-box models which have not been specifically tuned for this purpose.
Naturally, OoD detection can be improved by employing outliers and an additional loss
term which encourages the network to maximize the separation between energy scores
for true samples vs. outliers. They have also stated that “methods relying on the softmax
confidence score suffer from overconfident posterior distributions for OoD data”. This
means that output softmax probabilities tend to be erroneously high for outliers. It is
shown that a classification model having a softmax final activation implicitly contains
an input density estimator. The energy score can also be incorporated into the training
objective, along with the categorical cross-entropy classification loss. The training dataset
would consist of two parts: (i) an in-distribution subset, on which the classification loss is
computed, and for which the energy score is minimized, and (ii) an OoD subset, on which
only the energy score is computed and maximized. The energy method is applicable to
an already trained model, extending it as an OoD classifier. Moreover, fine-tuning energy
scores during main training can boost OoD detection performance.

Other approaches for analyzing and improving robustness is to use uncertainty es-
timation techniques. An established method for uncertainty quantification is to employ
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Gaussian processes (GPs). Figure 5 illustrates the performance of two methods using GPs
for uncertainty quantification: red dots are the predictions, deep blue lines represent the
label values, and light blue areas represent the certainty limits. In their original formulation,
they lack efficiency for large dimensional datasets, but recent studies showcased that using
variational approaches and certain architectural constraints, highly efficient models can be
obtained, which offer high task-specific performance and uncertainty estimates using only
a single forward pass of the neural network [77]. A smooth and sensitive feature extractor
feeds a sparse variational Gaussian process, which outputs both the expected prediction
and the output variance.

Figure 5. Predictions and attached uncertainties on a toy dataset from a squared exponential (SE)
kernel (left) and a deep kernel learning (DKL) kernel (right). Outside the training points, the SE
kernel model reverts to its zero mean with high uncertainty, while the DKL extrapolates confidently
(adapted with permission from [77], 2021).

To improve robustness for deep neural network models, Kwon [78] proposed the
concept of a backdoor attack, to retrain the model with additional altered images that were
intentionally introduced to mislead the algorithm. A backdoor attack relies on introducing
inputs that contain certain triggers which determine the model to output a wrong prediction.
After model training, triggers may be introduced in the test input data to try to manipulate
the predictions. The advantage of the proposed method is that the classification accuracy is
maintained at a high level, even when the model is under attack.

Text datasets are also subject to potential robustness issues. These may be addressed
similarly to imaging datasets, i.e., by adding noise over some of the samples used in the
training process. These samples with noise are also known as adversarial examples; noise
is represented by modified characters or words in a paragraph. As for images with noise,
text altered by noise should have the same meaning, i.e., a human reader should perceive it
similarly to text without noise. By introducing adversarial examples in the training dataset,
Kwon and Lee [79] increased the model accuracy over altered samples by 13.3% (from 9.2%
to 22.5%), while the overall accuracy dropped only by 0.9% (from 88.1% to 87.2%).

5. Conclusions

Artificial intelligence is widely used and brings benefits in every domain in which it
is applied. Industry 4.0 has created the conditions to apply artificial intelligence through
digitalization. Large quantities of data are now available to be used to generate knowledge,
which is exactly what AI algorithms have been designed for.

Even though it can improve industrial processes, AI needs to be applied with caution,
because the access to large quantities of data also has downsides, such as the risk of data
theft. To prevent this, privacy-preserving methods have been developed to be used along
with AI algorithms, to ensure that knowledge is generated, while maintaining data safety.
Privacy-preserving solutions proposed to date have the disadvantage of either increasing
the runtime by a prohibitive amount or decreasing the accuracy significantly. Thus, the
tradeoff between privacy preservation and usability is still too large. Further research is
warranted to develop solutions which can be considered both secure and accurate enough.
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Another aspect related to artificial intelligence is the black-box nature of the models.
Increasing the accuracy means increasing the model complexity, thus making it harder to
interpret how a model takes the decision starting from the given inputs. Explainable AI has
been introduced to fill this gap and to help understand the way a model maps inputs to
outputs. Current solutions are limited to certain models, and state-of-the-art AI approaches,
such as deep neural networks, require further research to ensure levels of transparency that
would allow the user to fully trust AI model decisions.

As AI techniques evolve, newly developed concepts will be translated into the various
application domains, including industry. Similarly, new challenges will be identified, which
will need to be addressed first at a core or theoretical level, and then within the application
domains. Two such current challenges were described herein: bias/fairness and robustness.
AI model robustness is closely linked to AI model explainability; a robust model will
perform well even when being presented with a data sample that has distinct properties
from those of the training data samples. A robust AI model performs well on such out-of-
distribution data, specifically because it is capable of recognizing and interpreting certain
characteristics of the data sample, even if they have a slightly different appearance than
in the training dataset. Such model capability is also crucial for achieving high model
explainability; a model that generalizes well takes the decisions on the basis of the right
characteristics of the data samples, which in turn means that it can potentially explain its
decisions correctly, i.e., generating trust. Furthermore, AI model robustness is also linked to
AI model bias. A model without or with low bias is likely to achieve a superior robustness by
removing or at least reducing so-called ‘blind spots’ in the data processing and interpretation.
We also note that privacy-preserving methods increase complexity, since they introduce
an additional layer of data manipulation. Specifically, the data manipulation methodology
itself should not introduce any bias in the data and maintain the same level of robustness
as if the model was trained on the original data. Lastly, we note that privacy preservation
and explainability requirements apparently have opposite effects. Privacy preservation is
typically achieved by encrypting/obfuscating/altering the model input data, which in turn
diminishes the explainability and interpretability capabilities. Hence, at least with current
approaches, the user has to choose which of these aspects should be prioritized.

As a limitation, we note that this argumentative review does not represent an exhaus-
tive attempt at discussing the application of AI in industrial applications. We focused on
specific challenges and highlighted recent developments related to these challenges, and
we identified other challenges to be considered in future research.
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