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Abstract— Many techniques for privacy-preserving data min- tiple users, such as companies, governmental agencies, and
ing (PPDM) have been investigated over the past decade. Ofte health care organizations, each holding a dataset, may want
the entities involved in the data mining process are end-use , co|lahoratively perform clustering task on their comesin

or organizations with limited computing and storage resouces. data and share the clustering results. Due to privacy caacer
As a result, such entities may want to refrain from participating 9 : P y

in the PPDM process. To overcome this issue and to take many USers may not be willing to share their data with the other
other benefits of cloud computing, outsourcing PPDM tasks to users and thus the distributed clustering Hastkould be done
the cloud environment has recently gained special attentm We in a privacy-preserving manner. This problem, referred€o a

consider the scenario wheren entities outsource their databases _ ; fetri ;
(in encrypted format) to the cloud and ask the cloud to perfom prlvaqy preserving dlstr!buted Clustejrlng (PPDC), carbbet
explained by the following example:

the clustering task on their combined data in a privacy-pregrving

manner. We term such a process as privacy-preserving and « Consider two health agencies (e.g., the U.S. CDC and the
outsourced distributed clustering (PPODC). In this paper, we pub“c health agency of Canada) each ho|d|ng a dataset
containing the disease patterns and clinical outcomes of

propose a novel and efficient solution to the PPODC problem
based onk-means clustering algorithm. The main novelty of our . . - . .
ga9 y their patients. Since both the agencies have their own data

solution lies in avoiding the secure division operations rguired in

computing cluster centers altogether through an efficient tans-
formation technique. Our solution builds the clusters sectely
in an iterative fashion and returns the final cluster centersto
all entities when a pre-determined termination condition folds.
The proposed solution protects data confidentiality of all he
participating entities under the standard semi-honest moeél. To
the best of our knowledge, ours is the first work to discuss
and propose a comprehensive solution to the PPODC problem
that incurs negligible cost on the participating entities. We
theoretically estimate both the computation and communicton
costs of the proposed protocol and also demonstrate its précal
value through experiments on a real dataset.

collecting methods, suppose that they want to cluster their
combined datasets and identify interesting clusters that
would enable directions for better disease control mech-
anisms. However, due to government regulations and the
sensitive nature of the data, they may not be willing to
share their data with one another. Therefore, they have
to collaboratively perform the clustering task on their
joint datasets in a privacy-preserving manner. Once the
clustering process is done, they can exchange necessary
information (after proper sanitization) if needed.

The existing PPDC methods (e.g., [9]-[12]) incur significan
cost (computation, communication and storage) on theg@arti

Clustering is one of the commonly used tasks in variod%atmg users and thus they are not suitable if the users do

. L . : : not have sufficient resources to perform the clustering.task
data mining applications. Briefly, clustering [1]-[3] iseth _ . . . .
. e : This problem becomes even more serious when dealing with
unsupervised classification of data items (or feature vefto

into groups (or clusters) such that similar data items &esigig data. To address these issues, it is more attractivenéor t
group users to outsource their data as well as the clustering ¢atblet

n the same group. I hgs immense |mportanpe N VaroRq. However, the cloud cannot be fully trusted by the siser
fields, including information retrieval [4], machine learg

[5], pattern recognition [6], image analysis [7], and texhing in protecting their data. Thus, to ensure data confidetytjali

[8]. Some real-life applications related to clusteringlirae users can encrypt their databases locally (using a common

categorizing results returned by a search engine in re ngb”C key) and then outsource them to the cloud. Then, the
9 9 y 9 P l'is for the cloud to perform clustering over the aggredat

. . i oal
to a user's query, grouping persons into categories based Dl . X
their DNA information, etc. encrypted data. We refer to the above procesprascy

: . , . [ d out d distributed clustering (PPODC
In general, if the data involved in clustering belongs tgreservmg and outsourced distributed clustering ( )

a smgle (_entlty (_h_ereaﬁer_ referred to as_ a user)* then it Canpge that, a direct application of clustering algorithmadlthg by each party
be done in a trivial fashion. However, in some cases, mus-of no use since global evolution of clusters [9] shouldaieh into account.

I. INTRODUCTION
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It is worth noting that if all the encrypted data resides Federated Cloud
on a single cloud, then the only way through which the Secure Computation
cloud can perform the clustering task (assuming that users on Aggregated
do not participate in the clustering process), without ever Encrypted Data
decrypting the data, is when the data is encrypted using full
homomorphic encryption schemes (e.g., [13]). Howeveeméec Cy Cs
results [14] show that fully homomorphic encryption scheme
are very expensive and their usage in practical application
are decades away. Hence, we believe that at least two cloud
service providers are required to solve the PPODC problem.

In this paper, we propose a new and efficient solution to
the PPODC problem based on the standardeans clustering
algorithm [15], [16] by utilizing two cloud service provide
(say Amazon and Google) which together form a federateu
cloud environment. Our proposed solution protects data con

fidentiality of all the participating users at all times. We n Users
emphasize that the concept of federated clouds is becoming
increasingly popular and is also identified as one of the Fig. 1. The Proposed PPODC Architecture

ten High Priority Requirements for U.S. cloud adoption immformation flow between different entities in our system
the NIST U.S. Government Cloud Computing Technologynodel is shown in Figuré]l1l. Having outsourced the data,
Roadmap [17]. Therefore, we believe that developing pyivacthe main goal of a PPODC protocol is to enalile and Co
preserving solutions under federated cloud environmelit wio perform k-means clustering over the combined encrypted
become increasingly important in the near future. databases in a privacy-preserving manner. More formaky, w
o can define a PPODC protocol as follows:

A. System Model and Problem Definition

In our problem setting, we consider users denoted by PPODG(T1,...,Ty),8) = (S1,...,5) (1)
Ui,...,U,. Suppose usdy; holds a databasg with m; data

records and attributes, forl < i < n. Consider a scenariohere g is a pre-defined threshold value agreed upon by all
where then users want to outsource their databases as well @gties. Sincé-means is an iterative method, we use the value
the k-means clustering process on their combined databaggs; to check whether the termination condition holds in each
to a cloud environment. In our system model, we considgération. A more detailed explanation about the usage of
two different entities: (i) the users and (i) the cloud seev s given in SectionET)l anAVS; denotes the output received
providers. We assume that the users choose two cloud serfigeyser U/;. Depending on the users’ requiremengs, can
providersCy and C; (say Amazon and Google) to performpe the the global cluster centers and/or the final cluster IDs
the clustering task on their combined data. corresponding to the data records ©f. In this paper, we

In this paper, we explicitly assume that; and C; are consider the former case under whis}is are the same for all
semi-honest [18] and they do not collude. After proper s®viysers (however, our protocol can be easily modified to handle
level agreements with the users; generates a public-secrethe |atter case). In general, a PPODC protocol should meet th
key pair (pk, sk) based on the Paillier cryptosystem [19] angpliowing requirements:
broadcastgk to all users and’;. A more robust setting would
be forC, andC;, to jointly generate the public keyk based on
the threshold Paillier cryptosystem (e.g., [20], [21]) lsubat
the corresponding secret key: is obliviously split between
the two clouds. Under this case, the secret kieys unknown
to both clouds and only (random) shares of it are revealed to®
C, andC5. For simplicity, we consider the former asymmetric
setting where(; generategpk, sk) in the rest of this paper.
However, our proposed protocol can be easily extended to
the above threshold setting without affecting the undegyi
privacy guarantees.

Given the above system architecture, we assume that user
U, encryptsT; attribute-wise usingpk and outsources the
encrypted database t@,. Another way to outsource the data
is that users can split each attribute value in their dambda certain cases, the user’s data (encrypted using histher o
into two random shares and outsource the shares separadelyret key) may have already been stored in a cloud (either
to each cloud (see Sectibn ¥-B for more details). A detailed; or different cloud) and he/she want to use this data, along

« Data Confidentiality: The contents ol/;'s databas€l;
should never be revealed to other usérs,and Cs.
« Accuracy: The output received by each party (i.8;'s )
should be the same as in the standamieans algorithm.
No Participation of Users: Since the very purpose of
outsourcing is to shift the users’ load towards the cloud
environment, a desirable requirement for any outsourced
task is that the computations should be totally performed
in the cloud. In particular to PPODC, the total clustering
process should be done by the cloud service providers.
This will enable the users who do not have enough
resources to participate in the clustering task to still get
the desired results without compromising privacy.



with the data from other users, in the clustering task. In tlexperimental results on a real-world dataset under diftere
case of the data being stored on a different cloud (3gythe parameter settings. Finally, we conclude the paper alotiy wi
user has to first download and decrypt the data and re-encriy# scope for future research in Section]VII.

it underpk and send the resulting database’ta This might
incur heavy cost on the user side, especially if the data is
large. However, we can address this issue using the proxy fe- Privacy-Preserving Data Mining (PPDM)

encryption techniques (e.g., [22], [23]) as follows. (I} can  Our work is closely related to the field of privacy-presegvin
directly send the encrypted data of the user(ig (i) the data mining (PPDM) [25], [26]. Several techniques have been
user sends a proxy-re-encryption key corresponding théris/ proposed for the clustering task under the PPDM model (e.g.,
secret key anghk to C1, and (iii) C; transforms the encrypted[9]-[12]). However, we stress that our problem setting is
data under the user’s public key domain into the domaipkof somewnhat different from the PPDM model. On one hand,
without ever decrypting it using the proxy re-encryptiory.ke ynder PPDM, each user owns a piece of dataset (typically
For ease of presentation, we do not consider the above casg N?ertically or horizontally partitioned dataset) and thealg
the rest of the paper. Instead, we simply assume that als usgr for them to collaboratively perform the clustering task o
hold their respective databases which they can encryptrunglee combined data in a privacy-preserving manner. On the
pk and outsource them t0. other hand, our work is motivated by the cloud computing
B. Main Contributions model where users can outsource their encrypted datapases
to a federated cloud environment. Under our problem setting

The probl_em of privacy-preserving clustering over “he federated cloud performs the clustering task over @tedy
crypted data in an outsourced environment was addressgd ta and the users do not participate in any of the underlying

recgntly [24]. Howgver, the existing method is prOposmemndc;omputations. As a result, existing PPDM techniques for the
a single user setting. To the best of our knowledge, there

-~ ) c'l?ilstering task are not applicable to the PPODC problem.
Eﬁ di):'?ﬁggmwuﬁir_ku;Z?tsggg:e)ssﬁs tthhig P:(grD(\:NErogergse("e”Only_ recently, researchers have. started to focus on the
. 9)- Paper, prop an stering task in an outsourced environment (e.g., [2H])I
efficient and novel PPODC protocol that can enable a groupﬂfe work by Liu et al. [24] is perhaps the most recent work
users to outsource their encrypted data as well agtmeans along this direction H.owever their solution has the faiiag
clustering f[ask completely o a feder_ated_ CIO.Ud enVironmﬁnnitations: (@i it aésumes th'at there is only a single user
Eggtri(;alijrt?orlwss t)rfth];!s\;[v(;?llg r:rea:f()):?_f;?c'js_ direction. The Mallho vyants to perfprm thg clustering task on hi.s/h.er own d.ata
R and (ii) the user is required to execute certain intermediat
« We propose new transformations and develop an ordegmntations and thus he/she needs to be part of the chgteri
preserving Euclidean distance function that_enables tBF‘ocess. Unlike the work in [24], our solution is proposed
proposed PPODC protocol to securely assign the dafager the multi-user setting and the users can completely

records to the closest clusters, a crucial step in eagflisource the computations of the clustering task to a éeer
iteration of thek-means clustering algorithm. Also, we|oud environment in a privacy-preserving manner.
propose a novel transformation for the termination condi-

tion that enables the PPODC protocol to securely evaludde Fully Homomorphic Encryption (FHE)

the termination condition over encrypted data. A straightforward way to solve the PPODC problem is
» The proposed solution satisfies all the desirable progertigr the users to encrypt their data using a fully homomor-
of PPODC mentioned in the previous sub-section. Théhic encryption (FHE) scheme, e.g., [13], and outsource the
is, it protects the confidentiality of each user’s data at aélncrypted data to a cloud. Here the secret key should be
times and outputs the correct result. Also, once the useggown only to the users (or shared among them). Since FHE
data is outsourced to the cloud, the user does not needyi@ws one to perform arbitrary computations over encrypte
participate in any computations of the clustering task. gata without decrypting the data, the cloud can perform the
 We show that the proposed protocol is secure under th@stering task over encrypted data and return the enatypte
standard semi-honest model [18]. Also, we theoreticalyystering results to the users who can decrypt them. Though
analyze the complexities of the proposed protocol.  the FHE schemes enable arbitrary searches or operations ove
« We demonstrate the practical applicability of our solutioBncrypted data, such techniques are very expensive ard thei
through extensive experiments using a real-world datasgkage in practical applications is decades away. For exaitpl
The remainder of this paper is organized as follows. Sectiovas shown in [14] that even for weak security parameters one
[ discusses the existing related work. Sectloi Il presentbootstrapping” operation of a homomorphic operation vaoul
some definitions and properties relatedktoneans clustering take at least 30 seconds on a high performance machine.
algorithm and the Paillier cryptosystem as a background.
Section[ 1V presents our new transformation techniques: Sec
tion [V discusses our proposed PPODC solution in detail. In this section, we first introduce definitions related to
Also, within this section, we analyze the security guarastecluster centers and computation of Euclidean distancedsstw
and complexities of our solution. Secti@n]VI presents owr data record and given cluster. Then, we briefly discuss the

II. RELATED WORK

IIl. PRELIMINARIES



steps involved in the traditiondtmeans clustering algorithm.where p. and i denote the cluster centers ofand ¢/,
Finally, we review upon the properties of the thresholdIRail respectively. Also,|c| and |¢/| denote the number of data

cryptosystem that is adopted in this paper. records inc and ¢/, respectively.
A. Cluster Center C. Single Partyk-Means Clustering
Definition 1: Let ¢ = {¢1,...,t,} be a cluster where

Consider a uset/ who wants to apply thé-means clus-

t1,...,t, are data records with attributes. Then, the Cemertering algorithm [15], [16] on his/her own database sof

of clusterc is defined as a vectqr. given by [12]:

records, denoted byty,...,t,}. Here we assume thdf
ti[s] + -+ Ftnls]  Ae[s] wants to computé cluster centers, denoted by , ..., p.,
prels] = Ic| = El fori<s<il (2) a5 the output. However, other desired valuels, such ‘as the

final cluster IDs assigned to each data record can also be
where t;[s] denotes thes'" attribute value oft; and A.[s] part of the output. Sincé-means clustering is an iterative
denotes the sum of" attribute values of all the data recordsalgorithm, U has to input a threshold value to decide when
in clusterc, for 1 < i < h. Also, |c| denotes the number ofto stop the algorithm (termination condition). Without $osf
data records im. generality, lets denote the threshold value. Throughout this
In the above definition, thes'" attribute value inu. is paper, we assume that the initial setiotlusters are chosen
equivalent to the mean of thé” attribute values of all the at random (referred to as the Initialization step). Notet tha
data records in cluster. Note that, if the cluster contains aother techniques exist for choosing the initial clusterg][1
single data record, then the cluster center is the same as ififvever, since the goal of this paper is not to investigate
corresponding data record. which initialization technique is better, we simply assutimat

Example 1:Let ¢ be a cluster with three data recordshey are selected at random.

{t1,t2,t3}. Without loss of generality, suppose the data The main steps involved in the traditional (single patty)

records are given as below (assuming 5): means clustering task [15], [16], using the Euclidean dista
tt ={0,2,1,0,3 as the similarity metric, are given in Algorithilh 1. Apart fno
t ={1,1,3,4,3 the initialization step, the algorithm involves three msiiages:
ts ={0,1,0,20 (i) Assignment (i) Update and (ii) Termination. First ofl,al

Then, the center of cluster, based on Definitiofl1, is given
by uc[1] = 0.333, u.[2] = 1.333, u.[3] = 1.333, u.[4] = 2,
1e[5] = 1.666. O

during the initialization stepk data records are selected at
random and assigned as the initial clusteys...,c; with
their centers (or mean vectors) denoted by, ..., p,, re-
spectively. In the assignment stage, for each data retord
the algorithm computes the Euclidean distance betwgand

We now discuss how to compute the similarity score beuch cluster;, for 1 < j < k. Then, the algorithm identifies
tween a given data record and a cluster. In general, the the cluster corresponding to the minimum distance as the
similarity score between any two objects can be computgghsest cluster to, (saycy,) and assigns; to a new cluster,
using one of the standard similarity metrics, such as Eeahd \ynerep, ¢ 1, %]. In the update stage, the algorithm computes
distance, Cosine similarity, and Jaccard coefficient. I8 pld- he centers of the new clusters, denoted /h~¥7 e e
per, we use the Euclidean distance as the underlying sityilargina|ly, in the termination stage, the algorithm verifiesatifer
metric since the standardmeans algorithm is based on thisy pre-defined termination condition holds. More specificall
metric [12], [24]. the algorithm checks whether the sum of the squared Eudlidea

Definition 2: For any given data record and cluster, let  gistances between the current and newly computed clusters i
1ic denote the cluster center of(as per Definitiori1l). Then |ess than or equal to the threshold valiielf the termination
the Euclidean distance betwegnandc is given as condition holds, then the algorithm halts and returns the ne

! ! 2 i - i
T Tl 2 T Aels] cluster centers as the final output. Otherwise, the alguorith
Its =l = \/Z (als] = pels])” = \/Z (tz[s] fe] ) continues to the next iteration with the new clusters astinpu

s=1 s=1
Example 2:Suppose; and . are as given below.
ti =40,1,1,3, 2 D. The Paillier Cryptosystem

ue = {0.333, 1.333, 1.333, 2, 1.656 In thi that th d cloud .
Then, the Euclidean distance betwegnand ¢, based on n this paper, we assume that the second cloud service

Definition(2, is ||t — ¢|| = 1.201 0 providerC> generates a public-secret key paik, sk) based

In a similar manner, the Euclidean distance between any t\?/? the widely used Paillier cryptosystem [19] which corsist

given clusters: andc¢’ can be computed using their respectiv8 an additi.vely homomorphic an.d probabilistic encryption
cluster centers. More specificallys — ¢’|| is given as scheme. Without Ipss of generall_ty, Iﬂp’“(f) and DS’“.(') .
denote the encryption and decryption functions under iBaill
!
Z (/’LC[S] - M [S])2 = Z

! cryptosystem andv denote the RSA modulus (or a part of the
s=1 s=1

B. Computation of Euclidean Distance betwegmand ¢

2
(/\C[S] _ A [S]) public key pk). We emphasize that the Paillier cryptosystem
|c| /] exhibits the following properties [19]:



Algorithm 1 k-means(ti, ..., tm}, B) = {#eys- -5 be, } typically support integer values, we should somehow tramsf

Require: UserU with m data recorddty, ..., ¢, } and 3 the entries of the cluster centers into integer values witho
Initialization : Selectk data records at random and assig@ffecting their utility in thek-means clustering process. Along
them as initial clusters;, ..., ¢, with respective cluster this direction, we first define scaling factors for clusters
centers asi, .. . ., fic, and then discuss a novel order-preserving Euclidean distan
1 for j=1to k do function operating over integers. Also, we discuss how to
2 C} Py transform the termination condition in ttkemeans clustering
3 i, { algorithm with fractional values into an integer-valuedeon
4. sum <+ 0 Definition 3: Consider the cluster; whose center is de-
5: end for noted by u., (based on Definitior]1). We know that,,

{Assignment Stage is a vector and each entry can be a fractional value with
6: for ¢ =1 to m do denominatol¢;|, for 1 < i < k. We define the scaling factor
7. for j=1to k do for a clusterc;, denoted by, as below:
8: Compute||t; — ¢;||
9: end for
10:  Addt; to clusterc;, such that|t; —cy || is the minimum, k

forl<h<k .1:[1|Cj| k
11: end for o; = j_|c-| = II lsl 3)
T

{Update Stage J=1Aj#i
12: for j =1to k do

13:  Compute cluster center fef, and assign it tQuc,

14: end for , k .
L Also, we definea = ;| as the global scaling factor.
{Termination Stage - Compare the old clusters:(s) _jl;ll e g 9
with new clustersd;'s) and check whether they are close
enough

k
15: sum + Y. |le; — &7
) j=1 A. Order-Preserving Euclidean Distance (OPED)
16: if sum < 3 then

17: Return{pc , ..., pe ) ] ]
18- else g C’“} In the assignment stage dfmeans clustering, the first
19: for j=1tok do step is to compute the Euclidean distance between a data
20: ¢j ¢ record ¢; and each cluster;, denoted by||t;, — ¢;|| =
21: fhe; < He! ¢ ( I ch[s])Q . o
o endfor S; t;[s] o) - Itis clear thatl||t; — ¢;|| involves
: . Ae
22: en(j(i)fto Step 6 fractional vaIue#Hﬂ. In order to compute the encrypted value

of ||t; — ¢;||, we need to avoid such fractional values without

« Foranya,b € Zy, the encryption scheme is additivelyaffecting the relative ordering among th&uclidean distances
homomorphic: E,p,(a) * Epp(b) mod N* = Eyr(a +  ||t; — ¢1],..., ||t; — cxll, wherecy, . .., ¢ denotek clusters.
bmod N). Due to this addition property, the encrypNote that sincet; has to be assigned to the nearest cluster,
tion scheme also satisfies the multiplication properfy s important to preserve the relative ordering among the
Epk(a)* mod N? = Epi(axumod N), whereu € Zy. computeds Euclidean distances. For this purpose, we propose

« The encryption scheme is semantically secure [28]. Thatnovel order-preserving Euclidean distance function tvhic
is, given a set of ciphertexts, a computationally boundggbrks on only integer values.

adversary gannot_deducg any |nformat|_on regarding theWe define the order-preserving Euclidean distance (OPED)
corresponding plaintexts in polynomial time.

] ) function between a data recotdand a cluster; as follows:
For ease of presentation, we omit the temmd N2 from

homomorphic operations in the rest of the paper. Also, as

mentioned in Section TJA, our proposed protocol can be gasil .
extended to the threshold Paillier setting [20] under whikh OPEDt: ) — £Ts] — sk A 2 4
is obliviously generated and shared betwégnand C, [21]. Dt ¢;) Z (o tils] =y Ao, [5]) “)

s=1
IV. THE PROPOSEDTRANSFORMATIONS

It is important to note that cluster centers (denoteduby wherea and «; denote the global and;’s scaling factors,
for a clusterc) are represented as vectors and the entries in ttespectively. Observe that all the terms in the above eguati
vectors can be fractional values. Since the encryptionreele are integer values. Moreover, following from Definitioh 3 w



can rewrite the above equation as: Equatior[ 6 can be rewritten as:

, 2
l kool (|cj|>f<fj*/\cj[8]—|0j|*fj*AC;[S])

2
OPED(ti, ¢j) = | Y <a s ti[s] — % %A, [s]> ZZ_; 2 <A

s=1 Jj=1
l e, [8] 2 Given this, the left-hand side of the above equation can be
=, |a?x <Z ( i[s] — |CCJ| ) ) expanded as follows:
s=1 J

EL (16 % i Ay ls] |cj|*fmc<.[s]>2
l 2 J J _ 5
—or S (-7 2z /

s=1

k l
= ax[ti — ¢ :ZZ

Since« remains constant for any given set/otlusters (in a X 2
particular iteration), we claim that the above OPED funetio B (/\cj- [s] A [S]>
preserves the relative ordering among cluster centersrfpr a

given data record. More specifically, given a data recrd X

and two clusters:; and ¢y, if ||t; — ¢;]| > ||t; — ¢;]|, then _ Z e — 12
it is guaranteed that OPER), ¢;) > OPED(t;,¢;), for 1 < !
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j.j' < kandj #j. Y .
Based on thg above discussions, it is clear that evaludiimg t
B. Transformation of the Termination Condition inequality 37, [le; — c}[|*> < f is the same as evaluating

) _ Equation[6. Hence, in our proposed PPODC protocol, we
In the k-means clustering process (see Algorithin 1), the,nsider Equatiofil6 as the termination conditionkaheans

termination condition is given by: clustering and evaluate it in a privacy-preserving manner.
i”q _C;_HQ <3 ) . .V. THEI.'-’ROP.OSEDSOLUTION . .
= In this section, we first discuss a set of privacy-preserving
primitives. Then, we present our novel PPODC protocol that
wherecy,...,cp andcy, ..., ¢, denote the current and newytilizes the above transformation techniques and the gyiva
set of clusters in an iteration, respectively. Remembet thgeserving primitives as building blocks.

S Lo aejls] A ls] 2 , . As mentioned in Sectidn T3A, in this paper we consider two
llej = ¢l = 52231 el T T) and clearly it consists semi-honest and non-colluding cloud service providérand
of fractional values. In order to evaluate this conditioreov C> under the Paillier cryptosystem [19]. More specificadly,
encryption, we first need to transform the above terminatigenerates a pair of public-secret key p@ik, sk) based on
condition so that all the components are integers. To aehighe Paillier's scheme such thak is kept private whereas the
this, we use the following approach. We define a constagarresponding public keyk is broadcasted.
scaling factor (denoted by) for the termination condition . . -
in such a way that by multiplying Equatidd 5 witf?, we A. Privacy-Preserving Primitives
can cancel all the denominator values. More specifically, weWe discuss a set of privacy-preserving primitives under the
define the scaling factor for the termination condition a@Pove two-party (i.e.Ci andC>) computation model.
o Secure Multiplication (SMP): Given that’; holds

k
B . . i .
= _| |1 |cj| * || Also, we define the scaling factor for the (E,(a), E,(b)) and Cs holds sk, where (a, b) is un-

Jj=

) , f k , known to bothC; andCs, the goal of the SMP protocol
cluster pair(c;, cj) as f; = RN 1.211;[#]_ |ci| x[¢j[- Then is to computef, . (axb). During the execution of SMP, no
we define the new termination condition as follows: information regarding the contents efandb is revealed

to C; and Cs.

o Secure Squared Euclidean Distance (SSED): In
this protocol, C; holds two encrypted vectors
Ep(X) = (Bu((l],....Ex(zll)) and

Observe that the above equation consists of only integer val  E,,(Y) = (E,k(y[l]),....Epm(y[l])). The goal of

ues. Now we need to show that evaluating the above equation SSED is to compute the encryption of the squared

is the same as evaluating Equatioh 5. First, we divide the Euclidean distance betweeX and Y. Specifically, the
above equation by? on both sides of the inequality. Note that ~ output is E,. ((|| X — Y||)?). The SSED protocol should
since f2 remains constant in a given iteration, multiplication  reveal neither the contents &f andY nor the Euclidean

of Equatior® byf? has no effect on the inequality. Precisely,  distance between them @, andCs.

ko1
Z (|C/7| *fj *)\cj[s] — |Cj| * f_j * /\C;-[S])Q < fQ*B (6)

1s=1

J



« Secure Squared Order-Preserving Euclidean Distargorithm 2 SSEDbp(Eyk (t:), Epk(cn))
(SSEDpp): Given thatC; holds an encrypted data recordRequire: Cy hasEp(t:), Epk(cn) = (Epk(Aey )y Epk(lcnl))
denoted byE,.(t;), and an encrypted cluster, denoted1: C; andC:

by E,i(cy), the goal of the SSEg» protocol is for @). b, + SMP,_1(,), wherer, = Ur_, ., Epi(les])
C, and C; to jointly compute E,,((OPED(;, cp))?). (b). b’ < SMP(by,, Epr.(|cnl)) ST
?ere(Epk[(c]hs) = <Epk((/\0h,)[a]?;z7k(|ch|)> ﬁnd Epk(&:h,) :) (c). for 1 < s < do:
Epi(Ae, [1])s - -5 Epk(Ae, [1])). Note that OPERX;, ¢y, a [S] (—SMP(b/ E

n . h . a » Epr(tils]))
denotes the Euclidean distance betweeand cluster, o ) [s] < SMP(by,, Epi(Ae, [3]))

based on the order-preserving Euclidean distance function
defined in Equatioi]4. At the end of this protocol, the (d). Epr((OPEDE;, cn))?) + SSEDas, ay)
output £, ((OPED(t;, c,))?) is revealed only ta®) and  thjs paper, SMP and SSED refer to the implementations given
no other information is revealed 6, andC5. in [29]. Similarly, by SLSB, we refer to the implementation
« Secure Least Significant Bit (SLSB): Given titat holds given in [30]. We now propose efficient implementations to
Epi(z), wherez is unknown to both parties, the goal ofSSER,,, SC, SMIN, and SMIN.
SLSB is to compute encryption of the least significant bit 1) The SSEBe Protocol: We discuss a novel solution
(LSB) of z. The outputEy,([2]1) is revealed only t&1, to the SSERp problem using the SMP and SSED pro-
where([z]; denotes the LSB of. During the execution tocols as sub-routines. The main steps involved in the
of the SLSB protocol, no contents regardings revealed proposed SSEg» protocol are highlighted in Algorithm
to ¢, and (5. 2. We assume that’; holds (E,(c1), ..., Eyr(cr)) and
« Secure Comparison (SC): Given thaty, holds ¢, holds sk, where ci,...,c; denote k& clusters and
(Epr(a), Epr (b)), the goal of SC is to securelyp ,(c,) = (E,.()A,), Epi(lcn])). Note that Epi(Xe,) =
comparea and b. The output of SC isE,;(y), where (Epr(Aey [1]); - - -, Epe(Ae, [1])). The goal of SSEBp is to
v =11if a <b, and 0 otherwise. At the end;,x(7) IS securely computek,;((OPED(;, c,))?) for a given input
known only toC; and no other information is revealedEpk(ti) and E,;(cy), wherel < h < k.
to Cy and Cs. To start with, C; and C, securely compute the scaling
« Secure Minimum (SMIN): Assume thaC; holds factor for clustere, (in encrypted format based on Equation
(Epr(a), Epi(sa)) and (Epk (b), Epr(sp)), wheres, and  [3) ysing the extended secure multiplication protocol, deto
sy are the secrets associated with integersand b, by SMP,_,, that takesk — 1 encrypted inputs and multiplies
respectively. The goal of SMIN is to compute the enthem (within encryption). Specifically, they jointly comeu
cryption of minimum value betweem andb, denoted by 4, — SMP;._(73,), wherer, = Uk_, nEyi(|e;)). The im-
E,(min(a,b)). In addition, it computes the encryption Y k

: e ortant observation here is thet = E,i([]_; 1.2y l¢j]) =
. ! J=1Nj#h 177
of th(_e_secret cor_respondmg to the minimum valge._Mo%pk(ah), where «, is the scaling factor for clustetr;, as
specifically, the final output of SMIN €T, I), and it will

. defined in Equation 3. The@'; and Cs securely multiplyby,
be revealed only t@’,. HereT = E,;(min(a,b)), and ith & ina SMP t ¥ — SMP(b, E _
I = Eyu(sq) if a is the minimum value, anfi= oy (Sy) 1 Epe(lenl) using © e POn, Epi (cn)

Ek(ler] ... x|ex]) = Epr(«), wherea is the global scalin
gtge:xigie%utgg ir'\l/ld”g’ no information regardingand faf:l;(()'r. 1,|6\fter th!sl,c |120r1 gp ks(g) [, C1 and Cy joigtly computeg
1 2. .
o Secure Minimum out oftc Numbers (SMIN): In this two encrypted vectors as follows:

protocol, we assume that; holds % encrypted integers ails] = SMP(V, Epi.(ti[s])) = Epk(a * t;[s])

gnd Qg holds sk The goal of_SMIN is tq _securely a},[s] = SMP(by,, Epic (Ao, [5])) = Epk(n * A, [5])

identify the location corresponding to the minimum value

among thek numbers. More specifically, if!" integer Finally, with the two encrypted vectoes anda), asC;'s input,

is the minimum number among the values, then the C; and C; jointly compute the encrypted squared Euclidean

output of SMIN, is an encrypted vector such that ji¢ distance between them using the SSED protocol. More specif-

component isE,; (1) and the rest are encryptions of 0jcally, the output of SSEDy;, a},) is Epk(zlszl(a * t;[s] —

wherej € [1, k]. The SMIN, protocol should not reveal ay, x A, [s])?). Following from Equation 4, it is clear that the

any information regarding the contents &f numbers output SSEDu;, a},) is equivalent toE,, ((OPED(t;, c))?).

(e.g., the minimum value or the location corresponding 2) The Secure Comparison (SC) Protoc@iven thatCh

to it, etc.) toC; and C2. The SMIN, protocol can be holds(E,(a), E,; (b)) andCs holds sk, the goal of SC is to

treated as a generalization of SMIN in which the secretsturn E,,; () such thaty = 1 iff a < b, andy = 0 otherwise.

associated with thé integers represent their locations. During SC, neither the contents ¢f,b) nor the comparison

resulty should be disclosed t64 and Cs.

Several solutions have been proposed for most of the abovéVe emphasize that it is desirable to have an SC protocol
privacy-preserving primitives. Recently, Yousef et aB][&8is- whose efficiency does not rely on the bit length of the input
cussed efficient implementations for SMP and SSED. Also, artegers (i.e.q andb) to be compared. We now discuss about
efficient solution to SLSB was proposed in [30]. In the rest afuch a solution constructed by combining SLSB [30] with




TABLE |
TRUTH TABLE FORa < b

w=(a < N/2) z=(b< N/2) y=(b-amodN<N/2) | y=(a<b)
0 1 * 0
1 0 * 1
0 0 0 0
0 0 1 1
1 1 0 0
1 1 1 1

the ideas proposed by Nishide et al. [31]. The SC solutidi,; (min(a, b)), Epk(Smina,p))) @s the final output and it
proposed in [31] is based on the secret sharing scheme [3]ould be known only t@;.

However, it is also applicable to our problem domain upon We now discuss a simple to SMIN based on the SC
simple modifications. protocol. As discussed above, at the end of SC protacol,

In what follows, we briefly describe ho@; andC, can se- knows E,(v), where~y denotes the comparison result of
curely compute the encryption of given(E,.(a), Epr (b)) as  functionality a < b. Given E,; (), Cy can securely compute
C4’s private input, using the ideas proposed in [31]. Accogdinthe encryption of the minimum value betweerand b, i.e.,
to [31], the value of comparison resujtsolely depends on E,;(min(a,b)), using the following formulation:
the following 3 predicatesw : a < N/2, z : b < N/2, and ]
y:b—amod N < N/2. More specifically,y is given as: min(a,b) =y *a+ (1 —7) b

N =wT VW Ty V wry More spec.ificglly, using the secure multiplication (S.MPQJ-pr
tocol, C; with input (E,x(a), Epk(b), Epk(7y)) andCs with sk

=w(l—2) V(A —w)l - 2)yVwsy can computef,, (v * a) and E,; (v * b). Note that the output

=—z(w+y—2wy) + (w+y—wy) (7)  of SMP will be known only toC'; . After this, C; can compute
More specifically, all possible combinations @f, z,1) and Epk(min(a, b)) as By (y+a)x Epk (b) = Epe (y+b) ¥~ locally.
their correspondingy values are given in Tablg I, where In a similar manner, apart from the encrypted minimum

denotes either bit 0 or 1. The main challenge here is that hy@ue, C1 and C> compute the encryption of the secret
C) can computeE, (w), E,(x) and Eyi(y) given E,(a) associated with the minimum value. More speC|f|_caIIy, they
and E,; (b). computeEp (Smin(a,p)) UsiNg the following formulation:

As highlighted in [31], one can notice that €
{0,1,---, By iff [2amod N]; = 0. Similarly, a €
{@ +1,---,N — 1} iff [2a mod N]; = 1, where[2a]; Example 3:Suppose’; holdsE,;(7) andE,.(4) (i.e.,a =
signifies the least significant bit (LSB) &z mod N. That 7 andb = 4). Without loss of generality, le¥,;(s1) and
is, w = 1 (implying thata < N/2) if and only if the LSB E,(s2) denote their respective secrets. It is clear that the SC
of (2a mod N) is 0, i.e.,w < 1 — [2a mod N];. Similar protocol returnsE,;(0) (i.e., v = 0) as output toC; since
conclusions can be drawn far and y. Consider the case a < b does not hold in this example. The output of SMIN is
of computing E,;(w) from E,i(a). First, C; can locally Epr(min(7,4)) = Ep(v*a+(1—7)xb) = Epr(b) = Epr(4)
computeE,x(2a). Then, in order to compute the encrypte@nd Ep.(Smin(a,b)) = Epr(52)- O
LSB of 2a, C; and (5 jointly involve in the SLSB protocol 4) The SMIN Protocol: Given & encrypted integers, the
[30]. At the end of this step, onlg; knowsE,;([2a]1). Now SMIN; protocol computes an encrypted vecioof length k
C; can locally computes,, (w) = E,,(1)* Ep([2a]1)Y 1 = such that the entry corresponding to the minimum value is an
Epr(1—[2al]1). In a similar fashion(; can compute®, () encryption of 1 and the rest are encryptions of 0. We now
and E,;(y). Finally, C; (with the help ofC;) can compute discuss a novel SMIN protocol constructed using the SMIN
E,,(v) based on Equatiofll 7. Note that this step explicitlprotocol as a building block. The overall steps in the prejplos
requires SMP as a building block. SMINy protocol are give in Algorithnil3.

3) The SMIN ProtocollLet a andb be two integers it% y, SupposeE,(d1),. .., Ey(dy) denote the list ofk en-
and s, and s, be their associated secrets, respectively. Forypted integers anddenotes the index (or location) of integer
example, ifa andb correspond to two data records, then theit; in the list, for1 < ¢ < k. Initially, using the SMIN proto-
secrets can correspond to the record identifiers. Suppase tol, C; with input (E,(d1), Epie(1)) and (Epk(da), Epi(2))
min(a,b) denote the minimum value betweenandb and and C, can compute? = E,(min(dy,dz)) and I =
that s,in(q,) denote the secret correspondingiton(a,b).  Epk(Smin(d,,dz))» WHEre sminc, q,) denotes the location of
Given that(Epx(a), Epk(sa)) and (Epk(b), Epi(sy)) asCi’s  the minimum value betweed; and d.. Note that the out-
private input, the goal of SMIN is to securely computput of the SMIN protocol is known only ta@’,. After this

Smin(a,b) = Y * Sa + (1 - ’7) * Sp



Algorithm 3 SMlNk(Epk (dl), R ,Epk (dk)) — T
Require: Cy holds (Ep,(d1),. .., Epk(ds)) andm; Cy holds
sk.
1. C7 and Cy:

that since ‘2’ is the minimum among the five input values,
the output of Step 1 is encryption of ‘2' and encryption
of the location corresponding to ‘2’ in the input list (i.e.,
Smin(3,6,13,2,0) = 4). After this, C1 computesp[l] = Ep(r1 *

@). (T, 1) < SMIN((Epi(d1), Epi (1)), (Epi(dz), Epi(2)))(E =4))s 2] = Epr(ra (2 = 4)), 9[3] = Epr.(r3 % (3 —4)),

for i=2to k-1 do:

o (T,I) < SMIN((T, I), (Epk(ds+1), Epr(s + 1))

2: Cy:
(a).
(b).

(b).

A N1
for : =1 to k do:
o A'li] < Epp(i)* A
o Oli] « A'[i]", wherer; €egr Zn
(©). u + 7w(¢); send¢ to Cs
3: Oy
(a).
(b).

Receiveu from C;
for : =1 to k do:

o u'[i] + Dgi(ufi])

for : =1 to k do:

o if W'[i] =0 then U[i] « Epir(1)
o elseU[i] « Ep(0)

SendU to C4

(©).

(d).
4: Oy
(a).
(b).

Cy with input (7,1) and (E,x(ds), Ep,(3)) can compute
Ep(min(dy, da,d3)) and Epg(Smin(dy,ds,ds)) USING SMIN.
The above process is repeated utti= Epy (Smin(d,.....dx))

is computed (known only t6'1), wheres iy, .....q,) denotes

Receivell from Cy
[« 7 1U)

¢[4] = Epi(ra * (4 — 4)), and ¢[5] k(5 * (5 — 4)).
Without loss of generality, let the random permutation fiorc
7w (known only toC7) be as follows. NowC; computesu =

1 =

1
{ { { { {
o) = 2

w(¢p) = (93], p[1], ¢[4], #[5], #[2]) and sends the resulting

vector u to Cy. Upon receiving,C> decrypts it usingsk

and identifies thatD,;(u[3]) = 0. Note that the rest of
the values are random numbers. Th€n computesU =
(Ep(0), Epi(0), Epi(1), Epr(0), Epr(0)) and sends it ta;.
Finally, C; computes the final output a6 = 7~ 1(U)
(Epr(0), Epi(0), Ep(0), Epi(1), Epi(0)).

B. The Proposed PPODC Protocol

In this sub-section, we discuss our proposed PPODC pro-
tocol which is based on the standatdmeans algorithm
discussed in Sectidn IIHC. As mentioned in Secfion] I-A, our
system model consists ot users denoted by/y,...,U,.
User U; holds a databasd; of m; data records withl
attributes, forl < ;5 < n. Without loss of generality, let the
aggregated database Be= U?:l T; = {t1,...,tm}, Where
m = Y7, m; denotes the total number of records h
For simplicity, lett; .. .t,,, belong toU, t,,,+1, ...

O

) tml +mo

the index (or location) corresponding to the minimum valugelong tol, and so on. We assume that all users agree upon
among thek input values. This process is shown as Step 1 #iNg two cloud service providers, and C; for outsourcing

Algorithm 3. their respective databases as well as thmeans clustering
After this, C; and Cy perform the following set of opera- task.- Remember thgt, In our system mo@, generates a
tions: public-secret key paifpk, sk) based on the Paillier cryptosys-

tem [19] and the public keyk is sent to all users and.
o« C1 computestp, (i — Smin(d, ....d,)) @Nd randomizes it to  After the users outsource their data (encrypted under
getdli] = Epk(ri* (i — Smin(ds ....a,)))» Wherer; denotes to ¢, the goal of PPODC is to enable; and C, to
a random number ifZy and1 < i < k. Observe that jointly compute the global cluster centers using the agapest
exactly one of the entries in is equal to encryption of 0 encrypted data in a privacy-preserving manner. At a higéljev
(i.e., wheni = sy, ...4,)) and the rest are encryptionsour protocol computes the global cluster centers in antitera

of random values. Hereafter, we use the notatioar
Zy to denote a random numberin Zy.

o (7 computesu = 7(¢) and sends it t&’sy. Heren is a
random permutation function known only €0 .

manner until the pre-defined termination condition (givan i
Equation®) holds.

The overall steps involved in the proposed PPODC protocol
are given in Algorithm$14 and] 5. The main steps are shown

« Upon receivingu, C> decrypts it component-wise usingin Algorithm [@. Briefly, the PPODC protocol consists of the
sk to getu'[i] = Dy (uli]). After this, C> generates an following three stages:

encrypted vectol/ as follows. Ifu/[i] = 0, thenU[i] =
E,(1), and E,;(0) otherwise.Cy sendsU to C;.

« Finally, C; gets the desired encrypted veciors output
by performing an inverse permutation éh

Example 4:Let k 5 and the input to SMIN be
<Ep1C (3)7 Epk(G), Epk(l?)), Epk(Q), By (9)). The output at the
end of Step 1 in the proposed SMINrotocol is(T,I) =
(Epk(2), Epp(4)) and it will be known only toC;. Note

o Stage 1 - Secure Data Outsourcing:
During this stage, each us&y has to securely outsource
an encrypted version of his/her databaSeto €. To
minimize the data encryption costs of users, we achieve
data outsourcing through randomization techniques. Note
that this stage is run only once. At the end of this stage,
only C; knows the (attribute-wise) encryptions of the
databases.



o Stage 2 - Secure Computation of New Clusters: Algorithm 4 PPODG(T1,...,T}),3) — (S1,...,Sn)

(rom e scgregniat emrypiotl ratarts) and seigns 1 EgIUITe: U, 10I0S a private Gatabads wih m, Gata records,
ggreg yp 9 sk is known only toCs

as |n|_t|al cluster_s_(th|s step is the same as the initidbrat {Stage 1 - Secure Data Outsourcing
step in the traditionak-means algorithm). Ther;; and Lfor L<i<m:

C jointly assign each data record to a new cluster. After f_ -

this, they compute the new cluster centers in encrypted (®)-for 1=s<t:

format. The main goal of this stage is similar to the o if t; € T} then:
assignment and update stages given in Algorithm 1. — U; computest![s] = t;[s] + ri[s] mod N,

« Stage 3 - Secure Termination or Update: t?[s] = N —r;[s], andr;[s] is @a random number
Upon computing the new cluster centers (in encrypted in Zy; sendst![s] to C; andt?[s] to Cy
format),C; andC, securely verify whether the sum of the o Cy sendsE,(t?[s]) to Cy

squared Euclidean distances between the current and new o Oy computesi, (t;[s]) < Epr(t}[s]) * Epr(2[s])
clusters is less than or equal fo(termination condition {Stage 2 - Secure Computation of New Clustels
based on Equatioh] 6). Here denotes the pre-defined . Cy:
threshold value agreed upon by all the participating users.
If the termination condition holds, then the protocol
terminates returning the new cluster centers as the final
output. Otherwise(; andC> update the current clusters
to the new clusters and repeat Stages 2 and 3. (b). Epk,(|ch|) = 'E”k(l)’ forl<h<k
We emphasize that Stage 1 of PPODC is executed only once for 1< <m do:
whereas Stages 2 and 3 are run in an iterative manner. We (&- C1 andCs:

(a). Select: records at random and assign them to initial
clusters denoted by, (Xc, ), ..., Epk(Ac, ), Where
c1,...,c, denote the current clusters

now discuss the steps in each of these three stages in detail. o Epi(di[h]) <= SSEDbp(Epk (ti), Epk(cn)), for1 <
1) Stage 1 - Secure Data Outsourcing (SD@ata are h <k, where Epi(cn) = (Epk(Aey,), Epk(lenl))

typically encrypted before being outsourced for privacg-re o ['i = SMIN(Epr(di[1]), . . ., Epr(di[k]))

sons. However, to avoid computation overhead on the users o Aipls] < SMP(T; 1, Epi(ti]s])), for1 < h <k

side due to having to encrypt their data, we consider the and1 <s <1

following approach for data outsourcing. UsEl generates 4: Cy:
two random shares for each attribute value of his/her data (a). for 1 < h < k do:

recordt;. Precisely, for thes*” attribute of data record, U; m

generates two random sharg$|s], t?[s]) given by t![s] = « Wls] 11;[1 Aipls] forl <s <1
ti[s]+ri[s] mod N andt?[s] = N —r;[s], wherer;[s] €r Zn , m

and1 < s <. Observe that;[s|] = t}[s] + t?[s] mod N. U; o Epi(lch]) < 1.1;[1 Lin

outsources the random sharggs] and ¢;[s] to C1 and Cs, {Stage 3 - Secure Termination or Updatg

respectively, instead of encrypting the database ateibise 5. o . SETQQ,Q’), where 4 denotes whether
and outsourcing it ta”;. Thus, we are able to avoid heavy  the termination conditon holds or notQ =

encryption costs on the users during the data outsourcing {Epk(Aey)s Epr(le1])) - - s (Bok(Mer)s Epie(Jer )}

step. Here we assume that there exist secure communicationgng ¢y — (W1, Epe (14 - -, (Wi, Epre(I¢,)))}

channels, which can be established using standard meot&nisg. if  — 1 then, for 1 < h < k and1 < s <

such as SSL, between udgf and the two cloudg’; andCs. @). C::

Each uselU; sends the random shares of his/her datd'to

andC, separately through the secure communication channels.
After receiving the random shares for all the data records,

C, computest,, (?[s]) and sends it t@;. ThenC; computes

o Op[s] <= Wh[s]*Epr(ry,[s]) andoy, < Epi(|c),]) *
E,i(r}), wherer) [s] andr) €r Zn
« SendOy[s] and ¢, to Cy; 7 [s] and ), to each

EL(t;]s]) = tis]) * E i (t2[s]), for 1 < i < m and usery;

1?(5 [S]l) p{file]) » Fs o) - (b). C: Send0),[s] < Dux(Onls]) and &) < Dy (dn)
2) Stage 2 - Secure Computation of New Clusters (SCNC): to each uset/;

Given the (attribute-wise) encrypted versions of userg,dat €lsg for1 <h <s

during Stage 2¢; andC, jointly compute the new cluster cen- o Epi(Ae,) < Wiy and Epi(|en|)  Epk(|ch])

ters in a privacy-preserving manner. To start with,randomly o Go to Step 3

sele_ctgc encrypted_ d.qta records (from the aggr.egated data) and 7;, foreach received pairg0;,r,) and (5, , /) do:

assigns them as initial clusters. More specifically, then- (8). A [s] = O} [s] = jls] mod N, 1 < s <1

crypted data records are assigned&g, (X¢, ), - - -, Epk(Acy, )
respectively. For example, if the 3rd data record is setkate o [s

the first clusterc;, then E,j.(\., [s]) is set toE,(t3]s]), for (©)- pey [s] = o= and S « 5 U pey
1 <s <. Also, E,;(|c]) is set toE,,(1) since each initial

(b). |¢),| < 0}, — r) mod N




clusterc;, consists of only one data record, for< h < k.
For each encrypted data recadtyy(¢;), C1 andCs> compute
the squared Euclidean distance betweeand all the clusters

based on the order-preserving Euclidean distance function

given in Equatiold. To achieve thi§; andC, jointly execute
the SSEDRp protocol with £, (¢;) andE,;(c;,) asCi'’s private
input, for1 < i < mandl < h < k, where Ep,(c,) =
(Epk(Aey,), Epk(|en])). The output of SSEBk is denoted by
Epk(d;[h]). Note thatd;[h] = (OPED(t;, c,))?. Now, C; and
Cs jointly execute the following set of operations:

o For1 < i < m, with the k& encrypted distances a&3;’s

private input to the secure minimum out &fnumbers

(SMIN) protocol,C; andC, compute an encrypted bit

vectorl';. The important observation here is that, is an

encryption of 1 iffd;[g] is the minimum distance among

(d;[1],...,d;[k]). In this caset; is closest to clustet,,
wherel < ¢g < k. The rest of the values if'; are
encryptions of 0. Note that the output of SMINi.e.,
I';, is known only toC;.

o After this, C; and C; securely multiply T;
with  E,;(t;[s]) using the
(SMP) sub-protocol. Precisely; and C; compute

Ainls] = SMP(Fi,h,Epk(ti[s])). The observation here

is that sincel’; , = E,x(1) only if ¢; is closest to cluster

cgr Niyg = Epi(ts) denotlng thatt; is assigned to new
Also, A; ;, is a vector of encryptions of 0, for

clustercg
1<h<kandh+#g.

Next, C; computes the new cluster centers locally by perform-

ing homomorphic operations ak; ;, andT’; ;, as follows:
« Compute (in encrypted format) th&"-component of the
numerator for the center of new clust€ as Wj[s| =
H A p[s], forl < h < kandl < s <. The observation

here isWh(s] = Epk(Ae, [s]). Remember thaf,, [s] =

Ao
C—H , Wwherep,, denotes the center of cluste.

. Compute the number of data records (in the encrypted

format) that belong to the new cluste as E,(|c},|) =
[1Tin for1 <h <k

i=1

3) Stage 3 - Secure Termination or Update (STOU):
Given the new clusters (in encrypted format) resulting from

Stage 2, the goal of Stage 3 is far, and C, to verify

whether the termination condition (based on Equdtion 6jsol

in a privacy-preserving manner. If the termination corudfiti

secure multiplication

holds, the new cluster centers are returned as the final butpu

to each user. Otherwise, the entire iterative process, (i.e.
Stages 2 and 3) is repeated by using the new clusters as the

current clusters. The current and new clusters are given by

Q= {<Epk(/\01)a Epk(|01|)>7 oo (Bpe(Aey) Epk(|ck|)>_} and
Q" = {(W1, Epi([c1])) - -+, (W, Epi (I ]))}), respectively.
First, by using the current and new clusters,andC- need

to securely evaluate the termination condition (SETC) Base

on Equation 6. The main steps involved in SETC are given in®

Algorithm [5 which we explain in detail below:
e C1 and Cy compute 7; = E.;(|c;i| * |¢j|) using

(Epi(ci), Epr(c;)) asCq’s private input to the SMP sub-
protocol, forl <4 < k. The outputr; is known only to
Ch.

By using 7;’s, they computeV; = SMP,._;(7/), where
T = U;“:M#ZTJ Here SMR._; denotes the SMP proto-
col with k¥ — 1 encrypted inputs that need to be securely
multiplied. More specificallyV; = Epk(HJ 1nji lcil *
|ci]), for 1 <4 < k. The important observation here is

k

IT el icl

J=1nj#i

Vi = Epk = Epy (fz)

where f; is the scaling factor for cluster paif;, ¢})
defined in Section IV-B. Then, they compute an encrypted
value Z; as

Zi = SMP(V;, V;) = Epi(f7)
After this, they securely multiply; andr; using SMP
protocol. The output of this step is

V = SMP(V;,7y) =

Epk HICJI*ICI

wheref is the scaling factor for the termination condition
as defined in Sectidn IVIB. Then, they compute

= Epr(f)

Y = SMR(V.V) = Epi(f?)

For1 < i < k, C; and Cy securely multiply each
component in the current and new clusters with and
|c;|, respectively. More specifically, for < i < k£ and
1 < s <, they compute

Gils] = S'V'P(Epk( 181), Epr(l3]))
= Epi(Ac,[s] = |cil)
Gils] = SMP(Wz[ I Epr(leil))
pk(Ac;[8] * [ci])

Note thatW;[s] computed in Stage 2 is equivalent to
Epi(Aer[8])-

Now, by using the secure squared Euclidean distance
(SSED) protocol with input vector&; and G5, C; and

C5 jointly computeH; = SSEDG,, G}). Precisely, they
compute the encryption of squared Euclidean distance
between vectors id7; and G}, given by,

l
H; = Ep, <Z(/\Ci [s] * |C;| - )‘CQ [s] * |CZ|)2>

s=1

Given Z; and H;, C; and C, can securely
multiply them to get Hl = SMPH;, Z;) =
By (£2 5 S04y O [5] %[l = Aoy ls] # [ei])?)



Algorithm 5 SETC2, &Y') o If v =1 (i.e., when the termination condition holds), the

Require: Cy hasQ = {(Epk(Ae,), Epk(le1])), - s (Epe(Acr), newly computed clusters are the final clusters which need
Ep(lex )} ¥ = {(Wh, Ex(|i]) - -, (W) E k(1)) } to be sent to each uséf;. For this purpose(’; takes the
help of C5 to obliviously decrypt the results related to the
1: C and Cy: new cluster centers. More specifically; initially picks
@). 7 « SMP(E,i.(|ci]), Ep(I¢)])), for 1 <i <k two sets of random numbers;, [s],r;) and computes
(b). for 1 <i < k do: OfS[S] z Wils] * ﬁpicl(;ﬁl[S]) T b;pk(/\ [(l] +|7°h[ s] mod
N) andéy, = Epr(|c)|) * Epr (1), ¢ |+ 7 mod
e Vi <+ SMP, wherer! = U* h Pk \ICh pk Epr(lch,
. 7 SMP]EVNV% T J=1nj#iTI N), for1 < h < kandl < s < I. After this, C; sends
V o SMP(V: v Oy[s] anddy, to Cs. In addition,C; sends), [s] andr) to
((8 v : SMlz((Vl ";)1) each uset/; (through separate and secure communication
' A i channels).
(). for 1 <i<kandl<s<ldo: / « For1 < s < I, C, successfully decrypts the received
. G;‘[S] < SMP(Epi(Ac, [s]), Epr(Ici]) encrypted values using his/her secret shaketo get
o Gils] = SMP(Wi[s], Epi(|cil)) O}[s] = Du(Ounls]) and &, = D.(6,) which it
(f). H; « SSEDG;,GY), for 1 <i <k forwards to each usel/; (through separate and secure
(9). H{ + SMP(HZ, Zi), for1 <i<k communication channels). Observe that, due to the ran-
domization byC, the values o)} [s] andd, are random
. / B h h
2 Cr L+ H Hj andR <Y numbers inZy from Cs’s perspective.
3. Oy andCy: « Upon receiving the entry paik®);,, r;,) and(d;,, r}), each
(@). Epk(y) < SC(L, R), note that the output of SC is user U; removes the random factors to gat [s] =
known only toC4 O},[s] — r,[s] mod N and |¢;,| = ¢}, — r} mod N for
4: Cy: SendE,,(v) to Cs 1<h<kandl <s <. F|naIIy, f computes the
5. Cy: DecryptE, () and sendy to Cy final cluster centef.; as,, [s] = | [ and adds it to

his/her resulting sef;.
« On the other hand, when= 0, thenC; locally updates
the current clusters to new clusters by settiig (\., ) =

At the end of the above process; hasY = E,.(f?) and
H], for 1 <i < k. Now C locally computes:

R— yﬁ Er(f*«p) and Wi and Epi([cn]) = Epr(|cy]), for 1 < h < k. After
this, the above process is repeated in an iterative manner
I — H H until the termination condition holds. That is, the protbco
L goes to Step 3 of Algorithii] 4 and executes Steps 3 to 6
& ! with the updated cluster centers as input.
= HEpk ( Z w|ci| = Aer [8] * |ei) ) C. Security Analysis of PPODC under the Semi-honest Model

v In this section, we show that the proposed PPODC protocol
<ZZ s] % fi %] — Ao [8] % £ + |Ci|)2> is secure under the standard semi-honest model [18], [33].
: Informally speaking, we stress that all the intermediatees
seen byC; andCs in PPODC are either encrypted or pseudo-
random numbers.
At this point,C; has encryptions of the integers corresponding First, in the data outsourcing process (i.e., Step 1 of
to both the left-hand and right-hand sides of the termimatihlgorithm [4), the values received by, and C, are either
condition given in Equation 6. Therefore, the goal is to nofi@ndom or pseudo-random value<ix . At the end of the data
securely compare them using the secure comparison (Swysourcing step, only’; knows the encrypted data records
protocol. More specifically, by using and R asC;'s private ©f all users and no information regarding the contentd pf
input to the SC protocol(; and C, securely evaluate the (the database of useér;) is revealed ta”,. Therefore, as long

i=1 s=1

termination condition: as the underlying encryption scheme is semantically secure
v (which is also the case in the Paillier cryptosystem .[21193, t .
Z Z x|l = A [s] % f |Ci|)2 < 245 aggregated encry_pted dat_aba_ses do not reveal any |nf_0|rmat|
Pt to Cy. Hence, no information is revealed €3 andCs during

Stage 1 of PPODC.
The output isE,,(y) = SC(L,R), wherey = 1 iff the The implementations of SMP, SSED, and SLSB sub-
termination condition holds, ang = 0 otherwise. Note that protocols given in [30], [34] are proven to be secure under
E,r(v) is known only toC;. After this, C; sendsE,;(vy) to the semi-honest model [18]. Also, the SC protocol given in
Cs, who decrypts it and forwards the value oto C;. [31] is secure under the semi-honest model. In the proposed
Finally, once the termination condition has been secureBSEDQ,p protocol, the computations are based on using either
evaluated(; locally proceeds as follows: SMP or SSED as a sub-routine. As a result, S§EBan be



TABLE Il
ONLINE AND OFFLINE COMPUTATIONAL COSTS FOR DIFFERENT STAGEBN PPODGpr

Stage Online Offline

Stage 1 (one-time) 6m x [ mul. 2m x| exp.

Stage 2 (per iteratior)n*(zz*kHJr171@—4@ —14) 4+ k*(I+1)+1 exp. m*(7z*k+3l+32k—7L§J —29) + K+ (31 + 1) + 1 exp.
Stage 3 (per iteration) k= (2k + 50) + 9 exp. k= (4k + 91 + 2) + 20 exp.

proven to be secure under the semi-honest model. Furthbe encryption function can be computed in an offline phase
since SMIN and SMIN are directly constructed from SC,and thus the online cost of computing,(a) is reduced

the security proofs for them directly follow from the sedyri to two (inexpensive) multiplication operaticnsAdditionally,
proof of SC given in [31]. In summary, the privacy-presegvinencryption of random numbers, Os and 1s can be precomputed
primitives utilized in the proposed PPODC protocol are secuby the corresponding party (i.e;; or C5) as they are
under the semi-honest model. independent of the underlying protocol.

We emphasize that the computations involved in Stages 2Me emphasize that the actual online computation costs (with
and 3 of PPODC are performed by eith@y locally or using an offline phase) of the privacy-preserving primitives used
one of the privacy-preserving primitives as a sub-routine. our protocol can be much less than their costs without an
the former case(’; operates on encrypted data locally. Iroffline phase. For example, consider the secure multijdioat
the latter case, the privacy-preserving primitives wgitizin (SMP) primitive with E,,(a) and E,;(b) as Cy’s private
our protocol are secure under the semi-honest model. Alsoinput. During the execution of SMR’; has to initially
is important to note that the output of a privacy-preservingndomize the inputs and send themdg. That is, C; has
primitive which is fed as input to the next primitive is into computeE,;(a) * E,x(r1) = Epi(a + 71 mod N) and
encrypted format. Since we use a semantically secured®aillE, ;. (b) * E,(r2) = Epi(b+r2 mod N), wherer; andr; are
encryption scheme [19], all the encrypted results (whigh arandom numbers iZ, . This clearly require€’; to compute
revealed only ta’;) from the privacy-preserving primitives dotwo encryptions:E,;(r1) and E,(r2). However, sincer;
not reveal any information t@';. Note that the secret kesk and r, are integers chosen by; at random, the computa-
is unknown toC’;. Hence, by Composition Theorem [33], wetion of E,;(r1) and E,(r2) is independent of any specific
claim that the sequential composition of the privacy-pnéisg instantiation of SMP. That isC; can precomputé®,(r1)
primitives lead to Stages 2 and 3 in our proposed PPOD¥nd E,;(r2) during the offline phase and thus boosting its
protocol and are secure under the semi-honest model. uttomline computation time. In a similar manner; and C-
everything together, it is clear that PPODC is secure urfter ftan precompute certain intermediate results in each privac
semi-honest model. preserving primitive.

. To better understand the performance improvements due
D. Performance Analysis of PPODC to the above offline computation strategy, we have analyzed

First of all, we emphasize that a direct implementatiohe offline and online computation costs of each privacy-
of the proposed PPODC protocol is likely to be inefficienreserving primitive (for a single execution) used in PPQDC
To address this issue, we propose two strategies to boostséparately. The results are given in Tablé |ll. Hemenotes
performance:(i) offline computationand (ii) reusability of number of attributes ankl denotes number of desired clusters.
intermediate resultsin what follows, we extensively analyzeFrom our analyses, following from Taklellll, we observedtha
the performance of PPODC based on these two strategiesthe actual online computation cost (with an offline phase) of

In the Paillier cryptosystem [19], encryption of an integesach primitive is improved by at least 50% in comparison to
a € Zy is given byE,i(a) = g“+r™ mod N?, whereg is the its online computation cost without an offline phase.
generator)V is the RSA modulus, and is a random number  An important observation in PPODC is that some of the
in Zy. It is clear that Paillier's encryption scheme requirefitermediate results (apart from those computed during the
two expensive exponentiation operations. In this paper, W#line phase) computed in earlier steps can be reused in
assumeg = N +1 (a commonly used setting that provides theater computations without affecting the security. Thiads
same security guarantee as the original Paillier cryptesys to our second performance improvement strategy - reusabili
as this allows for a more efficient implementation of Paillieof intermediate results. This would be better illustrated b
encryption [35]. More specifically, whep= N + 1, we have the following example. Consider that; with private input

Ex(@) = (N+1)%+r" mod N? <Epk(a_), Epi(b1)) an(_j Cs j(_)intly want to c_o_mputeEpk(a *
N ) b1) using SMP. During this process;; initially computes
= (axN+1)*r" mod N 8 Epi(a + rmod N) and E,;(b;y + 71 mod N) and sends

As a result, an encryption under Paillier is reduced to one ¢R€m 10 C2, wherer and r; are random numbers ifiy.

ponentiation operation. Our main observation from Eque8o . _ _

is that th tion cost under Paillier can be furthen The time th_at _takgs to perform one exponentiation uﬂq@g is egm_valent
Is that the encryp - - ) ced_ to logy N multiplication operations. Therefore, exponentiatiorcisidered
as follows. The exponentiation operation (i:€), mod N?)in to be an expensive operation in comparison to multiplicatio



TABLE Il
ONLINE AND OFFLINE COMPUTATION COSTS OF PRIVACYPRESERVING
PRIMITIVES (MEASURED IN TERMS OF NUMBER OF EXPONENTIATION}

to address the PPODC problem and thus there exist no prior
work to compare with our protocol.

A. Platform and Dataset Description

Primitive Online Offline

SMP 2 4 We implemented the protocols (both the direct implemen-

SSED 31 4 tation and optimized version of PPODC) in C using the
GNU Multiple Precision Arithmetic (GMP) library [36]. For

SSE 2k + 71 4k + 121 - )

e hi hi the optimized version of PPODC (denoted by PPQEC
SLSB ! 3 we considered both the performance improvement strategies
sC 7 17 mentioned in Section VAD. The experiments were conducted
SMIN 14 30 on two Linux machines (playing the roles @éf; and C5),
SMIN,, 16k—4L§J 14 31/<;—7ng _29 each with an InteR) Core'™ i7-2600 CPU (3.40GHz) and

8GB RAM, running Linux version 3.12.6. The two machines
were communicating over a TCP/IP network.

For our experiments on real dataset, we used the KEGG
etabolic Reaction Network (Undirected) dataset from the
UCI KDD archive [37] that consists of 65,554 data records and
29 attributes. Since some of the attribute values are ngssin
in the dataset, we removed the corresponding data records
. and the resulting dataset consists of 64,608 data records.
C1 10 again computer,(a + rmod V) and send that to As part of the pre-processing, we normalized the attribute

C5. After receiving Ep; (b2 + r2 mod N) from Cy, C can . . )
decrypt it to geb, +r, mod N and use the intermediate resul¥alues and scaled them into the integer dompini 000].

a-+r mod N already computed in the previous step to proce A‘len we selected sample datasets (from the preprocessgd dat

with further computations of SMP. The above example cleaﬁ]al Cgsosr:ggrdféisrzce?;?.znat Vr\;:\en?_oz q btﬁzegaqlrl].;rhznpcer‘rartn:ter
demonstrates that reusability of intermediate results seare ues u : on. X - ypu

both computation and communication costs, key size to 1,024 bits (a commonly accepted key size) in all ou
. S . experiments. For each sample dataset, we encrypted edash of i
By taking both the above two strategies (i.e., offline compu;. . . . D o
. - . . . . data record attribute-wise using the Paillier encryptiomction
tation and reusability of intermediate results) into cdesa-

tion, we could optimize the performance of PPODC. Witho gg] and stored this _encrypted datq on the first machine. Note
. . . at the corresponding secret kel is stored on the second
loss of generality, let us denote such an implementation

: . . RYachine.
PPODGp. We estimated the online and offline computa- We executed PPODC and PPOg@ver the encrypted data

tional costs, meagurgd in terms of _requwed mquphcauo&ored in the first machine under the above setting. Theteesul
(mul.) or exponentiation (exp.) operations, for each stafe

PPODG,: separately. The results are given in TaBle II. Herce)resented in the rest of this section are averaged over ten

m denotes the sum of the data records of all users. It slgmple datasets.

important to note that Stage 1 of PPOgJs run only once
whereas Stages 2 and 3 are run in an iterative fashion u
the termination condition holds. To see the actual efficiency gains of PPQJaCover
The total communication costs for each stage &PODC, we first evaluated their computation costs using
PPODG, are extensively analyzed and the results are showlifferent sampled datasets of varying sizes. Specificafty,
in Table[TM. Here X' denotes the size (in bits) of the Paillierfix the value ofl andk to 10 and 8, respectively, and executed
encryption key [19]. Following from our analyses, we caPPODC and PPODg; on datasets of varying number of
observe that the costs (both computation and communigatié@cordsm. The results per iteration are shown in Table V. On
of Stage 2 are significantly higher (depends than the the one hand, the running time of PPODC varies from 31.88

Upon receiving the ciphertexts)s; decrypts them to get
a + rmod N and b; + r1 mod N and proceeds with the
rest of the computations involved in SMP. At a later stagRA
suppose”; with private input{Ep (a), Epr (b2)) andCy want
to computeE,;(a * b2). The key observation here is thaf
can compute and send ony;, (b2 +r2 mod N) to Cs, where
ro IS @ random number iy . That is, there is no need for

rl?til Empirical Analysis using Real Dataset

costs of Stage 3 in each iteration. to 159.4 minutes whem varies from 2,000 to 10,000. On the
other hand, the online running time of PPOfGraries from
VI. EXPERIMENTAL RESULTS 11.72 to 58.58 minutes when varies from 2,000 to 10,000.

From these results, it is clear that the online computatioe t
First of all, we emphasize that PPODC is 100% accurate @f the optimized version of PPODC is around 2.7 times less
the sense that the outputs returned by PPODC and the standlaath the online computation time of the direct implementati
k-means clustering algorithm (applied on the corresponding PPODC. That is, the performance improvement strategies
plaintext data) are the same. Therefore, in this section, weposed in Sectidn VAD boost the performance of PPODC by
extensively analyze the computation costs of PPODC I60-65%. We emphasize that the running time reported in this
performing various experiments using a real dataset underction also includes the communication costs, such aepack
different parameter settings. Note that ours is the firstkwoencoding and decoding, and network delays.



TABLE IV
COMMUNICATION COSTS OFPPODGpr

Stage Communication Cost (in bits)
Stage 1 (one-time) dm x 1+ K
Stage 2 (per iteration)dm +  + k -+ 20 % k + 2% m * [ + 21m * k — 2m {gJ —19m + 1) % 2K
Stage 3 (per iteration) (k* (3k + 6l +2) +15) % 2K
TABLE V

parallel. Note that most of the current cloud service prexsd

COMPARISON OF RUNNING TIME(IN MINS) FOR! = 10 AND k = 8 .
such as Google and Amazon, typically support parallel pro-

m PPODC PPODCor, cessing on high performance computing nodes. Some of the
_ _ . —® . large-scale parallel processing frameworks include Sparck
(Direct Implementation)| (Online + Offline) | (Online) " .
Hadoop. Hence, by properly exploiting the parallel process

2,000 31.88 23.52 11.72 capability of clouds, we believe that the scalability isafe

4,000 63.76 47.04 23.43 PPODG,: can be addressed to a great extent.

6,000 95.64 70.56 35.15

8,000 127.52 94.08 46.87 VII. CONCLUSIONS

10,000 159.4 117.6 58.58 Existing privacy-preserving distributed clustering tech

Having shown the performance improvement odfiques, which can allow the users to collaboratively and
PPODG, over PPODC, we next analyze the onlinsecurely perform the clustering task, incur heavy costsh(bo
computation costs of PPOR based on different parameterscommunication- and computation-wise) on the particigatin
The computation cost of PPORE per iteration mainly USers. To addre;s this issue, in this paper, we ||_1trc_)duced
depends on three parameters: (i) the number of data recdffs problem of privacy-preserving and outsourced disteitiu
of all users fn), (i) the number of attributesl), and (iiij clustering (PPODC) where a set of users can securely out-
the number of clusterskf. Therefore, we evaluate thesource their databases and the intended clustering task to a
performance of PPOD; by varying these three parameters¢loud environment. We proposed a novel PPODC protocol

For m = 6,000, Figure[2(@) shows the online running timg/nder a federated cloud environment that can performkthe
of PPODG,y for varying values of andk. For example, when means clustering on the users aggregated encrypted data in
I = 10 andk = 8, the online running time of PPORG is a privacy-preserving manner. At the core of our protocol, we
36.14 minutes. Tr;e online running time of PPQRGor | = proposed new transformations to construct an order-prieser
10 and varying values of andm are shown in FigurE 2(p). Euclidean distance function and evaluate the termination c
The observation is that the running time grows linearly with dition of thek-means clustering algorithm over encrypted data.
andm. As shown in Figur§€ 2(), wheh = 8, a similar trend The proposed PPODC protocol ensures data confidentiality
is observed for varying values af and! . Putting everything Of all users and incurs negligible costs on the user side. We
together, it is clear that the running time of PPQR@rows theoretically estimated the complexities of our protocotl a

linearly with m, k andl. This further justifies our theoretical €xPerimentally analyzed its efficiency using a real dataset
analysis in Sectiof-VD. Our results show that our protocol incurs reasonable casts o

9% of the computation time g}e c_Ioud side and i_s pfactical for non—reall—time applmagi _
ﬁ)ne important contribution of our protocol is that most af it
underlying computations can be parallelized. As futurekyor
we plan to implement the proposed protocol using parattelis
a cluster of nodes and evaluate its performance. Also,
will extend the research ideas proposed in this paper to
other data mining tasks, such as classification, associatie
mining, and regression analysis.

We observed that around 9
PPODG, is due to Stage 2. Also, the running time of eac
user is in few milliseconds (since he/she doesn’t involvarig
expensive operations), which makes our protocol very effici
from the end-user's computational perspective. In summagg'
the above results show that the proposed PPODC proto
together with our optimizations, achieves reasonableiefffoy
given the stronger privacy guarantees.

A Note on Scalability. We emphasize that the computation
costs of PPODg, can be high for large datasets. However,
it is worth noting that the performance of PPORCcan be [1] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: review,”

; i ; ; ACM Computing Surveysol. 31, pp. 264—-323, September 1999.
fur.the.r |mproved by pargllellzmg the underlylng operaso g\}v P. Berkhin, “A survey on clustering data mining techrégqy in In:
This is pecause the. assignment of each data record to & NeW Grouping Multidimensional Data Springer, 2006, pp. 25-71.
cluster in Stage 2 is independent of other records and thyg M.A. Dalal and N. D. Harale, “A survey on clustering in dafining,” in
we can almost parallelize the computations of Stage 2 at Proceed_mgs of the International Conference & Workshop amekging
h d level. More specifically;; and Cy can utilize a Trends in Technology ACM, 2011, pp. 559-562. ; ;
the recor : p : ¥ -2 ’ [4] P. Patrick and L. Dekang, “Document clustering with coittees,” in
cluster of nodes to perform their respective computations i  SIGIR ACM, 2002, pp. 199-206.
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