
DOI: 10.4018/IJDCF.2019100102

International Journal of Digital Crime and Forensics
Volume 11 • Issue 4 • October-December 2019

Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

14

Privacy-Preserving and Publicly Verifiable
Protocol for Outsourcing Polynomials
Evaluation to a Malicious Cloud
Dawei Xie, Shandong University, Jinan, China

Haining Yang, School of Mathematics, Shandong University, Jinan, China

Jing Qin, Shandong University, Jinan, China

Jixin Ma, Greenwich University, London, UK

ABSTRACT

As cloud computing provides affordable and scalable computational resources, delegating heavy
computing tasks to the cloud service providers is appealing to individuals and companies. Among
different types of specific computations, the polynomial evaluation is an important one due to its
wide usage in engineering and scientific fields. Cloud service providers may not be trusted, thus, the
validity and the privacy of such computation should be guaranteed. In this article, the authors present
a protocol for publicly verifiable delegations of high degree polynomials. Compared with the existing
solutions, it ensures the privacy of outsourced functions and actual results. And the protocol satisfies
the property of blind verifiability such that the results can be publicly verified without learning the
value. The protocol also improves in efficiency.

KEywORDS
Blind Verification, Cloud Computing, Large Polynomials, Privacy, Publicly Verifiable

1. INTRODUCTION

It is increasingly common for mobile devices with relatively weak computing power to be used
as general computing devices, such as smart phones and netbooks. This trend, coupled with their
increasing desire to execute computationally intensive tasks, makes outsourcing computation to
the cloud service providers a promising solution. The outsourcing computation enables resource-
constrained clients to enjoy almost unlimited computational resources. The clients deliver their
computational tasks to cloud service providers and receive computational result from the providers
in a pay-per-use manner. Hence, the clients are no longer restricted to their limited CPU, storage and
bandwidth. Moreover, outsourcing computation provides economic benefits to the clients and allows
them to avoid or minimize up-front IT infrastructure costs.

Despite the tremendous advantages, outsourcing computation raises several new security
challenges, which make the clients reluctant to outsource their computations to cloud service
providers. The first concern is the correctness of the computational results done by the providers,
since the cloud service providers may not be trusted. Their misbehaviors are motivated by financial
incentives (e.g., saving the computing resources for other transactions) or caused by hacking and
bug in system. It means that there is no guarantee on the correctness of the computational results.

This article, originally published under IGI Global’s copyright on October 1, 2019 will proceed with publication as an Open Access article
starting on February 2, 2021 in the gold Open Access journal, International Journal of Digital Crime and Forensics (converted to gold Open
Access January 1, 2021), and will be distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/

licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium, provided the author of the original work and
original publication source are properly credited.

International Journal of Digital Crime and Forensics
Volume 11 • Issue 4 • October-December 2019

15

In order to address this problem, the notion of Verifiable Computation (VC) was introduced, which
enables the clients to verify correctness of the results. Clearly, the verification of correctness must
be substantially easier than the computation that was initially outsourced. Next, Parno, Raykova,
and Vaikuntanathan (2012) proposed a new notion of Publicly Verifiable Computation (PVC) by
extending the definition of VC, which makes the computational results can be verified by any third
party besides the delegators. This is important in the contexts where the results have to be checked
by several clients who cannot share a secret key in advance. Another concern is the privacy, since the
relevant data may contain sensitive information, such as personal health assessment, stock prediction,
financial performance analysis and so on, the computational results and the outsourced functions
should be hided. Encryption does not fundamentally solve this problem, because it is very difficult or
inefficient to perform meaningful operations on ciphertext. One common approach is that the client
does some carefully designed local disguise process of the function before sending it to cloud service
providers. Consider the privacy of results, blind verifiability is an important property of outsourcing
computation such that the results can be publicly verified without learning the value. For example, a
financial company delegates a certain computational task to cloud service providers, and it wants to
ensure the privacy of the results. Further, efficiency is also a crucial challenge. Thus, an outsourcing
computation protocol should satisfy the following four design goals: public verifiability, privacy of
result/function, blind verifiability and efficiency.

In this paper, the authors study the particular problem of polynomial evaluation. Among all types
of computations, the polynomial function evaluation is an important one due to its wide usage in
engineering and scientific problems. For instance, the medical center executes polynomial functions
over the personal health data, which uploaded from various wearable devices. Based on these data,
the medical center assesses personal health and makes suggestions for people to keep healthy. Also,
the securities company utilizes the financial software to analyze the economic performance of
stocks, by executing polynomial functions over the past data. Benabbas, Gennaro, and Vahlis (2011)
proposed the first practical verifiable computation protocol for high degree polynomial functions,
by using the algebraic pseudorandom functions (PRFs). Nevertheless, their protocol does not satisfy
public verifiability. In the same line of work, Fiore and Gennaro (2012) devised new algebraic PRFs
to develop a publicly verifiable computation protocol for the delegated polynomials. After that,
researchers proposed numerous protocols for secure outsourcing of polynomials (e.g., Catalano &
Fiore, 2013; Elkhiyaoui, Azraoui, & Molva, 2016; Luo, Yang, & Cong, 2018; Papamanthou, Shi, &
Tamassia, 2013; Ye, Zhang, & Fu, 2016; Zhang & Safavi-Naini, 2014).

From the practical perspective, however, the existing protocols for outsourcing polynomials
computation still have some limitations, which make it not practical in real world application scenarios.
The first limitation is that the actual polynomials and the actual results are revealed to the cloud
servers. In many practical delegation scenarios, the privacy of the polynomials and the results must
be ensured. The second limitation is that almost all protocols do not satisfy the blind verifiability.
Consider a financial company that wishes to delegate the computation of a certain expensive data
analysis polynomial function to a cloud server. Since the company will make an investment strategy
for the next year based on the results, it would like to ensure the privacy of the polynomial and the
results. Meanwhile, the blind verifiability is also a necessary requirement. Once the relevant data
are leaked, rivals will speculate on its investment plans and sabotage the investments. The damage
could result in huge economic losses for the company. The gaps in the existing protocols motivate
the authors to investigate the outsourcing polynomials computation.

In this paper, the authors propose an efficient publicly verifiable outsourcing computation protocol
for polynomial functions. The key characteristics of the protocol are that it can ensure the privacy
(of the polynomials and the actual results) and support blind verifiability.

1.1. Our Contributions
The main contributions in this paper can be summarized as follows.

International Journal of Digital Crime and Forensics
Volume 11 • Issue 4 • October-December 2019

16

• The authors propose a privacy preserving and publicly verifiable protocol for outsourcing
polynomials evaluation to a malicious cloud. It can ensure the privacy of outsourced polynomials
and actual results, and it supports the blind verifiability. The authors leverage Euclidian division
as a basis for our protocol.

• The disguise process, the blind verification and the retrieval for actual results can be executed
efficiently.

1.2. Related works
The subject of Verifiable Computation has already attracted a lot of attention. To begin with, some
related works focus on Interactive Proof (Babai, 1985; Goldwasser, Micali, & Racko, 1989) and
efficient arguments based on the probabilistically checkable proofs (Kilian,1995; Kilian, 1998).
Gennaro, Gentry, and Parno (2010) proposed a non-interactive verifiable computation protocol. In
this protocol, a client outsources data and a function evaluation to a cloud server. The client executes
a one-time encoding of the function and stores it with the server. This enables the server to not only
evaluate the function, but also provide a proof of the correctness. However, the protocol requires
the verifier know a secret key in advance, it does not satisfy public verifiability. In order to address
this shortcoming, Parno, Raykova, and Vaikuntanathan (2012) extended the definition of Verifiable
Computation to introduce a new notion of Publicly Verifiable Computation with the support of
Attribute-Based Encryption (ABE). Their protocols explore a connection between Attribute-Based
Encryption and the problem of verifiable computation, which enables the results can be verified
by any third party. However, the class of functions for which we know an efficient ABE protocol
is unfortunately very limited, and their protocol does not work for any arbitrary polynomial time
computation. Next, numerous papers focus on verifiable computation of specific functions (e.g.,
Blanton, Zhang, & Frikken, 2013; Hu & Tang, 2015; Lei, Liao, Member, Huang, & li, 2015; Zhou &
li, 2017). Recently, many researchers have presented applications of publicly verifiable computation
(Backes, Fiore, & Reischuk, 2013; Song, Wang, & Wang, 2017; Sun, Zhu, & Qin, 2018; Ye, Zhang,
& Fu; Zhang, Wei, & Li, 2017).

The verifiable polynomial evaluation also has a large body of prior works. Benabbas, Gennaro, and
Vahlis (2011) presented the first practical verifiable computation protocol for high degree polynomial
functions, which is based on the algebraic PRFs. In their scheme, a client stores polynomials in the
clear with a cloud server as a vector of the coefficients. Catalano and Fiore (2013) proposed a practical
protocol for the verifiable polynomial computation with the bounded degree in virtue of homomorphic
MACs. In this paper, their first construction relies on the sole assumption that one way functions
exist and allows for arbitrary composition (i.e., outputs of previously authenticated computations
can be used as inputs for new ones), but it has the drawback that the size of the produced tags grows
with the degree of the circuit. Their second construction, relying on the Diffle-Hellman Inversion
assumption, offers some features as it allows for very short tags but poses some restrictions on the
composition side. Since the use of symmetric encryption algorithm, their protocol does not satisfy
the public verifiability. Ye, Zhang, and Fu (2016) was based on the integer factorization problem
to propose verifiable computation protocol for polynomial. Above protocols do not satisfy public
verifiability, privacy of result/function, blind verifiability as the protocol presented in this paper.

Fiore and Gennaro (2012) devised new algebraic PRFs, also used by Zhang and Safavi-Naini
(2014), to develop publicly verifiable protocols. Their protocols enable the computational results can
be verified by any third party. Papamanthou, Shi, and Tamassia (2013) proposed a protocol for publicly
verifiable polynomials computation, which is based on signatures for correct computation (SCC).
In this paper, a client outsources a polynomial F to an untrusted cloud server. The server generates
a succinct signature σ for the correctness of the computation results. Elkhiyaoui, Azraoui, and Molva
(2016) proposed a publicly verifiable protocol of polynomials that improves in efficiency with the
support of Euclidean division. Compared with these protocols, the protocol of this paper offers the
additional privacy and blind verifiability. (See Table 1)

International Journal of Digital Crime and Forensics
Volume 11 • Issue 4 • October-December 2019

17

1.3. Paper Organization
In section preliminaries, the authors recall the computational assumptions and the definitions needed
by the paper. In next section, the authors present a protocol for public verifiable polynomial evaluation
and some analysis about it. Finally, they conclude their works.

2. PRELIMINARIES

In what follows the authors will denote with λ ∈  a security parameter. If S is a set, they denote

with x S
R

←  the process of selecting x uniformly at random in S . The authors say that a function

negl ⋅() is negligible if it vanishes faster than the inverse of any polynomial. Let  be a probabilistic

polynomial time algorithm. They denote with Dom(F) the domain of F and Ran(F) the range of
F .

2.1. Computational Assumptions
2.1.1. Definition 1 (Bilinear Pairing)

Let 
1
, 

2
, 

T
 be cyclic groups of prime order p . A bilinear pairing is a map e

T
:   

1 2
× → ,

with the following properties:

1. Bilinearity. For any α , β ∈ 
p

, g ∈ 
1
, h ∈ 

2
, there exists an equation e g hα β,()= e g h,()

αβ

;

2. Computability. For any g h,() ∈ × 
1 2

, there exists an efficient algorithm to compute e g h,() ;
3. Non-degeneracy. If g is a generator of 

1
 and h is a generator of 

2
, then e g h,() is a generator

of 
T

 .

2.1.2. Definition 2 (n-SDH Assumption)

Let 
1
, 

2
, 

T
 be cyclic groups of prime order p , g is a generator of 

1
, h is a generator of


2

 and e is a bilinear map e
T

:   
1 2
× → .

The n-Strong Diffie-Hellman assumption (n-SDH) holds, if given the tuple g g h h h
n n

, , , ,...,
α α α()∈ ×

+ 
1

2

2

1

for α R

p
←  * , the probability of producing a pair β α

β α
, \

/
h

p

1

2

+()()∈ −{ }×F G is negligible.

Table 1. This Is A features comparison of the protocol for polynomials evaluation with related protocols

 Protocols
Public

Verifiability

Public

Delegation

Result/Function

Privacy

Blind

Verifiability

 Gennaro et al, 2011 × × × ×

 Fiore et al,2012 √ × × ×

 Papamanthou et al, 2013 √ √ × ×

 Zhang et al, 2014 × × × ×

 Elkhiyaoui et al, 2016 √ √ × ×

 Song et al, 2017 √ √ × ×

 Our Work √ √ √ √

International Journal of Digital Crime and Forensics
Volume 11 • Issue 4 • October-December 2019

18

2.2. Publicly Verifiable Computation
A publicly verifiable computation protocol is a tuple of given algorithms, the clients delegate the
computation of a function F to a cloud server S by these algorithms, in such way that the clients
can verify the correctness of the results returned by the server S in public way. Clearly, it is crucial
that the work of verification must be substantially smaller than computing the function locally.
Otherwise, the clients could perform the computation on itself.

Parno, Raykova, and Vaikuntanathan (2012) defined the publicly verifiable computation (PVC):
any verifier (possibly different from the delegator) can verify the correctness of the server’s results.

Let  be a family of functions. The modified PVC protocol between two polynomial time
parties: a client C and a server S is defined by the following algorithms:

• KeyGen F PP PK RK EK
F F F

, , , ,1λ()→ () : On input a function F ∈  and a security parameter

λ , the randomized key generation algorithm produces public parameters PP , a public key

PK
F

, a retrieval key RK
F

 that will be used to retrieve the actual results and an evaluation key

EK
F

 which will be handed to the server S .

• ProbGen PK PP x VK
F x x
, , ,()→ ()σ : Given a value x ∈Dom(F), the public key PK

F
 and

the public parameters PP , the delegator runs this algorithm to produce an encoding σ
x

 of x

and a public verification key VK
x

 that will be used to check the results.

• Compute EK
F x y
, ,σ σ π()→ () : Given the evaluation key EK

F
 together with the encoding σ

x
,

this algorithm is run by the server S to compute an encoding σ
y

 of F x() and a proof π of its

correctness.

• BVerify VK PP T
x y

y

, , ,σ π
σ

()→ : On input the public verification key VK
x

, the public parameter

PP , the encoded output σ
y

 and the proof π , this blind verification algorithm is run by any

party to return a token T
y
σ

. If the output σ
y

 is valid, then this algorithm returns T accept S
y
σ
= (), ;

otherwise, it returns T reject S
y
σ
= (), .

• Retrieve RK T y
F y

y

, ,
σ
σ()→ ∪ ⊥ :Run by the clients holding RK

F
 to retrieve the actual result

y F x= () or an error ⊥ .

2.2.1. Definition 3 (Correctness)
A publicly verifiable computation protocol for a family of functions  is correct, if for any function

F ∈  and any x ∈ Dom(F):

I f ProbGen PK PP x VK
F x x
, , ,()→ ()σ a n d Compute EK

F x y
, ,σ σ π()→ () , t h e n

Pr , , , ,BVerify VK PP accept S
x y

σ π()→ ()()= 1 .

Informally, a publicly verifiable computation protocol is correct, if the values generated by the
problem generation algorithm allows the honest server S to output results that will be verified
correctly.

For any publicly verifiable computation protocol, the authors define following experiment:
A l g o r i t h m 1 . S o u n d n e s s ex p e r i m e n t o f p u b l i c ly ve r i f i a b l e p r o t o c o l :

PP PK EK F
F F

, , , ;()← ()
KeyGen

1λ

 → x;

International Journal of Digital Crime and Forensics
Volume 11 • Issue 4 • October-December 2019

19

σ
x x F
VK PK PP x, , , ;()← ()

ProbGen

 → ()σ π
y
, ;

T VK PP
y

x yσ

σ π← ()BVerify , , , .

2.2.2. Definition 4 (Soundness)

Let Π,F
 denotes the probability that adversary  succeeds in the Algorithm 1(i.e.

Π, Pr ,
F

T reject S y F x
y

= ≠ ()∧ ≠ ()()σ
).

A publicly verifiable computation protocol for a family of functions  is sound, if for any

adversary  and any function F ∈  , Π,F
≤ ε and ε is a negligible function on the security

parameter.

In a nutshell, a publicly verifiable computation protocol is said to be sound, if for any function
F ∈  and anyx ∈ Dom(F), the server S cannot convince any verifier to accept an incorrect
result.

3. PUBLICLy VERIFIABLE POLyNOMIAL EVALUATION

3.1. Protocol Overview
This protocol leverages Euclidean division of polynomials as a basis. In detail, for any polynomial
F with degree d and polynomial d with degree 2, the Euclidean division of F by B output an

unique pair of polynomial Q R,() such that F BQ R= + , where Q has degree d −2 and R has

degree ≤ 1 .

Consider a resource-constrained client has a polynomial F X() of degree d , and he wishes to

delegate the evaluation of F to a cloud server S for arbitrary inputs. In order to ensure the privacy
of F and computational results, the client executes a disguise process: first, defining random

polynomial B X X b()= +
2

0
, and dividing of F by B output a pair Q R,() such thatF BQ R= + ,

where Q X q X
i

i

i

d

()=
=

−

∑ 0

2
 and R X rX r()= +

1 0
; next, defining another random polynomial

B X X b' '()= +
2

0
, divides of Q by B ' output Q X'()= q X

i

i

i

d
'

=

−

∑ 0

4
 and R X'()=where

Q B Q R= +' ' ' .

Then the client publishes the public PK p p p g h h
F

b r r
= ()= ()1 2 3

0 1 0, , , ,
' ' ' , shares secretly a

retrieval key RK b r r
F
= ()0 1 0

, , and sends EK QW
F
= (), to the server S , where

W W W W h h h
d

q q q
d= ()= ()−
−

0 1 4
0 1 4, ,..., , ,..., .
' ' '

If a client wants to evaluate polynomial F at point x , it first sends x to the server S , then

computes and publishes the verification key VK VK VK p g p p
x

x x
= ()= ()1 2 1 2 3

2

, , . After that, the

server returns computational result σ
y
Q x= () and the proof π = ()

h
Q x'

, any verifier can verify the

correctness of σ
y

 by checking whether

International Journal of Digital Crime and Forensics
Volume 11 • Issue 4 • October-December 2019

20

e g h e VK e g VKy, , ,
σ

π()= () ()1 2
.

Finally, the clients rely on RK
F

 to retrieve the actual results F x x b r x r
y()= +() + +

2

0 1 0
σ .

It is clear that the efficiency of the verification stems from the fact that B ' and R ' are small

degree polynomials. In fact, compared with O d() operations to evaluate polynomial F , the client

verifies the correctness of σ
y

 is a small and constant number of computations.

3.2. The Protocol

Assume a client has a d-degree polynomial F X f X
i

i

i

d

()=
=∑ 0

 with coefficients f
i p
∈  , where

p is a large prime. The client would like to outsource the evaluation of F to a cloud service provider
S for arbitrary input x . The detail description of our protocol as follows.

• KeyGen F,1λ() . The algorithm first selects three cyclic groups 
1
, 

2
, 

T
 of the same prime

order p , equipped with a bilinear pairing e
T

:   
1 2
× → . Then it picks a generator g

1
 and

g
2
 of groups 

1
 and 

1
respectively and defines the public parameters as:

PP p g g e
T

= (), , , , , ,
1 2 1 2

  

Then selecting a random b R

p0
←  * to define a polynomial B X X b()= +

2

0
, which does

not divide polynomial F . Next, performing the Euclidean division of F by B in 
P
X



. We denote

with Q X q X
i

i

i

d

()=
=

−

∑ 0

2

 the resulting quotient polynomial and denote the resulting remainder

polynomial with R X rX r()= +
1 0

. Selecting another random b R

p
'

*

0
←   to define another

polynomial B X X b' '()= +
2

0
, which does not divide polynomial Q . Computing the Euclidean

division of Q by B ' . Similarly, Q X'()= q X
i

i

i

d
'

=

−

∑ 0

4
 and R X r X r' ' '()= +

1 0
. The public key

is defined by:

PK p p p g g g
F

b r r
= ()= ()1 2 3 1 2 2

0 1 0, , , ,
' ' ' .

The retrieval key RK b r r
F
= ()0 1 0

, , . To compute W g
i

q
i= ∈
2 2

'  for all 0 4≤ ≤ −i d and let

W W W W
d

d
= () ∈−

−

0 1 4 2

3
, ,...,  , EK QW

F
= (), .

Algorithm KeyGen concludes its execution by outputting the tuple:

PP PK RK EK
F F F

, , ,() .

International Journal of Digital Crime and Forensics
Volume 11 • Issue 4 • October-December 2019

21

• ProbGen PK PP x
F
, ,() . Compute VK p g x

1 1 1

2

= , VK p px
2 2 3
= , then output σ

x
x= and

VK VK VK
x
= ()

1 2
, .

• Compute EK
F x
,σ() . Evaluate σ

y i

i

i

d
Q x q x= ()=

=

−

∑ 0

2

 mod p , the proof π =
=

−
Π
i

d

i

x
W i

0

4 and

return the tuple σ π
y
,() .

• BVerify VK PP
x y
, , ,σ π() . If e g g e VK e g VKy

1 2 1 1 2
, , ,
σ

π()= () () , output T accept S
y
σ
= (), ,

otherwise output T reject S
y
σ
= (), .

• Retrieve RK T
F y

y

, ,
σ
σ() . If T accept S

y
σ
= (), ,the clients holding RK

F
 to retrieve the actual

result y F x x b r x r
y

= ()= +() + +
2

0 1 0
σ . Otherwise returning an error ⊥ .

Some remarks about above protocol are in order.
Firstly, this protocol can ensure the privacy of actual results and the function F. This is an

important property in many scenarios.
Secondly, the blind verification algorithm BVerify enables the results can be publicly verified

without learning the value.
Thirdly, the disguise process, the blind verification and retrieve actual results can be executed

efficiently.

3.3. Security Analysis
Theorem 1. This publicly verifiable polynomial evaluation protocol is correct

Proof. If given σ
x p
x= ∈  , the server executes algorithm Compute honestly, then the output

will correspond to σ π
y

Q x
Q x g, ,

'()= ()()()2
.This is due to:

π = = =
=

−

=

−
()

∏ ∏W g g
i

x

i

d
q x

i

d
Q xi

i

i

0

4

2

0

4

2

' '
.

Given that Q B Q R= +' ' ' in 
P
X



, we get:

e g g e g g e g g e g
Q x B x Q x R x Q x

B x

1 2 1 2 1 2
, , ,

' ' ' '
'

() = () = ()() () ()+ () () ()

11 2
,

'

g
R x

()
()

.

Since VK p g g gx x b B x

1 1 1 1 1

2 2

0= = =
+ ()' '

 and VK p p g gx r x r R x

2 2 3 2 2

1 0= = =
+ ()' ' '

.

From it the authors conclude that e g g e VK e g VKy

1 2 1 1 2
, , ,
σ

π()= () () .

Then BVerify VK PP
x y
, , ,σ π()→ accept S,() . It is clear that the clients holding RK

F
 can

retrieve the actual result by computing y F x x b r x r
y

= ()= +() + +
2

0 1 0
σ .

Theorem 2. The protocol proposed above for publicly verifiable polynomial evaluation is sound

under the d / 2 1−



 - SDH assumption

Proof. Assume an adversary  can break the soundness of the protocol with a non-negligible
advantage ξ . In the following, the authors demonstrate there exists another adversary  that breaks

the d / 2 1−



 SDH assumption with a non-negligible advantage δ ξ≥ .

International Journal of Digital Crime and Forensics
Volume 11 • Issue 4 • October-December 2019

22

The authors denote with 
sdh

 an oracle, which returns a pair g g
1 1
, α() in 

1
 and a tuple

g g g
d

2 2 2

2 1

, ,...,
/

α α
−



() in 

2,
 for α R

p
←  * .

Firstly, the adversary  calls oracle 
sdh

 to obtain a tuple

g g g g g
d

1 1 2 2 2

2 1

, , , ,...,
/

α α α
−



() ,

then simulates the soundness experiment (detail in Algorithm 1) to adversary  . That is when

 calls oracle 
KeyGen

 with polynomial Q X q X
i

i

i

d

()=
=

−

∑ 0

2
 in 

P
X



, adversary  simulate

response 
KeyGen

 as follows:

1. Define the public parameters PP p g g e
T

�
= (), , , , , ,

1 2 1 2
   ;

2. It defines the evaluation EK QWF

� �
= (), , where W W W W d

� � � �
= ()−0 1 4, ,..., . Let W gd

q
d�

− = −
4

2
2

and W gd
q
d�

− = −
5

2
3 . For each 2 4≤ ≤ −k d , it computes W gd k

i

k q
d k i

i i
�

− −
=




 −()

= − − +
4

0

2

2

1
2 2Π

/ α
.

3. Computing the public key PK p p pF
� ɵ ɵ ɵ

= ()1 2 3, , as following:

p g
ɵ

1 1
= α ,

p g
q

i

d

i

i i
ɵ
2 2

1

0

3 2

2 1= +
−()

=

−()





∏
α

/

,

p g
q

i

d

i

i i
ɵ
3 2

1

0

2 1

2=
−()

=

−





∏
α

/

.

If p pɵ ɵ
2 3

1 1, ,()= () , then adversary  stops the experiment.

4. Otherwise, it return PP PK EKF F
� � �, ,() to adversary  .

The tuple PP PK EKF F
� � �, ,() returned by adversary  is statistically indistinguishable from the

distribution of PP PK EK
F F

, ,() in the soundness experiment. In fact, if they denote for all 0 ≤ ≤i

d − 4 , W gi
q
i� =
2

' and let p p g g
r rɵ ɵ

2 3 2 2

1 0, ,
' '()= () , they can verify that:

• q q
d d− −
=

2 4
' mod p and q q

d d− −
=

3 5
' mod p ;

• For all 2 4≤ ≤ −i d , q q q
i i i
= +

−
α ' '

2
 mod p ;

• q q r
1 1 1
= +α ' ' mod p and q q r

0 0 0
= +α ' ' mod p ;

• r r' , ' ,
1 0

0 0()≠ () .

International Journal of Digital Crime and Forensics
Volume 11 • Issue 4 • October-December 2019

23

Next, the authors define Q X q X
i

i

i

d
' '()=

=

−

∑ 0

4

, B X X'()= +
2 α , R X r X r' ' '()= +

1 0
, the

following equation is correct: Q B Q R= +' ' ' .

The authors can conclude (i) B ' does not divide Q ; (ii) each W i
� correctly encodes the ith

coefficient of Q ' ; (iii) the pair p pɵ ɵ
2 3
,() correctly encodes R ' .

Then, adversary  selects a challenge value x
p

∈  and calls oracle 
ProbGen

 with the tuple

PK PP xF
� �, ,() . Accordingly, adversary  compute the response of oracle 

ProbGen
 and returns

verification key VK VK VK p g p p
x

x
x

= ()=








1 2 1 1 2 3

2

, ,
ɵ ɵ ɵ .

Finally, adversary  returns a pair σ π
y
,() , where σ

y
Q X≠ () and σ π

y
,() is accepted by

algorithm BVerify with a non-negligible advantage ξ .

Hence, adversary  breaks the d / 2 1−



 - SDH assumption by first computing Q X() and

π* =
=

−

∏W i

x

i

d i

�

0

4

, and outputting:

β
π

π

β α
, ,

/

*
g x

y Q x

2

1 2

1

+()
− ()()

()=























−



.

Indeed, since the pair σ π
y
,() satisfies the verification,

e g g e p g e g p p e g ey x
x

x

1 2 1 1 1 2 3 1

2 2

, , , ,
σ απ π()= ()










= ()+ɵ ɵ ɵ

gg p p
x

1 2 3,
ɵ ɵ









 (1)

Furthermore,

e g g e g e g p p
Q x x

x

1 2 1 1 2 3

2

, , ,*() +()= ()










α
π

ɵ ɵ (2)

By dividing Equation (1) by (2), the authors obtain:

e g g e g x
Q x

y

1 2 1

2

1

, ,
*

()=





















+

− ()()
−

α

σ

π

π


.

Hence if adversary  does not stop the experiment, then it will be able to break the d / 2 1−





- SDH assumption. If adversary  aborts the experiment when p pɵ ɵ
2 3

1 1, ,()= () , then the adversary

 can conclude B ' divides Q . This means adversary  can find α , that break the d / 2 1−



 -

SDH assumption obviously.

International Journal of Digital Crime and Forensics
Volume 11 • Issue 4 • October-December 2019

24

Thus, the authors deduce that if there exists an adversary  that can break the soundness of the
protocol with a non-negligible advantage ξ . They demonstrated there exists another adversary 

that breaks the d / 2 1−




 - SDH assumption with a non-negligible advantage δ δ ξ≥ .

3.4. Performance Analysis

Algorithm KeyGen first selects two random coefficients b
0
, b '

0
 and executes two Euclidean divisions.

The latter operation consists of d d+ −()2 multiplications and additions. Next, it needs to performs

one exponentiation in 
1
 and d −1 exponentiations in 

2
 to construct the PK

F
 and the EK

F
.

Although the algorithm KeyGen computationally expensive, it is executed only once. Besides, its
computational cost can be amortized.

Algorithm ProbGen generates the verification key VK VK VK
x
= ()1 2

, , which costs a constant

number of operations. In particularly, these operations do not depend on the degree of polynomial.

In detail, this algorithm’s work consists of computing x 2 in 
p

, executing one exponentiation and

one multiplication in 
1
, and performing one exponentiation and one multiplication in 

2
.

Algorithm Compute evaluate the result σ
y i

i

i

d
Q x q x= ()=

=

−

∑ 0

2
 mod p and the proof π =

Π
i

d

i

x
W i

=

−

0

4 . In detail, it demands 2 5d − multiplications in 
p

, d − 3 exponentiations and d − 4

multiplications in 
2

.

Algorithm BVerify demands one exponentiation and one division in 
2

 and the computation
of 2 bilinear pairings.

Finally, the algorithm Retrieve only demands 6 additions and multiplications in 
p

.

In regard to storage, the client needs to keep the public key and the retrieval key. Meanwhile, the

server stores the coefficients of polynomial Q and the encodings W
i
. (See Table 2)

Table 2. This is a summary of the efficiency of our protocol

Algorithm Efficiency Client’s storage Server’s storage

 KeyGen 2 prng and 2d − 2 mul in F
p

1 exp in G
1

d − 1 exp in G
2

O
1

O
d−2

 ProbGen 1 mul in F
p

1 exp and 1 mul in G
1

1 exp and 1 mul in G
2

- -

 Compute 2d − 5 mul in F
p

d − 3 exp and d − 4 mul in G
2

- -

 BVerify 1 exp and 1 div in G
2

2 pairings
- -

 Retrieve 6 mul in F
p

- -

International Journal of Digital Crime and Forensics
Volume 11 • Issue 4 • October-December 2019

25

4. CONCLUSION

In this paper, the authors propose a privacy-preserving and publicly verifiable protocol for outsourcing
polynomials evaluation to a malicious cloud. The protocol based on Euclidean division properties.
Compared with existing protocols, it can ensure the privacy of functions and actual results, and it
supports the blind verifiability. Besides, the disguise process, the blind verification and the retrieve
can be executed efficiently.

ACKNOwLEDGMENT

This work is supported by the National Natural Science Foundation of China under Grant No.61772311.

International Journal of Digital Crime and Forensics
Volume 11 • Issue 4 • October-December 2019

26

REFERENCES

Babai, L. (1985). Trading group theory for randomness. In ACM Symposium on Theory of Computing, Providence,
Rhode Island, May 6-8 (pp. 421-429). DBLP.

Backes, M., Fiore, D., & Reischuk, R. M. (2013). Verifiable delegation of computation on outsourced
data. ACM Sigsac Conference on Computer & Communications Security (Vol.37, pp.863-874). ACM.
doi:10.1145/2508859.2516681

Benabbas, S., Gennaro, R., & Vahlis, Y. (2011). Verifiable delegation of computation over large datasets. In
Conference on Advances in Cryptology (Vol. 52, pp. 111-131). Springer-Verlag. doi:10.1007/978-3-642-22792-
9_7

Blanton, M., Zhang, Y., & Frikken, K. B. (2013). Secure and verifiable outsourcing of large-scale biometric
computations. ACM Transactions on Information and System Security, 16(3), 1–33. doi:10.1145/2535523

Catalano, D., & Fiore, D. (2014). Practical Homomorphic MACs for Arithmetic Circuits. International Conference
on Public-Key Cryptography - PKC (Vol. 7881, pp. 538-555). Springer-Verlag Inc.

Elkhiyaoui, K., Önen, M., Azraoui, M., & Molva, R. (2016, May). Efficient techniques for publicly verifiable
delegation of computation. In Proceedings of the 11th ACM on Asia Conference on Computer and Communications
Security (pp. 119-128). ACM.

Fiore, D., & Gennaro, R. (2012). Publicly verifiable delegation of large polynomials and matrix computations,
with applications. In ACM Conference on Computer and Communications Security (pp.501-512). ACM.
doi:10.1145/2382196.2382250

Gennaro, R., Gentry, C., & Parno, B. (2010). Non-interactive Verifiable Computing: Outsourcing Computation
to Untrusted Workers. In Conference on Advances in Cryptology (Vol. 6223, pp.465-482). Springer-Verlag.
doi:10.1007/978-3-642-14623-7_25

Goldwasser, M., Micali, S., & Rackoff, C. (1989). The knowledge complexity of interactive proof systems. SIAM
Journal on Computing, 18(1), 186–208. doi:10.1137/0218012

Hu, X., & Tang, C. (2015). Secure outsourced computation of the characteristic polynomial and eigenvalues of
matrix. Journal of Cloud Computing, 4(1), 7. doi:10.1186/s13677-015-0033-9

Kilian, J. (1995). Improved Efficient Arguments (Preliminary Version). In International Cryptology Conference
on Advances in Cryptology (Vol. 963, pp.311-324). Springer-Verlag.

Kilian, J. (1998). A note on efficient zero-knowledge proofs and arguments.

Lei, X., Liao, X., Huang, T., & Li, H. (2015). Cloud computing service: The case of large matrix determinant
computation. IEEE Transactions on Services Computing, 8(5), 688–700. doi:10.1109/TSC.2014.2331694

Liu, Y., Wang, X. A., Sangaiah, A. K., & Shao, H. (2018). Publicly verifiable 1-norm and 2-norm operations
over outsourced data stream under single-key setting.

Luo, X., Yang, X., Cong, L. I., & Wang, X. (2018). Publicly verifiable outsourced computation scheme for
multivariate polynomial based on two-server model.

Papamanthou, C., Shi, E., & Tamassia, R. (2013). Signatures of correct computation. In Theory of Cryptography
Conference on Theory of Cryptography (Vol. 7785, pp. 222-242). Springer-Verlag. doi:10.1007/978-3-642-
36594-2_13

Parno, B., Raykova, M., & Vaikuntanathan, V. (2012). How to Delegate and Verify in Public: Verifiable
Computation from Attribute-Based Encryption. In Theory of Cryptography. Springer Berlin Heidelberg.

Song, W., Wang, B., Wang, Q., Shi, C., Lou, W., & Peng, Z. (2017). Publicly verifiable computation of polynomials
over outsourced data with multiple sources. IEEE Transactions on Information Forensics & Security.

Sun, J., Zhu, B., Qin, J., Hu, J., & Wu, Q. (2018). Confidentiality-preserving publicly verifiable computation.
International Journal of Foundations of Computer Science, 28(6), 799–818. doi:10.1142/S0129054117400196

http://dx.doi.org/10.1145/2508859.2516681
http://dx.doi.org/10.1007/978-3-642-22792-9_7
http://dx.doi.org/10.1007/978-3-642-22792-9_7
http://dx.doi.org/10.1145/2535523
http://dx.doi.org/10.1145/2382196.2382250
http://dx.doi.org/10.1007/978-3-642-14623-7_25
http://dx.doi.org/10.1137/0218012
http://dx.doi.org/10.1186/s13677-015-0033-9
http://dx.doi.org/10.1109/TSC.2014.2331694
http://dx.doi.org/10.1007/978-3-642-36594-2_13
http://dx.doi.org/10.1007/978-3-642-36594-2_13
http://dx.doi.org/10.1142/S0129054117400196

International Journal of Digital Crime and Forensics
Volume 11 • Issue 4 • October-December 2019

27

Dawei Xie is studying in the school of mathematics, Shandong University.

Haining Yang received the B.S. degree in School of Mathematics and Statistics from Shandong Normal University,
China, in 2016. He is currently a Ph.D. candidate in School of Mathematics of Shandong University, China. His
research interests include cloud security and cryptography.

Qin jing is a professor at School of Mathematics, Shandong University. Subject is basic mathematics, research
direction is cryptography. In recent years, the research mainly focuses on public key searchable encryption, verifiable
outsourcing calculation, data integrity detection, computational complexity theory, attribute-based encryption,
casual transmission, secure multi-party calculation and other aspects. She was a visiting scholar at the university
of Pennsylvania from October 2010 to May 2011 and a coresearcher at the university of Greenwich from June to
July 2018. She has presided over and completed 3 projects of the national natural science foundation of China and
3 projects of the provincial natural science foundation of China, 1 project of the national “11th five-year” theoretical
code foundation of China, 1 project of the Chinese postdoctoral foundation of China, and 2 projects of the national
key laboratory opening project.

Wang, Q., Zhou, F., Chen, C., Xuan, P., & Wu, Q. (2017). Secure collaborative publicly verifiable computation.
IEEE Access: Practical Innovations, Open Solutions, 5(99), 2479–2488. doi:10.1109/ACCESS.2017.2672866

Ye, J., Zhang, H., & Fu, C. (2016). Verifiable delegation of polynomials. International Journal of Network
Security, 18(2), 283–290.

Zhang, K., Wei, L., Li, X., & Qian, H. (2017). Provably Secure Dual-Mode Publicly Verifiable Computation
Protocol in Marine Wireless Sensor Networks. Wireless Algorithms, Systems, and Applications. doi:10.1007/978-
3-319-60033-8_19

Zhang, L. F., & Safavi-Naini, R. (2014). Verifiable Delegation of Computations with Storage-Verification
Trade-off. In European Symposium on Research in Computer Security (Vol. 8712, pp.112-129). Springer.
doi:10.1007/978-3-319-11203-9_7

Zhang, X., Jiang, T., Li, K. C., & Chen, X. (2017). New publicly verifiable computation for batch matrix
multiplication. Information Sciences. doi:10.1016/j.ins.2017.11.063

Zhou, L., & Li, C. (2017). Outsourcing eigen-decomposition and singular value decom- position of large
matrix to a public cloud. IEEE Access: Practical Innovations, Open Solutions, 4, 869–879. doi:10.1109/
ACCESS.2016.2535103

http://dx.doi.org/10.1109/ACCESS.2017.2672866
http://dx.doi.org/10.1007/978-3-319-60033-8_19
http://dx.doi.org/10.1007/978-3-319-60033-8_19
http://dx.doi.org/10.1007/978-3-319-11203-9_7
http://dx.doi.org/10.1016/j.ins.2017.11.063
http://dx.doi.org/10.1109/ACCESS.2016.2535103
http://dx.doi.org/10.1109/ACCESS.2016.2535103

