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ABSTRACT

As cloud computing provides affordable and scalable computational resources, delegating heavy 
computing tasks to the cloud service providers is appealing to individuals and companies. Among 
different types of specific computations, the polynomial evaluation is an important one due to its 
wide usage in engineering and scientific fields. Cloud service providers may not be trusted, thus, the 
validity and the privacy of such computation should be guaranteed. In this article, the authors present 
a protocol for publicly verifiable delegations of high degree polynomials. Compared with the existing 
solutions, it ensures the privacy of outsourced functions and actual results. And the protocol satisfies 
the property of blind verifiability such that the results can be publicly verified without learning the 
value. The protocol also improves in efficiency.
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1. INTRODUCTION

It is increasingly common for mobile devices with relatively weak computing power to be used 
as general computing devices, such as smart phones and netbooks. This trend, coupled with their 
increasing desire to execute computationally intensive tasks, makes outsourcing computation to 
the cloud service providers a promising solution. The outsourcing computation enables resource-
constrained clients to enjoy almost unlimited computational resources. The clients deliver their 
computational tasks to cloud service providers and receive computational result from the providers 
in a pay-per-use manner. Hence, the clients are no longer restricted to their limited CPU, storage and 
bandwidth. Moreover, outsourcing computation provides economic benefits to the clients and allows 
them to avoid or minimize up-front IT infrastructure costs.

Despite the tremendous advantages, outsourcing computation raises several new security 
challenges, which make the clients reluctant to outsource their computations to cloud service 
providers. The first concern is the correctness of the computational results done by the providers, 
since the cloud service providers may not be trusted. Their misbehaviors are motivated by financial 
incentives (e.g., saving the computing resources for other transactions) or caused by hacking and 
bug in system. It means that there is no guarantee on the correctness of the computational results. 
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licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium, provided the author of the original work and 
original publication source are properly credited. 
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In order to address this problem, the notion of Verifiable Computation (VC) was introduced, which 
enables the clients to verify correctness of the results. Clearly, the verification of correctness must 
be substantially easier than the computation that was initially outsourced. Next, Parno, Raykova, 
and Vaikuntanathan (2012) proposed a new notion of Publicly Verifiable Computation (PVC) by 
extending the definition of VC, which makes the computational results can be verified by any third 
party besides the delegators. This is important in the contexts where the results have to be checked 
by several clients who cannot share a secret key in advance. Another concern is the privacy, since the 
relevant data may contain sensitive information, such as personal health assessment, stock prediction, 
financial performance analysis and so on, the computational results and the outsourced functions 
should be hided. Encryption does not fundamentally solve this problem, because it is very difficult or 
inefficient to perform meaningful operations on ciphertext. One common approach is that the client 
does some carefully designed local disguise process of the function before sending it to cloud service 
providers. Consider the privacy of results, blind verifiability is an important property of outsourcing 
computation such that the results can be publicly verified without learning the value. For example, a 
financial company delegates a certain computational task to cloud service providers, and it wants to 
ensure the privacy of the results. Further, efficiency is also a crucial challenge. Thus, an outsourcing 
computation protocol should satisfy the following four design goals: public verifiability, privacy of 
result/function, blind verifiability and efficiency.

In this paper, the authors study the particular problem of polynomial evaluation. Among all types 
of computations, the polynomial function evaluation is an important one due to its wide usage in 
engineering and scientific problems. For instance, the medical center executes polynomial functions 
over the personal health data, which uploaded from various wearable devices. Based on these data, 
the medical center assesses personal health and makes suggestions for people to keep healthy. Also, 
the securities company utilizes the financial software to analyze the economic performance of 
stocks, by executing polynomial functions over the past data. Benabbas, Gennaro, and Vahlis (2011) 
proposed the first practical verifiable computation protocol for high degree polynomial functions, 
by using the algebraic pseudorandom functions (PRFs). Nevertheless, their protocol does not satisfy 
public verifiability. In the same line of work, Fiore and Gennaro (2012) devised new algebraic PRFs 
to develop a publicly verifiable computation protocol for the delegated polynomials. After that, 
researchers proposed numerous protocols for secure outsourcing of polynomials (e.g., Catalano & 
Fiore, 2013; Elkhiyaoui, Azraoui, & Molva, 2016; Luo, Yang, & Cong, 2018; Papamanthou, Shi, & 
Tamassia, 2013; Ye, Zhang, & Fu, 2016; Zhang & Safavi-Naini, 2014).

From the practical perspective, however, the existing protocols for outsourcing polynomials 
computation still have some limitations, which make it not practical in real world application scenarios. 
The first limitation is that the actual polynomials and the actual results are revealed to the cloud 
servers. In many practical delegation scenarios, the privacy of the polynomials and the results must 
be ensured. The second limitation is that almost all protocols do not satisfy the blind verifiability. 
Consider a financial company that wishes to delegate the computation of a certain expensive data 
analysis polynomial function to a cloud server. Since the company will make an investment strategy 
for the next year based on the results, it would like to ensure the privacy of the polynomial and the 
results. Meanwhile, the blind verifiability is also a necessary requirement. Once the relevant data 
are leaked, rivals will speculate on its investment plans and sabotage the investments. The damage 
could result in huge economic losses for the company. The gaps in the existing protocols motivate 
the authors to investigate the outsourcing polynomials computation.

In this paper, the authors propose an efficient publicly verifiable outsourcing computation protocol 
for polynomial functions. The key characteristics of the protocol are that it can ensure the privacy 
(of the polynomials and the actual results) and support blind verifiability.

1.1. Our Contributions
The main contributions in this paper can be summarized as follows.
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• The authors propose a privacy preserving and publicly verifiable protocol for outsourcing 
polynomials evaluation to a malicious cloud. It can ensure the privacy of outsourced polynomials 
and actual results, and it supports the blind verifiability. The authors leverage Euclidian division 
as a basis for our protocol.

• The disguise process, the blind verification and the retrieval for actual results can be executed 
efficiently.

1.2. Related works
The subject of Verifiable Computation has already attracted a lot of attention. To begin with, some 
related works focus on Interactive Proof (Babai, 1985; Goldwasser, Micali, & Racko, 1989) and 
efficient arguments based on the probabilistically checkable proofs (Kilian,1995; Kilian, 1998). 
Gennaro, Gentry, and Parno (2010) proposed a non-interactive verifiable computation protocol. In 
this protocol, a client outsources data and a function evaluation to a cloud server. The client executes 
a one-time encoding of the function and stores it with the server. This enables the server to not only 
evaluate the function, but also provide a proof of the correctness. However, the protocol requires 
the verifier know a secret key in advance, it does not satisfy public verifiability. In order to address 
this shortcoming, Parno, Raykova, and Vaikuntanathan (2012) extended the definition of Verifiable 
Computation to introduce a new notion of Publicly Verifiable Computation with the support of 
Attribute-Based Encryption (ABE). Their protocols explore a connection between Attribute-Based 
Encryption and the problem of verifiable computation, which enables the results can be verified 
by any third party. However, the class of functions for which we know an efficient ABE protocol 
is unfortunately very limited, and their protocol does not work for any arbitrary polynomial time 
computation. Next, numerous papers focus on verifiable computation of specific functions (e.g., 
Blanton, Zhang, & Frikken, 2013; Hu & Tang, 2015; Lei, Liao, Member, Huang, & li, 2015; Zhou & 
li, 2017). Recently, many researchers have presented applications of publicly verifiable computation 
(Backes, Fiore, & Reischuk, 2013; Song, Wang, & Wang, 2017; Sun, Zhu, & Qin, 2018; Ye, Zhang, 
& Fu; Zhang, Wei, & Li, 2017).

The verifiable polynomial evaluation also has a large body of prior works. Benabbas, Gennaro, and 
Vahlis (2011) presented the first practical verifiable computation protocol for high degree polynomial 
functions, which is based on the algebraic PRFs. In their scheme, a client stores polynomials in the 
clear with a cloud server as a vector of the coefficients. Catalano and Fiore (2013) proposed a practical 
protocol for the verifiable polynomial computation with the bounded degree in virtue of homomorphic 
MACs. In this paper, their first construction relies on the sole assumption that one way functions 
exist and allows for arbitrary composition (i.e., outputs of previously authenticated computations 
can be used as inputs for new ones), but it has the drawback that the size of the produced tags grows 
with the degree of the circuit. Their second construction, relying on the Diffle-Hellman Inversion 
assumption, offers some features as it allows for very short tags but poses some restrictions on the 
composition side. Since the use of symmetric encryption algorithm, their protocol does not satisfy 
the public verifiability. Ye, Zhang, and Fu (2016) was based on the integer factorization problem 
to propose verifiable computation protocol for polynomial. Above protocols do not satisfy public 
verifiability, privacy of result/function, blind verifiability as the protocol presented in this paper.

Fiore and Gennaro (2012) devised new algebraic PRFs, also used by Zhang and Safavi-Naini 
(2014), to develop publicly verifiable protocols. Their protocols enable the computational results can 
be verified by any third party. Papamanthou, Shi, and Tamassia (2013) proposed a protocol for publicly 
verifiable polynomials computation, which is based on signatures for correct computation (SCC). 
In this paper, a client outsources a polynomial F  to an untrusted cloud server. The server generates 
a succinct signature σ  for the correctness of the computation results. Elkhiyaoui, Azraoui, and Molva 
(2016) proposed a publicly verifiable protocol of polynomials that improves in efficiency with the 
support of Euclidean division. Compared with these protocols, the protocol of this paper offers the 
additional privacy and blind verifiability. (See Table 1)
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1.3. Paper Organization
In section preliminaries, the authors recall the computational assumptions and the definitions needed 
by the paper. In next section, the authors present a protocol for public verifiable polynomial evaluation 
and some analysis about it. Finally, they conclude their works.

2. PRELIMINARIES

In what follows the authors will denote with λ ∈   a security parameter. If S  is a set, they denote 

with x S
R

←   the process of selecting x  uniformly at random in S . The authors say that a function 

negl ⋅( )  is negligible if it vanishes faster than the inverse of any polynomial. Let   be a probabilistic 

polynomial time algorithm. They denote with Dom(F ) the domain of F  and Ran(F ) the range of 
F .

2.1. Computational Assumptions
2.1.1. Definition 1 (Bilinear Pairing)

Let 
1
, 

2
, 

T
 be cyclic groups of prime order p . A bilinear pairing is a map e

T
:   

1 2
× → , 

with the following properties:

1.  Bilinearity. For any α , β ∈ 
p

, g ∈ 
1
, h ∈ 

2
, there exists an equation e g hα β,( )= e g h,( )

αβ

;

2.  Computability. For any g h,( ) ∈ × 
1 2

, there exists an efficient algorithm to compute e g h,( ) ;
3.  Non-degeneracy. If g  is a generator of 

1
 and h  is a generator of 

2
, then e g h,( )  is a generator 

of 
T

 .

2.1.2. Definition 2 (n-SDH Assumption)

Let 
1
, 

2
, 

T
 be cyclic groups of prime order p , g  is a generator of 

1
, h  is a generator of 


2

 and e  is a bilinear map e
T

:   
1 2
× → .

The n-Strong Diffie-Hellman assumption (n-SDH) holds, if given the tuple g g h h h
n n

, , , ,...,
α α α( )∈ ×

+ 
1

2

2

1  

for α R

p
←  * , the probability of producing a pair β α

β α
, \

/
h

p

1

2

+( )( )∈ −{ }×F G  is negligible.

Table 1. This Is A features comparison of the protocol for polynomials evaluation with related protocols

            Protocols
Public 

Verifiability

Public 

Delegation

Result/Function 

Privacy

Blind 

Verifiability

     Gennaro et al, 2011 × × × ×

        Fiore et al,2012 √ × × ×

  Papamanthou et al, 2013 √ √ × ×

       Zhang et al, 2014 × × × ×

    Elkhiyaoui et al, 2016 √ √ × ×

        Song et al, 2017 √ √ × ×

            Our Work √ √ √ √
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2.2. Publicly Verifiable Computation
A publicly verifiable computation protocol is a tuple of given algorithms, the clients delegate the 
computation of a function F  to a cloud server S  by these algorithms, in such way that the clients 
can verify the correctness of the results returned by the server S  in public way. Clearly, it is crucial 
that the work of verification must be substantially smaller than computing the function locally. 
Otherwise, the clients could perform the computation on itself.

Parno, Raykova, and Vaikuntanathan (2012) defined the publicly verifiable computation (PVC): 
any verifier (possibly different from the delegator) can verify the correctness of the server’s results.

Let   be a family of functions. The modified PVC protocol between two polynomial time 
parties: a client C  and a server S  is defined by the following algorithms:

• KeyGen F PP PK RK EK
F F F

, , , ,1λ( )→ ( ) : On input a function F ∈   and a security parameter 

λ , the randomized key generation algorithm produces public parameters PP , a public key 

PK
F

, a retrieval key RK
F

 that will be used to retrieve the actual results and an evaluation key 

EK
F

 which will be handed to the server S .

• ProbGen PK PP x VK
F x x
, , ,( )→ ( )σ : Given a value x ∈Dom(F ), the public key PK

F
 and 

the public parameters PP , the delegator runs this algorithm to produce an encoding σ
x

 of x  

and a public verification key VK
x

 that will be used to check the results.

• Compute EK
F x y
, ,σ σ π( )→ ( ) : Given the evaluation key EK

F
 together with the encoding σ

x
, 

this algorithm is run by the server S  to compute an encoding σ
y

 of F x( )  and a proof π  of its 

correctness.

• BVerify VK PP T
x y

y

, , ,σ π
σ

( )→ : On input the public verification key VK
x

, the public parameter 

PP , the encoded output σ
y

 and the proof π , this blind verification algorithm is run by any 

party to return a token T
y
σ

. If the output σ
y

 is valid, then this algorithm returns T accept S
y
σ
= ( ), ; 

otherwise, it returns T reject S
y
σ
= ( ), .

• Retrieve RK T y
F y

y

, ,
σ
σ( )→ ∪ ⊥ :Run by the clients holding RK

F
 to retrieve the actual result 

y F x= ( )  or an error ⊥ .

2.2.1. Definition 3 (Correctness)
A publicly verifiable computation protocol for a family of functions   is correct, if for any function 

F ∈   and any x ∈  Dom(F ):

I f  ProbGen PK PP x VK
F x x
, , ,( )→ ( )σ  a n d  Compute EK

F x y
, ,σ σ π( )→ ( ) ,  t h e n 

Pr , , , ,BVerify VK PP accept S
x y

σ π( )→ ( )( )= 1 .

Informally, a publicly verifiable computation protocol is correct, if the values generated by the 
problem generation algorithm allows the honest server S  to output results that will be verified 
correctly.

For any publicly verifiable computation protocol, the authors define following experiment:
A l g o r i t h m  1 .  S o u n d n e s s  ex p e r i m e n t  o f  p u b l i c ly  ve r i f i a b l e  p r o t o c o l :

PP PK EK F
F F

, , , ;( )← ( )
KeyGen

1λ

 → x;  
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σ
x x F
VK PK PP x, , , ;( )← ( )

ProbGen
 

 → ( )σ π
y
, ;  

T VK PP
y

x yσ

σ π← ( )BVerify , , , .  

2.2.2. Definition 4 (Soundness)

Let Π,F
 denotes the probability that adversary   succeeds in the Algorithm 1(i.e. 

Π, Pr ,
F

T reject S y F x
y

= ≠ ( )∧ ≠ ( )( )σ
).

A publicly verifiable computation protocol for a family of functions   is sound, if for any 

adversary   and any function F ∈  , Π,F
≤ ε  and ε  is a negligible function on the security 

parameter.

In a nutshell, a publicly verifiable computation protocol is said to be sound, if for any function 
F ∈   and anyx ∈  Dom(F ), the server S  cannot convince any verifier to accept an incorrect 
result.

3. PUBLICLy VERIFIABLE POLyNOMIAL EVALUATION

3.1. Protocol Overview
This protocol leverages Euclidean division of polynomials as a basis. In detail, for any polynomial 
F with degree d and polynomial d  with degree 2, the Euclidean division of F  by B  output an 

unique pair of polynomial Q R,( )  such that F BQ R= + , where Q  has degree d −2  and R  has 

degree ≤ 1 .

Consider a resource-constrained client has a polynomial F X( )  of degree d , and he wishes to 

delegate the evaluation of F  to a cloud server S  for arbitrary inputs. In order to ensure the privacy 
of F  and computational results, the client executes a disguise process: first, defining random 

polynomial B X X b( )= +
2

0
, and dividing of F  by B  output a pair Q R,( )  such thatF BQ R= + , 

where Q X q X
i

i

i

d

( )=
=

−

∑ 0

2
 and R X rX r( )= +

1 0
; next, defining another random polynomial 

B X X b' '( )= +
2

0
, divides of Q  by B '  output Q X'( )=  q X

i

i

i

d
'

=

−

∑ 0

4
 and R X'( )=where 

Q B Q R= +' ' ' .

Then the client publishes the public PK p p p g h h
F

b r r
= ( )= ( )1 2 3

0 1 0, , , ,
' ' ' , shares secretly a 

retrieval key RK b r r
F
= ( )0 1 0

, ,  and sends EK QW
F
= ( ),  to the server S , where

W W W W h h h
d

q q q
d= ( )= ( )−
−

0 1 4
0 1 4, ,..., , ,..., .
' ' '  

If a client wants to evaluate polynomial F  at point x , it first sends x  to the server S , then 

computes and publishes the verification key VK VK VK p g p p
x

x x
= ( )= ( )1 2 1 2 3

2

, , . After that, the 

server returns computational result σ
y
Q x= ( )  and the proof π = ( )

h
Q x'

, any verifier can verify the 

correctness of σ
y

 by checking whether
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e g h e VK e g VKy, , ,
σ

π( )= ( ) ( )1 2
. 

Finally, the clients rely on RK
F

 to retrieve the actual results F x x b r x r
y( )= +( ) + +

2

0 1 0
σ .

It is clear that the efficiency of the verification stems from the fact that B '  and R '  are small 

degree polynomials. In fact, compared with O d( )  operations to evaluate polynomial F , the client 

verifies the correctness of σ
y

 is a small and constant number of computations.

3.2. The Protocol

Assume a client has a d-degree polynomial F X f X
i

i

i

d

( )=
=∑ 0

 with coefficients f
i p
∈  , where 

p  is a large prime. The client would like to outsource the evaluation of F  to a cloud service provider 
S  for arbitrary input x . The detail description of our protocol as follows.

• KeyGen F,1λ( ) . The algorithm first selects three cyclic groups 
1
, 

2
, 

T
 of the same prime 

order p , equipped with a bilinear pairing e
T

:   
1 2
× → . Then it picks a generator g

1
 and 

g
2
 of groups 

1
 and 

1
respectively and defines the public parameters as:

PP p g g e
T

= ( ), , , , , ,
1 2 1 2

    

Then selecting a random b R

p0
←  *  to define a polynomial B X X b( )= +

2

0
, which does 

not divide polynomial F . Next, performing the Euclidean division of F  by B  in 
P
X



. We denote 

with Q X q X
i

i

i

d

( )=
=

−

∑ 0

2

 the resulting quotient polynomial and denote the resulting remainder 

polynomial with R X rX r( )= +
1 0

. Selecting another random b R

p
'

*

0
←    to define another 

polynomial B X X b' '( )= +
2

0
, which does not divide polynomial Q . Computing the Euclidean 

division of Q  by B ' . Similarly, Q X'( )=  q X
i

i

i

d
'

=

−

∑ 0

4
 and R X r X r' ' '( )= +

1 0
. The public key 

is defined by:

PK p p p g g g
F

b r r
= ( )= ( )1 2 3 1 2 2

0 1 0, , , ,
' ' ' . 

The retrieval key RK b r r
F
= ( )0 1 0

, , . To compute W g
i

q
i= ∈
2 2

'   for all 0 4≤ ≤ −i d  and let

W W W W
d

d
= ( ) ∈−

−

0 1 4 2

3
, ,...,  , EK QW

F
= ( ), . 

Algorithm KeyGen concludes its execution by outputting the tuple:

PP PK RK EK
F F F

, , ,( ) . 
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• ProbGen PK PP x
F
, ,( ) . Compute VK p g x

1 1 1

2

= , VK p px
2 2 3
= , then output σ

x
x=  and 

VK VK VK
x
= ( )

1 2
, .

• Compute EK
F x
,σ( ) . Evaluate σ

y i

i

i

d
Q x q x= ( )=

=

−

∑ 0

2

 mod p , the proof π =
=

−
Π
i

d

i

x
W i

0

4  and 

return the tuple σ π
y
,( ) .

• BVerify VK PP
x y
, , ,σ π( ) . If e g g e VK e g VKy

1 2 1 1 2
, , ,
σ

π( )= ( ) ( ) , output T accept S
y
σ
= ( ), , 

otherwise output T reject S
y
σ
= ( ), .

• Retrieve RK T
F y

y

, ,
σ
σ( ) . If T accept S

y
σ
= ( ), ,the clients holding RK

F
 to retrieve the actual 

result y F x x b r x r
y

= ( )= +( ) + +
2

0 1 0
σ . Otherwise returning an error ⊥ .

Some remarks about above protocol are in order.
Firstly, this protocol can ensure the privacy of actual results and the function F. This is an 

important property in many scenarios.
Secondly, the blind verification algorithm BVerify enables the results can be publicly verified 

without learning the value.
Thirdly, the disguise process, the blind verification and retrieve actual results can be executed 

efficiently.

3.3. Security Analysis
Theorem 1. This publicly verifiable polynomial evaluation protocol is correct

Proof. If given σ
x p
x= ∈  , the server executes algorithm Compute honestly, then the output 

will correspond to σ π
y

Q x
Q x g, ,

'( )= ( )( )( )2
.This is due to:

π = = =
=

−

=

−
( )

∏ ∏W g g
i

x

i

d
q x

i

d
Q xi

i

i

0

4

2

0

4

2

' '
. 

Given that Q B Q R= +' ' '  in 
P
X



, we get:

e g g e g g e g g e g
Q x B x Q x R x Q x

B x

1 2 1 2 1 2
, , ,

' ' ' '
'

( ) = ( ) = ( )( ) ( ) ( )+ ( ) ( ) ( )

11 2
,

'

g
R x

( )
( )

. 

Since VK p g g gx x b B x

1 1 1 1 1

2 2

0= = =
+ ( )' '

 and VK p p g gx r x r R x

2 2 3 2 2

1 0= = =
+ ( )' ' '

.

From it the authors conclude that e g g e VK e g VKy

1 2 1 1 2
, , ,
σ

π( )= ( ) ( ) .

Then BVerify VK PP
x y
, , ,σ π( )→  accept S,( ) . It is clear that the clients holding RK

F
 can 

retrieve the actual result by computing y F x x b r x r
y

= ( )= +( ) + +
2

0 1 0
σ .

Theorem 2. The protocol proposed above for publicly verifiable polynomial evaluation is sound 

under the d / 2 1−



  - SDH assumption

Proof. Assume an adversary   can break the soundness of the protocol with a non-negligible 
advantage ξ . In the following, the authors demonstrate there exists another adversary   that breaks 

the d / 2 1−



  SDH assumption with a non-negligible advantage δ ξ≥ .
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The authors denote with 
sdh

 an oracle, which returns a pair g g
1 1
, α( )  in 

1
 and a tuple 

g g g
d

2 2 2

2 1

, ,...,
/

α α
−



( )  in 

2,
 for α R

p
←  * .

Firstly, the adversary   calls oracle 
sdh

 to obtain a tuple

g g g g g
d

1 1 2 2 2

2 1

, , , ,...,
/

α α α
−



( ) , 

then simulates the soundness experiment (detail in Algorithm 1) to adversary  . That is when 

  calls oracle 
KeyGen

 with polynomial Q X q X
i

i

i

d

( )=
=

−

∑ 0

2
 in 

P
X



, adversary   simulate 

response 
KeyGen

 as follows:

1.  Define the public parameters PP p g g e
T

�
= ( ), , , , , ,

1 2 1 2
   ;

2.  It defines the evaluation EK QWF

� �
= ( ), , where W W W W d

� � � �
= ( )−0 1 4, ,..., . Let W gd

q
d�

− = −
4

2
2  

and W gd
q
d�

− = −
5

2
3 . For each 2 4≤ ≤ −k d , it computes W gd k

i

k q
d k i

i i
�

− −
=




 −( )

= − − +
4

0

2

2

1
2 2Π

/ α
.

3.  Computing the public key PK p p pF
� ɵ ɵ ɵ

= ( )1 2 3, ,  as following:

p g
ɵ

1 1
= α , 

p g
q

i

d

i

i i
ɵ
2 2

1

0

3 2

2 1= +
−( )

=

−( )





∏
α

/

, 

p g
q

i

d

i

i i
ɵ
3 2

1

0

2 1

2=
−( )

=

−





∏
α

/

. 

If p pɵ ɵ
2 3

1 1, ,( )= ( ) , then adversary   stops the experiment.

4.  Otherwise, it return PP PK EKF F
� � �, ,( )  to adversary  .

The tuple PP PK EKF F
� � �, ,( )  returned by adversary   is statistically indistinguishable from the 

distribution of PP PK EK
F F

, ,( )  in the soundness experiment. In fact, if they denote for all 0 ≤ ≤i

d − 4 , W gi
q
i� =
2

'  and let p p g g
r rɵ ɵ

2 3 2 2

1 0, ,
' '( )= ( ) , they can verify that:

• q q
d d− −
=

2 4
'  mod p  and q q

d d− −
=

3 5
'  mod p ;

• For all 2 4≤ ≤ −i d , q q q
i i i
= +

−
α ' '

2
 mod p ;

• q q r
1 1 1
= +α ' '  mod p  and q q r

0 0 0
= +α ' '  mod p ;

• r r' , ' ,
1 0

0 0( )≠ ( ) .
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Next, the authors define Q X q X
i

i

i

d
' '( )=

=

−

∑ 0

4

, B X X'( )= +
2 α , R X r X r' ' '( )= +

1 0
, the 

following equation is correct: Q B Q R= +' ' ' .

The authors can conclude (i) B '  does not divide Q ; (ii) each W i
�  correctly encodes the ith  

coefficient of Q ' ; (iii) the pair p pɵ ɵ
2 3
,( )  correctly encodes R ' .

Then, adversary   selects a challenge value x
p

∈   and calls oracle 
ProbGen

 with the tuple 

PK PP xF
� �, ,( ) . Accordingly, adversary   compute the response of oracle 

ProbGen
 and returns 

verification key VK VK VK p g p p
x

x
x

= ( )=








1 2 1 1 2 3

2

, ,
ɵ ɵ ɵ .

Finally, adversary   returns a pair σ π
y
,( ) , where σ

y
Q X≠ ( )  and σ π

y
,( )  is accepted by 

algorithm BVerify with a non-negligible advantage ξ .

Hence, adversary   breaks the d / 2 1−



  - SDH assumption by first computing Q X( )  and 

π* =
=

−

∏W i

x

i

d i

�

0

4

, and outputting:

β
π

π

β α
, ,

/

*
g x

y Q x

2

1 2

1

+( )
− ( )( )

( )=























−



. 

Indeed, since the pair σ π
y
,( )  satisfies the verification,

e g g e p g e g p p e g ey x
x

x

1 2 1 1 1 2 3 1

2 2

, , , ,
σ απ π( )= ( )










= ( )+ɵ ɵ ɵ

gg p p
x

1 2 3,
ɵ ɵ









 (1)

Furthermore,

e g g e g e g p p
Q x x

x

1 2 1 1 2 3

2

, , ,*( ) +( )= ( )










α
π

ɵ ɵ  (2)

By dividing Equation (1) by (2), the authors obtain:

e g g e g x
Q x

y

1 2 1

2

1

, ,
*

( )=





















+

− ( )( )
−

α

σ

π

π


. 

Hence if adversary   does not stop the experiment, then it will be able to break the d / 2 1−



  

- SDH assumption. If adversary   aborts the experiment when p pɵ ɵ
2 3

1 1, ,( )= ( ) , then the adversary 

  can conclude B '  divides Q . This means adversary   can find α , that break the d / 2 1−



  - 

SDH assumption obviously.
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Thus, the authors deduce that if there exists an adversary   that can break the soundness of the 
protocol with a non-negligible advantage ξ  . They demonstrated there exists another adversary   

that breaks the d / 2 1−




 - SDH assumption with a non-negligible advantage δ δ ξ≥ .

3.4. Performance Analysis

Algorithm KeyGen first selects two random coefficients b
0
, b '

0
 and executes two Euclidean divisions. 

The latter operation consists of d d+ −( )2  multiplications and additions. Next, it needs to performs 

one exponentiation in 
1
 and d −1  exponentiations in 

2
 to construct the PK

F
 and the EK

F
. 

Although the algorithm KeyGen computationally expensive, it is executed only once. Besides, its 
computational cost can be amortized.

Algorithm ProbGen generates the verification key VK VK VK
x
= ( )1 2

, , which costs a constant 

number of operations. In particularly, these operations do not depend on the degree of polynomial. 

In detail, this algorithm’s work consists of computing x 2  in 
p

, executing one exponentiation and 

one multiplication in 
1
, and performing one exponentiation and one multiplication in 

2
.

Algorithm Compute evaluate the result σ
y i

i

i

d
Q x q x= ( )=

=

−

∑ 0

2
 mod p  and the proof π =

Π
i

d

i

x
W i

=

−

0

4 . In detail, it demands 2 5d −  multiplications in 
p

, d − 3  exponentiations and d − 4

multiplications in 
2

.

Algorithm BVerify demands one exponentiation and one division in 
2

 and the computation 
of 2  bilinear pairings.

Finally, the algorithm Retrieve only demands 6  additions and multiplications in 
p

.

In regard to storage, the client needs to keep the public key and the retrieval key. Meanwhile, the 

server stores the coefficients of polynomial Q  and the encodings W
i
. (See Table 2)

Table 2. This is a summary of the efficiency of our protocol

Algorithm Efficiency Client’s storage Server’s storage

   KeyGen 2 prng and 2d − 2 mul in F
p

1 exp in G
1

d − 1 exp in G
2

O
1

O
d−2

  ProbGen 1 mul in F
p

1 exp and 1 mul in G
1

1 exp and 1 mul in G
2

- -

  Compute 2d − 5 mul in F
p

d − 3 exp and d − 4 mul in G
2

- -

   BVerify 1 exp and 1 div in G
2

2 pairings
- -

   Retrieve 6 mul in F
p

- -



International Journal of Digital Crime and Forensics
Volume 11 • Issue 4 • October-December 2019

25

4. CONCLUSION

In this paper, the authors propose a privacy-preserving and publicly verifiable protocol for outsourcing 
polynomials evaluation to a malicious cloud. The protocol based on Euclidean division properties. 
Compared with existing protocols, it can ensure the privacy of functions and actual results, and it 
supports the blind verifiability. Besides, the disguise process, the blind verification and the retrieve 
can be executed efficiently.
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